Supplementary Information

Nickel-Catalyzed Reductive Allylation of Aryl Halides withAllylic Acetates
Xiaozhan Cui, ${ }^{a}$ Shulin Wang, ${ }^{a}$ Yuwei Zhang, ${ }^{b}$ Qun Qian* ${ }^{*}$ and Hegui Gong* ${ }^{a}$
${ }^{a}$ Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.
${ }^{b}$ College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Road,
Zhengzhou 450001, China.
Hegui_gong@shu.edu.cn
Table of Contents

1. Instrumentation and Chemicals S2
2. General Procedure for Reductive Coupling of Aryl Halides with Allylic Acetates S2
3. Spectral Data of New Compounds S3
4. Synthesis the Key Ligand 3a. S5
5. Examination of in situ organozinc formation S6
6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Coupling Products S7
7. The Data of HPLC for Asymmetric Coupling of 1,3-Disubsituted Allyl Acetate. S15
8. The references for known products. S17

1. Instrumentation and Chemicals

All reagents were reagent grade quality and used as received from Aladdin Co. (China), unless otherwise indicated. All reactions were carried out under an atmosphere of nitrogen unless otherwise indicated. Anhydrous THF and Toluene were distilled from sodium/benzophenone ketyl prior to use. Anhydrous DCM and MeOH were distilled over CaH_{2}. All other solvents were technical grade unless noted. Anhydrous DMF (Acros), DMA (anhydrous and 99.5\% ultrapure, Acros), NiCl 2 (Alfa Aesar), NiBr 2 (Alfa Aesar), NiI2 (anhydrous, Alfa Aesar), Ni(COD)2 (Aldrich), zinc power (Aldrich), anhydrous MgCl 2 (Alfa Aesar), 1a, 1b, 1c, 4a, 4b, 4c (Aldrich) were purchased, $\mathbf{6}^{\mathbf{1}}, \mathbf{8}^{\mathbf{2}}$ were synthesized according to the literature procedures. All HPLC solvents were obtained from Aldrich.

Column chromatography was performed using silica gel 300-400 mesh (purchased from QingdaoHaiyang Co. China) as the solid support. All NMR spectra were recorded on Bruker Avance 500 MHz spectrometer at STP unless otherwise indicated. 1H NMR and 13C NMR chemical shifts are reported in δ units, parts per million (ppm) relative to the chemical shift of residual solvent. Deuterated solvents were used as received from Cambridge Isotope Laboratories, Inc. NMR chemical shifts are reported in units, parts per million (ppm) relative to the chemical shift of residual solvent. Reference peaks for chloroform in ${ }^{1} \mathrm{H}$ NMR and 13C NMR spectra were set at 7.26 ppm and 77.36 ppm , respectively. High-resolution mass spectra (HRMS) were obtained using a Bruker APEXIII 7.0 and IonSpec 4.7 TESLA FTMS. IR data were obtained using an AVATAR370. HPLC spectra were obtained using a SHIMADZU, LC-2010AHT and chromatographic column (CHIRALPAK. AD-H, Lot No. ADHOCE-OB110; DAICEL CHEMICAL INDUSTRIES, LTD.).

2. Reductive Coupling of Aryl Halides with Allylic Acetates

General Procedure for Reductive Coupling of Aryl Halides with Allylic Acetates: To a flame-dried Schlenk tube equipped with a magnetic stir bar was loaded alkyl bromide $(0.15 \mathrm{mmol}$, $100 \mathrm{~mol} \%$), followed by addition of 4-chloro-2-(4,5-dihydro-1H-imidazol-2-yl)pyridine (3a) (2.7 $\mathrm{mg}, 0.015 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, zinc powder ($19.6 \mathrm{mg}, 0.3 \mathrm{mmol}, 200 \mathrm{~mol} \%$) and $\mathrm{Bu}_{4} \mathrm{NBr}(48.4 \mathrm{mg}$, $0.15 \mathrm{mmol}, 100 \mathrm{~mol} \%)$. The tube was moved into a dry glove box, at which point $\mathrm{NiI}_{2}(4.7 \mathrm{mg}$, $0.015 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and $\mathrm{MgCl}_{2}(14.3 \mathrm{mg}, 0.15 \mathrm{mmol}, 100 \mathrm{~mol} \%$) were added. The tube was
capped with a rubber septum, and it was moved out of the glove box. Allylic Acetates $(0.3 \mathrm{mmol}$, $200 \mathrm{~mol} \%)$, pyridine ($11.9 \mathrm{mg}, 0.15 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and DMA $(1.0 \mathrm{~mL})$ were then added via syringe. After the reaction mixture was allowed to stir for 12 h under N_{2} atmosphere at $60^{\circ} \mathrm{C}$, it was directly loaded onto a silica column without work-up. The residue in the reaction vessel was rinsed with small amount of DCM . Flash column chromatography $\left(\mathrm{SiO}_{2}\right.$: ethyl acetate in petroleum ether) provided the coupling product.

3. Spectral Data of New Compounds

methyl 4-(2-phenylallyl)benzoate(24).

Colorless oil. Yield: 94\% (36 mg); purification by column chromatography ($\mathrm{SiO} 2: 5 \%$ ethyl acetate in petroleum ether); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=8.2$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.52(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 5 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.44,146.53,145.40,140.70,130.05,129.27,128.67,128.49$, 127.97, 126.45, 115.43, 52.33, 42.04; IR (KBr) v 3419.32, 2920.47, 2850.45, 1721.06, 1610.93, 1434.87, 1280.96, 1109.55, 1020.50, 900.37, 779.05, 702.78; HRMS (ESI) calcd. For $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{MH}+]: 252.1150$; Found: 252.1145.

4-(2-phenylallyl)phenyl 4-methylbenzenesulfonate(30).

Colorless oil. Yield: $82 \%(45 \mathrm{mg})$; purification by column chromatography ($\mathrm{SiO} 2: 5 \%$ ethyl acetate in petroleum ether); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~s}, 2 \mathrm{H})$, 7.28 (ddd, $J=21.7,19.4,17.2 \mathrm{~Hz}, 6 \mathrm{H}), 7.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{~s}$, $1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.31,146.81$, $145.54,140.73,138.89,132.73,130.31,129.99,128.86,128.62,127.93,126.44,122.57,115.20$, 41.33, 22.05; $\operatorname{IR}(\mathrm{KBr})$ v 3438.25, 3094.26, 3049.14, 2920.33, 2850.68, 1629.01, 1597.13, $1499.65,1368.69,1197.10,1197.10,1176 . .06,1152.41,1093.29,910.82,857.59,814.59,777.38$, $706.89,660.95,576.13$, 552.51; HRMS (ESI) calcd. For $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}$ [MH+]: 364.1133; Found: 364.1130.

(E)-methyl 2-(pent-2-en-1-yl)benzoate(27).

Colorless oil. Yield: 89% (27 mg); purification by column chromatography ($\mathrm{SiO} 2: 5 \%$ ethyl acetate in petroleum ether); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{dd}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{td}$, $J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 2 \mathrm{H}), 5.63-5.45(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.07-1.96(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.60$, $142.84,133.86,132.25,131.05,130.74,130.09,127.94,126.27,52.24,37.56,25.92,14.14 ;$ IR (KBr) v 3026.73, 2961.92, 2930.78, 2873.30, 2850.16, 1724.50, 1448.52, 1264.22, 1079.62, 968.73, 750.45; HRMS (ESI) calcd. For $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{MH}+]$: 204.1150; Found: 204.1148.

(E)-1-chloro-2-(pent-2-en-1-yl)benzene(28).

Colorless oil. Yield: 91% (35 mg); purification by column chromatography ($\mathrm{SiO} 2: 2 \%$ ethyl acetate in petroleum ether); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{dd}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (dqd, $J=27.4,7.5,1.8 \mathrm{~Hz}, 3 \mathrm{H}), 5.59-5.53(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.10-1.94(\mathrm{~m}, 2 \mathrm{H})$, $0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta 139.08,134.72,134.30,130.60,129.70$, 127.66, 127.09, 126.09, 36.80, 25.91, 14.08; IR (KBr) v 3065.34, 3027.21, 2963.60, 2931.12, 2873.04, 2848.68, 1473.05, 1441.95, 1051.04, 1037.64, 967.98, 749.40, 680.10; HRMS (ESI) calcd. For $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{Cl}[\mathrm{MH}+]$: 180.0706; Found: 180.0705.

(E)-methyl 4-(hex-2-en-1-yl)benzoate(21).

Colorless oil. Yield: 85% (28 mg); purification by column chromatography ($\mathrm{SiO} 2: 5 \%$ ethyl acetate in petroleum ether); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 5.60-5.47(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{dd}, J=13.5,6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.40(\mathrm{dd}, J=14.7,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta$ $167.19,146.67,132.77,129.71,128.51,127.89,51.98,39.05,34.59,22.54,13.67$; $\mathrm{IR}(\mathrm{KBr}) v$ $2956.20,2926.22,2852.64,1724.40,1611.03,1435.30,1280.02,1192.28,1110.64,1020.51$, 968.73, 750.45; HRMS (ESI) calcd. For $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}[\mathrm{MH}+]:$ 218.1307; Found: 218.1305.

(E)-4-(pent-2-en-1-yl)benzaldehyde(26).

Colorless oil. Yield: $80 \%(21 \mathrm{mg})$; purification by column chromatography ($\mathrm{SiO} 2: 5 \%$ ethyl acetate in petroleum ether); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.97(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.64-5.42(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.11-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 192.38,148.94,135.12,134.92,130.30,129.50$, 126.73, 39.51, 25.87, 14.05; IR (KBr) v 3449.48, 2960.11, 2921.40, 2850.47, 2730.68, 1704.41, 1606.06, 1461.29, 1305.27, 1211.84, 1167.77, 968.52, 849.59, 829.88; HRMS (ESI) calcd. For $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}[\mathrm{MH}+]: 174.1045$; Found: 174.1047.

MeOOC

(E)-methyl 4-(5-phenylpent-2-en-1-yl)benzoate(18).

Colorless oil. Yield: 87% (37 mg); purification by column chromatography ($\mathrm{SiO} 2: 5 \%$ ethyl acetate in petroleum ether). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{dd}, J=14.5,7.7 \mathrm{~Hz}, 5 \mathrm{H}), 5.56(\mathrm{t}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~d}, J=3.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.76-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{dd}, J=11.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $167.49,146.70,142.13,132.20,130.02,128.86,128.62,128.23,126.13,52.32,39.27,36.12$, 34.59; IR (KBr) v 3415.75, 3027.09, 2924.28, 2852.25, 1721.67, 1609.90, 1435.14, 1280.74, 1109.89, 968.80, 758.55, 699.94; HRMS (ESI) calcd. For $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2}$ [MH+]: 280.1463; Found: 280.1464.

4. Synthesis the Key Ligand 3a.

4-Chloro-2-(4,5-dihydro-1H-imidazol-2-yl)pyridine(3a). Following the literature procedures, ${ }^{3}$ sodium methoxide ($7.8 \mathrm{mg}, 0.144 \mathrm{mmol}, 10 \mathrm{~mol} \%$) was added to a solution of 4-chloropicolinonitrile ($200 \mathrm{mg}, 1.44 \mathrm{mmol}, 100 \mathrm{~mol} \%$) in methanol $(1.5 \mathrm{~mL})$. After the reaction mixture was allowed to stir for 15 h under N_{2} atmosphere at $25^{\circ} \mathrm{C}$, it was directly loaded onto a silica column without work-up. The residue in the reaction vessel was rinsed with small amount of DCM. Flash column chromatography $\left(\mathrm{SiO}_{2}: 30 \%\right.$ ethyl acetate in hexanes) provided methyl 4-chloropicolinimidate as a colorless oil ($209 \mathrm{mg}, 1.22 \mathrm{mmol}, 85 \%$ yield).

Ethylene diamine ($0.15 \mathrm{~mL}, 2.32 \mathrm{mmol}, 493 \mathrm{~mol} \%$) was added to a mixture of methyl 4-chloropicolinimidate ($80 \mathrm{mg}, 0.47 \mathrm{mmol}, 100 \mathrm{~mol} \%$) in $\mathrm{MeOH}(1.5 \mathrm{~mL})$. The reaction mixture
was allowed to stir for 20 h under N_{2} atmosphere at $50^{\circ} \mathrm{C}$. The solution was cooled to room temperature and quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{DCM}(2 \times 5 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, concentrated under reduced pressure to provided 3a as a light yellow solid ($68 \mathrm{mg}, 0.376 \mathrm{mmol}, 80 \%$ yield).

White solid, M.p. $=77-78{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 8.60(\mathrm{dd}, J=5.5,0.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.03(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=5.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 4 \mathrm{H}) .13 \mathrm{C}$ NMR (125 MHz, DMSO): $\delta 162.7,150.4,150.4,143.3,125.2,121.9$. IR (KBr) v 3404.41, 3366.61, 3129.82, 3102.11, 3042.73, 2994.41, 2953.90, 2867.58, 2477.48, 1940.50, 1817.74, 1775.85, 1696.72, $1614.94,1579.14,1553.27,1495.55,1472.91,1456.77,1384.40,1321.03,1287.14,1275.96$, $1236.91,1183.14,1136.25,1083.26,1025.92,979.23,890.57,848.65,766.33,689.71,610.56$, 532.32; MS (EI) m/z (M+) calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClN}_{3}$: 181, found: 181 .

5. Examination of in situ organozinc formation.

6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Reductive Coupling Products \&

Ligand 3a

30

21

26

$\begin{array}{llllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

18

MeOOC

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	ppm

7. The Data of HPLC for Asymmetric Coupling of 1,3-Disubsituted

 Allyl Acetate. ${ }^{(4)}$

Figure 1. The HPLC Data for Enantiomeric Production.

Figure 2．The HPLC Data for Asymmetric Production．

＝＝＝＝Shimadzu LCsolution 分析报告＝＝＝＝

8. The references for known products

(E)-1-methoxy-4-(5-phenylpent-2-en-1-yl)benzene(10) ${ }^{(5)}$

(E)-1-(but-2-en-1-yl)-4-methoxybenzene(11) ${ }^{(6)}$

(E)-methyl 4-(but-2-en-1-yl)benzoate(19) ${ }^{(7)}$

1-methoxy-4-(3-methylbut-2-en-1-yl)benzene(12) ${ }^{(8)}$

methyl 4-(3-methylbut-2-en-1-yl)benzoate(20) ${ }^{(9)}$

(E)-1-(hex-2-en-1-yl)-4-methoxybenzene(13) ${ }^{(10)}$

1-cinnamyl-4-methoxybenzene(14) ${ }^{(11)}$

methyl 4-cinnamylbenzoate(22) ${ }^{(12)}$

1-methoxy-4-(2-methylallyl)benzene(15) ${ }^{(13)}$

methyl 4-(2-methylallyl)benzoate(23) ${ }^{(14)}$

1-methoxy-4-(2-phenylallyl)benzene(16) ${ }^{(15)}$

(E)-1-methoxy-4-(4-phenylbut-3-en-2-yl)benzene(17) ${ }^{(16)}$

(E)-methyl 4-(4-phenylbut-3-en-2-yl)benzoate(25) ${ }^{(17)}$

1-methoxy-2-(2-methylallyl)benzene (29) ${ }^{(18)}$

(E)-prop-1-ene-1,3-diyldibenzene $(31)^{(19)}$

N-(4-allylphenyl)acetamide(32) ${ }^{(20)}$

(E)-4-(pent-2-en-1-yl)phenol(34) ${ }^{(21)}$

1,2,3-trimethoxy-5-(3-methylbut-2-en-1-yl)benzene(35) ${ }^{(22)}$

1-(4-allylphenyl)ethanone(33) ${ }^{(23)}$
(1) Scott E. D; Robert A. S; Anne-Marie F; James P. E. J. Org. Chem., 1997,62,3375-3389.
(2) Mark R; M. Mahmun. H. Tetrahedron Lett., 2004, 45, 8987-8990.
(3) Malkov, A. V.; Liddon, A. J. P. S.; Ramírez-López, P.; Bendová, L.; Haigh, D.; Kočovský. P. Angew. Chem. Int. Ed., 2006, 45, 1432.
(4) Experimental conditions for HPLC: Isopropanol: Hexane $=5$: 95 ; Pump pressure: 3.0 MPa . Column: CHIRALPAK. AD-H, Lot No. ADHOCE-OB110; DAICEL CHEMICAL INDUSTRIES, LTD; Column Size: 250 x 4.6 mm analytical; Detection wavelength: 254 nm .

Time (min)	Mobile phase	Flow rate
0	$95.0 / 5.0$ Hexane: IPA	$0.3 \mathrm{~mL} / \mathrm{min}$
45	$95.0 / 5.0$ Hexane: IPA	$0.3 \mathrm{~mL} / \mathrm{min}$

(5) Evans, P. Andrew; Uraguchi, Daisuke. J. Am. Chem. Soc., 2003, 125, 7158 - 7159.
(6) Denmark, Scott E.; Werner, Nathan S. J. Am. Chem. Soc., 2008, 130, 16382 - 16393.
(7) Gomes, Paulo; Gosmini, Corinne; Perichon, Jacques. J. Org. Chem., 2003, 68, 1142 - 1145.
(8) Valle, L. Del; Stille, J. K.; Hegedus, L. S. J. Org. Chem., 1990, 55, 3019 - 3023.
(9) Hatanaka, Yasuo; Goda, Ken-ichi; Hiyama, Tamejiro. Tetrahedron Lett., 1994, 35, 65116514.
(10) Fukuoka, Satoshi; Nanri, Hiroshi; Katsuki, Tsutomu; Yamaguchi, Masaru. Tetrahedron Lett., 1987, 28, 6205-6206.
(11) Chatterjee, Paresh Nath; Roy, Sujit. Tetrahedron., 2012, 68, 3776 - 3785.
(12) Li, Man-Bo; Wang, Yong; Tian, Shi-Kai. Angew. Chem. Int. Ed., 2012, 51, 2968 - 2971.
(13) Iwasaki, Masayuki; Hayashi, Sayuri; Hirano, Koji; Yorimitsu, Hideki; Oshima, Koichiro. Tetrahedron, 2007, 63, 5200 - 5203.
(14) Sinha, Subhash C.; Keinan, Ehud; Reymond, Jean-Louis. J. Am. Chem. Soc., 1993, 115, 4893-4894.
(15) Organ, Michael G.; Arvanitis, Elena A.; Villani, Anita; Majkut, Yvette; Hynes, Stephen. Tetrahedron Lett., 2003, 44, 4403-4406.
(16) Liao, Longyan; Sigman, Matthew S. J. Am. Chem. Soc., 2010, 132, 10209 - 10211.
(17) Liao, Longyan; Sigman, Matthew S. J. Am. Chem. Soc., 2010, 132, 10209 - 10211.
(18) Ruechardt,C.; Eichler,S. Chemische Berichte, 1962, 95, 1921 - 1942.
(19) Uozumi, Yasuhiro; Danjo, Hiroshi; Hayashi, Tamio. J. Org. Chem., 1999, 64, 3384 - 3388.
(20) Ortar, Giorgio. Tetrahedron Lett, 2003, 44, 4311 - 4314.
(21) Kakhniashvili; Chikovani. Soobshcheniya Akademii Nauk Gruzinskoi SSR., 1969, 53, 93.
(22) Farmer, Jennifer L.; Hunter, Howard N.; Organ, Michael G. J. Am. Chem. Soc., 2012, 134, $17470-17473$.
(23) Lee, Phil Ho; Sung, Sun-young; Lee, Kooyeon. Org. Lett., 2001, 3, 3201 - 3204.

