Electronic Supplementary Information (ESI) for

Synthesis, insecticidal ictivity, and structure-sctivity relationship (SAR) of anthranilic diamides analogous containing oxadiazole ring

Yuhao Li,^a Hongjun Zhu,^{a,*} Kai Chen,^a Rui Liu,^a Abdalla Khallaf,^a Xiangning

Zhang,^b and Jueping Ni^b

^aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, P R China;

^bJiangsu Pesticide Research Institute Co Ltd., Nanjing 210047, P R China.

Table of Contents

- 1. Scheme S1. General synthetic route for intermediates 1a-1c
- 2. General synthetic method for intermediates **1a-1c**
- 3. Scheme S2. General synthetic route of different amidoximes M1-M7
- 4. General synthetic method for different amidoximes M1-M7
- 5. Table S1. Crystal and structure refinement data of compound 18
- 6. Figure S1-S22. ¹H NMR spectra for compounds **3-24**

1. Scheme S1. General synthetic route for intermediates 1a-1c

2. General synthetic method for intermediates **1a-1c**:

0c (0.10)mol) was **0a**. **0b** or added slowly to а mixture of 3-bromo-1-(3-chloropyridin-2-yl)-1*H*-pyrazole-5-carbonyl chloride (0.12)mol). pyridine (40 mL) and acetonitrile (40 mL) at 70 °C about 0.5 h, then allowed to react 4 h. The mixture was cooled to room temperature and flitered to afford off-white solid, washed with a small quantity of acetonitrile and dried at room temperature to get product without further purification.

2.1 2-(3-Bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazol-5-yl)-8-methyl-4H-1,3benzoxazin-4-one (**1a**)

Yield 85.7%; mp 230-233 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.56 (d, *J* = 4.6 Hz, 1H, Py-H), 8.00 (dd, *J*₁ = 16.9 Hz, *J*₂ = 7.8 Hz, 2H, Ar-H, Py-H), 7.55 (s, 1H, Ar-H), 7.52 (s, 1H, Ar-H), 7.51-7.46 (m, 1H, Py-H), 7.39 (s, 1H, CHCBr), 1.82 (s, 3H, ph-CH₃). MS *m*/*z* calcd for C₁₇H₁₀BrClN₄O₂ (M+H)⁺ 418.64, Found 418.6.

2.2 2-(3-Bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazol-5-yl)-6-chloro-8-methyl-4H-1,3-benzoxazin-4-one (**1b**)

Yield 70.3%; mp 238-240 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.58 (dd, *J* = 4.7, 1.5 Hz, 1H, Py-H), 8.30 (dd, *J* = 8.1, 1.5 Hz, 1H, Py-H), 7.84 (d, *J* = 2.5 Hz, 1H, Ar-H), 7.72 (dd, *J* = 2.7, 1.9 Hz, 1H, Ar-H), 7.70 (d, *J* = 4.7 Hz, 1H, Py-H), 7.47 (s, 1H, CHCBr), 1.67 (s, 3H, Ph-CH₃). MS *m*/*z* calcd for C₁₇H₉BrCl₂N₄O₂ (M+H)⁺ 453.09, Found 452.9.

2.3 2-(3-Bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazol-5-yl)-6-bromo-8-methyl-4H-1,3 -benzoxazin-4-one (**1c**)

Yield 85.6%; mp 215-219 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 8.62 (d, J = 4.7 Hz, 1H, Py-H), 8.34 (dd, J = 8.1 Hz, 1H, Py-H), 8.00 (d, J = 2.2 Hz, 1H, Ar-H), 7.88 (d, J = 1.53 Hz, 1H, Ar-H), 7.76 (q, J = 8.1 Hz, 1H, Py-H), 7.51 (s, 1H, CHCBr), 1.71 (s, 3H, Ph-CH₃). MS *m*/*z* calcd for C₁₇H₉Br₂ClN₄O₂ (M+H)⁺ 494,9, (M+H+2)⁺ 496.9. Found (M+H)⁺ 495.0, (M+H+2)⁺ 497.0.

3. Scheme S2. General synthetic route of different amidoximes M1-M7.

					m	R ₃
R ₃ —(CH ₂) _m —CN	NH ₂ OH, EtOH H ₂ O, reflux	N−OH ► R ₃ −(CH ₂) _m −-{⁄′		M1	1	Н
				M2	1	Ph
			N-OH	М3	0	2-CH₃Ph
				M4	0	4-BrPh
			NH ₂	M5	0	2,6-(F) ₂ Ph
			M6	1	4-NO ₂ Ph	
				M7	0	3-Py

4. General synthetic method for different amidoximes M1-M7

A 50% aqueous solution of hydroxylamine (1 to 2.5 equiv.) was added to a solution of the nitrile (1 equiv.) in ethanol. The reaction was refluxed for 1 to 24 h. After this period, the reaction was cooled to r.t., resulting in some cases in the formation of a solid which was collected by filtration, washed with water, dried, and used without further purification. In other cases, most of the ethanol was removed by distillation in vacuo, and the aqueous residue was extracted with dichloromethane for three times. The combined organic layer was dried over anhydrous magnesium sulfate and evaporated to afford the desired product. This procedure was applied for the synthesis of the following amidoximes.

4.1 N-Hydroxyacetimidamide (M1)

Yield 78%; ¹H NMR (300 MHz, DMSO- d_6) δ 8.64 (s, 1H, OH), 5.32 (s, 2H, NH₂), 1.63 (s, 3H, CH₃). MS *m/z* calcd for C₆H₇N₃O (M+H)⁺ 137.1. Found 137.1.

4.2 N-Hydroxy-2-phenylacetimidamide (M2)

Yield 85%; ¹H NMR (500 MHz, DMSO- d_6) δ 8.85(s, 1H, OH), 7.26-7.28 (m, 4H, Ar-H), 7.18-7.21 (m, 1H, Ar-H), 5.34 (s, 2H, NH₂), 3.26 (s, 2H, CH₂). MS *m/z* calcd for C₈H₁₀N₂O (M+H)⁺ 151.2. Found 151.1.

4.3 N-Hydroxy-2-methylbenzimidamide (M3)

Yield 83%; ¹H NMR (500 MHz, DMSO- d_6) δ 9.27 (s, 1H, OH), 7.25-7.27 (m, 4H, Ar-H), 7.16-7.21 (m, 1H, Ar-H), 5.68 (s, 2H, NH₂), 2.34 (s, 3H, CH₃). MS *m/z* calcd for C₈H₁₀N₂O (M+H)⁺ 150.2. Found 150.1.

4.4 N-hydroxy-4-bromobenzimidamide (M4)

Yield 87%; ¹H NMR (300 MHz, DMSO- d_6) δ 9.70 (s, 1H, OH), 7.61 (d, J = 8.7 Hz, 2H, Ar-H), 7.55 (d, J = 8.8 Hz, 2H, Ar-H), 5.83 (s, 2H, NH₂). MS *m/z* calcd for C₇H₇BrN₂O (M+H)⁺ 215.0, (M+H+2)⁺ 217. Found (M+H)⁺ 215.0, (M+H+2)⁺ 217.

4.5 N-Hydroxy-2,6-difluorobenzimidamide (M5)

Yield 81%; ¹H NMR (500 MHz, DMSO- d_6) δ 9.56 (s, 1H, OH), 7.48 (m, 1H, Ar-H), 7.13 (m, 2H, Ar-H), 5.96 (s, 2H, NH₂). MS *m*/*z* calcd for C₇H₆F₂N₂O (M+H)⁺ 171.1. Found 171.1.

4.6 N-Hydroxy-2-(4-nitrophenyl)acetimidamide (M6).

Yield 80%; ¹H NMR (500 MHz, DMSO- d_6) δ 8.98 (s, 1H, OH), 8.15-8.18 (m, 2H, Ar-H), 7.53-7.56 (m, 2H, Ar-H), 5.51 (s, 2H, NH₂), 3.43 (s, 2H, CH₂). MS *m*/*z* calcd for C₈H₉N₃O₃ (M+H)⁺ 196.2. Found 196.0.

4.7 N-Hydroxynicotinimidamide (M7)

Yield 85%; ¹H NMR (500 MHz, DMSO- d_6) δ 9.89 (s, 1H, OH), 8.89-8.91 (m, 1H, Ar-H), 8.57-8.59 (m, 1H, Ar-H), 8.03-8.07 (m, 1H, Ar-H), 7.40-7.44 (m, 1H, Ar-H), 6.01 (s, 2H, NH₂). MS *m/z* calcd for C₆H₇N₃O (M+H)⁺ 138.1. Found 138.1.

Reference:

- (1) A. Hamze, J. F. Hernandez, P. Fulcrand, J. Martinez, J. Org. Chem., 2003, 68, 7316-7321.
- 5. Table S1. Crystal and structure refinement data of compound 18.

Compound	18			
Chemical formula	$C_{24}H_{14}Br_2Cl_2N_6O_2$			
Formula weight	649.13			
Crystal system	triclinic			
Space group	P-1			
<i>a</i> (Å)	9.229 (18)			
<i>b</i> (Å)	11.142 (2)			
<i>c</i> (Å)	12.526 (3)			
α (°)	76.53 (3)			
β (°)	80.97 (3)			
γ (°)	86.17 (3)			
$V(\text{\AA}^3), Z$	1236.5 (4) / 2			
D_{calc} (g cm ⁻³)	1.744			
$\mu (\mathrm{mm}^{-1})$	3.530			
$F(0\ 0\ 0)$	640			
θ range (°)	1.69-25.38			
Index range	$0 \le h \le 11$			
	$-13 \le k \le 13$			
	$-14 \le l \le 15$			
Reflns collected	4844			
Unique reflns (R_{int})	4538 (0.054)			
Refinement mothod on F^2	Full-matrix least-squares			
GOF on F^2	1.001			
$R_{I} \left[I > 2\sigma \left(I \right) \right]$	0.0657			
$wR_2[I > 2\sigma(I)]$	0.1490			
R_1 (all data)	0.1293			
wR_2 (all data)	0.1713			
Residual (e Å ⁻³)	1.118 and -0.875			

Figure S1¹H NMR of compound **3**

Figure S2 ¹H NMR of compound **4**

Figure S4 ¹H NMR of compound **6**

Figure S6 ¹H NMR of compound **8**

Figure S8 ¹H NMR of compound **10**

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Figure S10 ¹H NMR of compound **12**

Figure S12 ¹H NMR of compound **14**

Figure S13 ¹H NMR of compound **15**

Figure S14 ¹H NMR of compound **16**

Figure S16 ¹H NMR of compound **18**

Figure S18 ¹H NMR of compound **20**

A3M6 H1-NMR DMSO-46 300K AV-3000

Figure S21 ¹H NMR of compound **23**

A3BrM3-1 H1-NMR DMSO-d6 300KAV-300□

