Supplementary Information

Nickel-Catalyzed Reductive Allylation of Aryl Halides with Allylic Acetates

Xiaozhan Cui,^a Shulin Wang,^a Yuwei Zhang,^b Qun Qian*^a and Hegui Gong*^a

^a Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.

^b College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Road,

Zhengzhou 450001, China.

Hegui_gong@shu.edu.cn

Table of Contents

1. Instrumentation and Chemicals	. S2
2. General Procedure for Reductive Coupling of Aryl Halides with Allylic	
Acetates	S2
3. Spectral Data of New Compounds	. S3
4. Synthesis the Key Ligand 3a	. S5
5. Examination of in situ organozinc formation	. S6
6. ¹ H and ¹³ C NMR Spectra of Coupling Products	. S7
7. The Data of HPLC for Asymmetric Coupling of 1,3-Disubsituted	
Allyl Acetate	. S15
8. The references for known products	S17

1. Instrumentation and Chemicals

All reagents were reagent grade quality and used as received from Aladdin Co. (China), unless otherwise indicated. All reactions were carried out under an atmosphere of nitrogen unless otherwise indicated. Anhydrous THF and Toluene were distilled from sodium/benzophenone ketyl prior to use. Anhydrous DCM and MeOH were distilled over CaH₂. All other solvents were technical grade unless noted. Anhydrous DMF (Acros), DMA (anhydrous and 99.5% ultrapure, Acros), NiCl2 (Alfa Aesar), NiBr2 (Alfa Aesar), NiI2 (anhydrous, Alfa Aesar), Ni(COD)2 (Aldrich), zinc power (Aldrich), anhydrous MgCl2 (Alfa Aesar), **1a**, **1b**, **1c**, **4a**, **4b**, **4c** (Aldrich) were purchased, 6^1 , 8^2 were synthesized according to the literature procedures. All HPLC solvents were obtained from Aldrich.

Column chromatography was performed using silica gel 300-400 mesh (purchased from QingdaoHaiyang Co. China) as the solid support. All NMR spectra were recorded on Bruker Avance 500 MHz spectrometer at STP unless otherwise indicated. 1H NMR and 13C NMR chemical shifts are reported in δ units, parts per million (ppm) relative to the chemical shift of residual solvent. Deuterated solvents were used as received from Cambridge Isotope Laboratories, Inc. NMR chemical shifts are reported in units, parts per million (ppm) relative to the chemical shift of residual solvent. Reference peaks for chloroform in ¹H NMR and 13C NMR spectra were set at 7.26 ppm and 77.36 ppm, respectively. High-resolution mass spectra (HRMS) were obtained using a Bruker APEXIII 7.0 and IonSpec 4.7 TESLA FTMS. IR data were obtained using an AVATAR370. HPLC spectra were obtained using a SHIMADZU, LC-2010AHT and chromatographic column (CHIRALPAK. AD-H, Lot No. ADHOCE-OB110; DAICEL CHEMICAL INDUSTRIES, LTD.).

2. Reductive Coupling of Aryl Halides with Allylic Acetates

General Procedure for Reductive Coupling of Aryl Halides with Allylic Acetates: To a flame-dried Schlenk tube equipped with a magnetic stir bar was loaded alkyl bromide (0.15 mmol, 100 mol%), followed by addition of 4-chloro-2-(4,5-dihydro-1H-imidazol-2-yl)pyridine (**3a**) (2.7 mg, 0.015 mmol, 10 mol%), zinc powder (19.6 mg, 0.3 mmol, 200 mol%) and Bu₄NBr (48.4 mg, 0.15 mmol, 100 mol%). The tube was moved into a dry glove box, at which point NiI₂ (4.7 mg, 0.015 mmol, 10 mol%) and MgCl₂ (14.3 mg, 0.15 mmol, 100 mol%) were added. The tube was

capped with a rubber septum, and it was moved out of the glove box. Allylic Acetates (0.3 mmol, 200 mol%), pyridine (11.9 mg, 0.15 mmol, 100 mol%) and DMA (1.0 mL) were then added via syringe. After the reaction mixture was allowed to stir for 12 h under N₂ atmosphere at 60 \mathbb{C} , it was directly loaded onto a silica column without work-up. The residue in the reaction vessel was rinsed with small amount of DCM. Flash column chromatography (SiO₂: ethyl acetate in petroleum ether) provided the coupling product.

3. Spectral Data of New Compounds

COOMe

methyl 4-(2-phenylallyl)benzoate(24).

Colorless oil. Yield: 94% (36 mg); purification by column chromatography (SiO2: 5% ethyl acetate in petroleum ether); ¹H NMR (500 MHz, CDCl₃) δ 7.96 – 7.91 (m, 2H), 7.40 (dd, *J* = 8.2, 1.2 Hz, 2H), 7.34 – 7.20 (m, 5H), 5.52 (d, *J* = 0.7 Hz, 1H), 5.05 (d, *J* = 1.2 Hz, 1H), 3.89 (s, 5H); ¹³C NMR (126 MHz, CDCl₃): δ 167.44, 146.53, 145.40, 140.70, 130.05, 129.27, 128.67, 128.49, 127.97, 126.45, 115.43, 52.33, 42.04; IR (KBr) v

3419.32, 2920.47, 2850.45, 1721.06, 1610.93, 1434.87, 1280.96, 1109.55, 1020.50, 900.37, 779.05, 702.78; HRMS (ESI) calcd. For C₁₇H₁₆O₂ [MH+]: 252.1150; Found: 252.1145.

4-(2-phenylallyl)phenyl 4-methylbenzenesulfonate(30).

Colorless oil. Yield: 82% (45 mg); purification by column chromatography (SiO2: 5% ethyl acetate in petroleum ether); ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, *J* = 8.2 Hz, 2H), 7.38 (s, 2H), 7.28 (ddd, *J* = 21.7, 19.4, 17.2 Hz, 6H), 7.12 (d, *J* = 8.5 Hz, 2H), 6.87 (d, *J* = 8.5 Hz, 2H), 5.48 (s, 1H), 4.99 (s, 1H), 3.79 (s, 2H), 2.43 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 148.31, 146.81, 145.54, 140.73, 138.89, 132.73, 130.31, 129.99, 128.86, 128.62, 127.93, 126.44, 122.57, 115.20, 41.33, 22.05; IR (KBr) v 3438.25, 3094.26, 3049.14, 2920.33, 2850.68, 1629.01, 1597.13, 1499.65, 1368.69, 1197.10, 1197.10, 1176.06, 1152.41, 1093.29, 910.82, 857.59, 814.59, 777.38, 706.89, 660.95, 576.13, 552.51; HRMS (ESI) calcd. For C₂₂H₂₀O₃S [MH+]: 364.1133; Found: 364.1130.

COOMe

(E)-methyl 2-(pent-2-en-1-yl)benzoate(27).

Colorless oil. Yield: 89% (27 mg); purification by column chromatography (SiO2: 5% ethyl acetate in petroleum ether); ¹H NMR (500 MHz, CDCl₃) δ 7.84 (dd, *J* = 7.7, 1.1 Hz, 1H), 7.43 (td, *J* = 7.6, 1.3 Hz, 1H), 7.31 – 7.20 (m, 2H), 5.63 – 5.45 (m, 2H), 3.89 (s, 3H), 3.68 (d, *J* = 6.2 Hz, 2H), 2.07 – 1.96 (m, 2H), 0.96 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 168.60, 142.84, 133.86, 132.25, 131.05, 130.74, 130.09, 127.94, 126.27, 52.24, 37.56, 25.92, 14.14; IR (KBr) v 3026.73, 2961.92, 2930.78, 2873.30, 2850.16, 1724.50, 1448.52, 1264.22, 1079.62, 968.73, 750.45; HRMS (ESI) calcd. For C₁₃H₁₆O₂ [MH+]: 204.1150; Found: 204.1148.

(E)-1-chloro-2-(pent-2-en-1-yl)benzene(28).

Colorless oil. Yield: 91% (35 mg); purification by column chromatography (SiO2: 2% ethyl acetate in petroleum ether); ¹H NMR (500 MHz, CDCl₃) δ 7.34 (dd, *J* = 7.8, 1.1 Hz, 1H), 7.18 (dqd, *J* = 27.4, 7.5, 1.8 Hz, 3H), 5.59 – 5.53 (m, 2H), 3.44 (d, *J* = 2.8 Hz, 2H), 2.10 – 1.94 (m, 2H), 0.99 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 139.08, 134.72, 134.30, 130.60, 129.70, 127.66, 127.09, 126.09, 36.80, 25.91, 14.08; IR (KBr) v 3065.34, 3027.21, 2963.60, 2931.12, 2873.04, 2848.68, 1473.05, 1441.95, 1051.04, 1037.64, 967.98, 749.40, 680.10; HRMS (ESI) calcd. For C₁₁H₁₃Cl [MH+]: 180.0706; Found: 180.0705.

СООМе

(E)-methyl 4-(hex-2-en-1-yl)benzoate(21).

Colorless oil. Yield: 85% (28 mg); purification by column chromatography (SiO2: 5% ethyl acetate in petroleum ether); ¹H NMR (500 MHz, CDCl₃) δ 7.99 – 7.92 (m, 2H), 7.25 (d, *J* = 8.3 Hz, 2H), 5.60 – 5.47 (m, 2H), 3.90 (s, 3H), 3.38 (d, *J* = 5.0 Hz, 2H), 2.01 (dd, *J* = 13.5, 6.4 Hz, 2H), 1.40 (dd, *J* = 14.7, 7.4 Hz, 2H), 0.90 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 167.19, 146.67, 132.77, 129.71, 128.51, 127.89, 51.98, 39.05, 34.59, 22.54, 13.67; IR (KBr) v 2956.20, 2926.22, 2852.64, 1724.40, 1611.03, 1435.30, 1280.02, 1192.28, 1110.64, 1020.51, 968.73, 750.45; HRMS (ESI) calcd. For C₁₄H₁₈O₂ [MH+]: 218.1307; Found: 218.1305.

(E)-4-(pent-2-en-1-yl)benzaldehyde(26).

Colorless oil. Yield: 80% (21 mg); purification by column chromatography (SiO2: 5% ethyl acetate in petroleum ether); ¹H NMR (500 MHz, CDCl₃) δ 9.97 (s, 1H), 7.80 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 5.64 – 5.42 (m, 2H), 3.40 (d, *J* = 6.1 Hz, 2H), 2.11 – 1.99 (m, 2H), 1.00 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 192.38, 148.94, 135.12, 134.92, 130.30, 129.50, 126.73, 39.51, 25.87, 14.05; IR (KBr) v 3449.48, 2960.11, 2921.40, 2850.47, 2730.68, 1704.41, 1606.06, 1461.29, 1305.27, 1211.84, 1167.77, 968.52, 849.59, 829.88; HRMS (ESI) calcd. For C₁₂H₁₄O [MH+]: 174.1045; Found: 174.1047.

(E)-methyl 4-(5-phenylpent-2-en-1-yl)benzoate(18).

Colorless oil. Yield: 87% (37 mg); purification by column chromatography (SiO2: 5% ethyl acetate in petroleum ether). ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 8.2 Hz, 2H), 7.29 (t, *J* = 7.4 Hz, 2H), 7.19 (dd, *J* = 14.5, 7.7 Hz, 5H), 5.56 (t, *J* = 3.7 Hz, 2H), 3.91 (s, 3H), 3.37 (d, *J* = 3.5 Hz, 2H), 2.76 – 2.67 (m, 2H), 2.38 (dd, *J* = 11.0, 7.0 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃): δ 167.49, 146.70, 142.13, 132.20, 130.02, 128.86, 128.62, 128.23, 126.13, 52.32, 39.27, 36.12, 34.59; IR (KBr) v 3415.75, 3027.09, 2924.28, 2852.25, 1721.67, 1609.90, 1435.14, 1280.74, 1109.89, 968.80, 758.55, 699.94; HRMS (ESI) calcd. For C₁₉H₂₀O₂ [MH+]: 280.1463; Found: 280.1464.

4. Synthesis the Key Ligand 3a.

4-Chloro-2-(4,5-dihydro-1H-imidazol-2-yl)pyridine(3a). Following the literature procedures,³ sodium methoxide (7.8 mg, 0.144 mmol, 10 mol %) was added to a solution of 4-chloropicolinonitrile (200 mg, 1.44 mmol, 100 mol %) in methanol (1.5 mL). After the reaction mixture was allowed to stir for 15 h under N₂ atmosphere at 25 °C, it was directly loaded onto a silica column without work-up. The residue in the reaction vessel was rinsed with small amount of DCM. Flash column chromatography (SiO₂: 30% ethyl acetate in hexanes) provided methyl 4-chloropicolinimidate as a colorless oil (209 mg, 1.22 mmol, 85% yield).

Ethylene diamine (0.15 mL, 2.32 mmol, 493 mol %) was added to a mixture of methyl 4-chloropicolinimidate (80mg, 0.47 mmol, 100 mol %) in MeOH (1.5 mL). The reaction mixture

was allowed to stir for 20 h under N₂ atmosphere at 50 °C. The solution was cooled to room temperature and quenched with H₂O (5 mL) and diluted with CH₂Cl₂ (5 mL). The layers were separated and the aqueous layer was extracted with DCM (2 x 5 mL). The combined organic layers were dried over MgSO₄, filtered, concentrated under reduced pressure to provided **3a** as a light yellow solid (68 mg, 0.376 mmol, 80% yield).

White solid, M.p. = 77-78 °C; ¹H NMR (500 MHz, DMSO): δ 8.60 (dd, J = 5.5, 0.5 Hz, 1H), 8.03 (d, J = 2.2 Hz, 1H), 7.65 (dd, J = 5.5, 2.2 Hz, 1H), 7.05 (s, 1H), 3.64 (s, 4H). 13C NMR (125 MHz, DMSO): δ 162.7, 150.4, 150.4, 143.3, 125.2, 121.9. IR (KBr) v 3404.41, 3366.61, 3129.82, 3102.11, 3042.73, 2994.41, 2953.90, 2867.58, 2477.48, 1940.50, 1817.74, 1775.85, 1696.72, 1614.94, 1579.14, 1553.27, 1495.55, 1472.91, 1456.77, 1384.40, 1321.03, 1287.14, 1275.96, 1236.91, 1183.14, 1136.25, 1083.26, 1025.92, 979.23, 890.57, 848.65, 766.33, 689.71, 610.56, 532.32; MS (EI) m/z (M+) calcd for C₈H₈ClN₃: 181, found: 181.

5. Examination of in situ organozinc formation.

6. ¹H and ¹³C NMR Spectra of Reductive Coupling Products &

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

7. The Data of HPLC for Asymmetric Coupling of 1,3-Disubsituted

Allyl Acetate.⁽⁴⁾

Figure 1. The HPLC Data for Enantiomeric Production.

==== Shimadzu LCsolution 分析报告 ====

2013-3-16 00:16:26 1 / 1

样品信息 样品信息 样品名称 : cxz-2 样品 D : cxz-2 样品版# : 1 样品版# : 16 进样体积 : 10 uL 发掘文件名 : cxz-2. lcd 方法文件名 : cxz-2. lcd 方法文件名 : cb谱条件.lcm 批处型文件名 : 报告文件名 : 数据文件名 : 2013-3-15 21:57:16 数据处理 : 2013-3-15 22:41:43

100.000

C:\Documents and Settings\Administrator\桌面\cxz-2.lcd

Figure 2. The HPLC Data for Asymmetric Production.

2013-3-16 00:15:01 1 / 1

溜器 A 通道1

==== Shimadzu LCsolution 分析报告 ====

	样品信息
采集人 :	Admin
样品名称 :	cxz-1
样品 ID :	cxz-1
样品架# :	1
样品瓶# :	31
进样体积 :	10 uL
数据文件名 :	cxz-1.lcd
方法文件名 :	色谱条件.lcm
批处理文件名 :	
报告文件名 :	BG01.lcr
数据采集 :	2013-3-15 21:06:04
数据处理 :	2013-3-15 21:52:14

<色谱图>

m∨

C:\Documents and Settings\Administrator\桌面\cxz-1.lcd

1 检测器 A 通道1/254nm

峰表							
检测器	A Ch1 254nm						
峰#	保留时间	面积	高度	面积 %	浓度	理论塔板#	
1	38.245	8822389	155386	44.366	0.000	10717.999	
2	40.599	11063201	188283	55.634	0.000	12391.365	
息む	-	19885590	343669	100.000			

C:\Documents and Settings\Administrator\桌面\cxz-1.lcd

8. The references for known products

(E)-1-methoxy-4-(5-phenylpent-2-en-1-yl)benzene(10)⁽⁵⁾

(E)-1-(but-2-en-1-yl)-4-methoxybenzene(11)⁽⁶⁾

(E)-methyl 4-(but-2-en-1-yl)benzoate(19)⁽⁷⁾

1-methoxy-4-(3-methylbut-2-en-1-yl)benzene(12)⁽⁸⁾

methyl 4-(3-methylbut-2-en-1-yl)benzoate(20)⁽⁹⁾

(E)-1-(hex-2-en-1-yl)-4-methoxybenzene(13)⁽¹⁰⁾

1-cinnamyl-4-methoxybenzene(14)⁽¹¹⁾

methyl 4-cinnamylbenzoate(22)⁽¹²⁾

1-methoxy-4-(2-methylallyl)benzene(15)⁽¹³⁾

methyl 4-(2-methylallyl)benzoate(23)⁽¹⁴⁾

1-methoxy-4-(2-phenylallyl)benzene(16)⁽¹⁵⁾

(E)-1-methoxy-4-(4-phenylbut-3-en-2-yl)benzene(17)⁽¹⁶⁾

(E)-methyl 4-(4-phenylbut-3-en-2-yl)benzoate(25)⁽¹⁷⁾

1-methoxy-2-(2-methylallyl)benzene(29)⁽¹⁸⁾

N-(4-allylphenyl)acetamide(32)⁽²⁰⁾

(E)-4-(pent-2-en-1-yl)phenol(34)⁽²¹⁾

1,2,3-trimethoxy-5-(3-methylbut-2-en-1-yl)benzene(35)⁽²²⁾

1-(4-allylphenyl)ethanone(33)⁽²³⁾

- (1) Scott E. D; Robert A. S; Anne-Marie F; James P. E. J. Org. Chem., 1997, 62, 3375-3389.
- (2) Mark R; M. Mahmun. H. Tetrahedron Lett., 2004, 45, 8987-8990.
- (3) Malkov, A. V.; Liddon, A. J. P. S.; Ram rez-López, P.; Bendová, L.; Haigh, D.; Kočovský. P. Angew. Chem. Int. Ed., 2006, 45, 1432.
- (4) Experimental conditions for HPLC: Isopropanol: Hexane = 5: 95; Pump pressure: 3.0 MPa.
 Column: CHIRALPAK. AD-H, Lot No. ADHOCE-OB110; DAICEL CHEMICAL INDUSTRIES, LTD; Column Size: 250 x 4.6 mm analytical; Detection wavelength: 254nm.

Time (min)	Mobile phase	Flow rate
0	95.0/5.0 Hexane: IPA	0.3 mL/min
45	95.0/5.0 Hexane: IPA	0.3 mL/min

- (5) Evans, P. Andrew; Uraguchi, Daisuke. J. Am. Chem. Soc., 2003, 125, 7158-7159.
- (6) Denmark, Scott E.; Werner, Nathan S. J. Am. Chem. Soc., 2008, 130, 16382 16393.
- (7) Gomes, Paulo; Gosmini, Corinne; Perichon, Jacques. J. Org. Chem., 2003, 68, 1142 1145.
- (8) Valle, L. Del; Stille, J. K.; Hegedus, L. S. J. Org. Chem., 1990, 55, 3019 3023.
- (9) Hatanaka, Yasuo; Goda, Ken-ichi; Hiyama, Tamejiro. *Tetrahedron Lett.*, 1994, 35, 6511–6514.
- (10) Fukuoka, Satoshi; Nanri, Hiroshi; Katsuki, Tsutomu; Yamaguchi, Masaru. *Tetrahedron Lett.*, 1987, 28, 6205 6206.
- (11) Chatterjee, Paresh Nath; Roy, Sujit. Tetrahedron., 2012, 68, 3776 3785.
- (12) Li, Man-Bo; Wang, Yong; Tian, Shi-Kai. Angew. Chem. Int. Ed., 2012, 51, 2968 2971.
- (13) Iwasaki, Masayuki; Hayashi, Sayuri; Hirano, Koji; Yorimitsu, Hideki; Oshima, Koichiro.
 Tetrahedron, 2007, 63, 5200 5203.
- (14) Sinha, Subhash C.; Keinan, Ehud; Reymond, Jean-Louis. J. Am. Chem. Soc., 1993, 115, 4893 4894.
- (15) Organ, Michael G.; Arvanitis, Elena A.; Villani, Anita; Majkut, Yvette; Hynes, Stephen. *Tetrahedron Lett.*, 2003, 44, 4403 – 4406.
- (16) Liao, Longyan; Sigman, Matthew S. J. Am. Chem. Soc., 2010, 132, 10209 10211.
- (17) Liao, Longyan; Sigman, Matthew S. J. Am. Chem. Soc., 2010, 132, 10209 10211.
- (18) Ruechardt, C.; Eichler, S. Chemische Berichte, 1962, 95, 1921 1942.

- (19) Uozumi, Yasuhiro; Danjo, Hiroshi; Hayashi, Tamio. J. Org. Chem., 1999, 64, 3384 3388.
- (20) Ortar, Giorgio. Tetrahedron Lett, 2003, 44, 4311-4314.
- (21) Kakhniashvili; Chikovani. Soobshcheniya Akademii Nauk Gruzinskoi SSR., 1969, 53, 93.
- (22) Farmer, Jennifer L.; Hunter, Howard N.; Organ, Michael G. J. Am. Chem. Soc., 2012, 134, 17470 – 17473.
- (23) Lee, Phil Ho; Sung, Sun-young; Lee, Kooyeon. Org. Lett., 2001, 3, 3201 3204.