Electronic Supporting Information Submitted For :

Redox Control of Molecular Motions in Bipyridinium Appended Calixarenes

Adriana Iordache^a, Ramu Kanappan^a, Estelle Métay^b, Marie-Christine Duclos^b, Stéphane Pellet-Rostaing^b, Marc Lemaire^b, Anne Milet^c, Eric Saint-Aman^a* and Christophe Bucher^{a,d}*

^aDépartement de Chimie Moléculaire (UMR5250), Laboratoire de Chimie Inorganique Rédox, Université Joseph Fourier/CNRS, Grenoble-France.

^bInstitut de Chimie et Biochimie Moléculaires et Supramoléculaires (UMR5246), Université Claude Bernard Lyon 1/CNRS, Domaine Scientifique de la Doua, Villeurbanne-France.

^cDépartement de Chimie Moléculaire (UMR5250), Laboratoire de Chimie Théorique, Université Joseph Fourier/CNRS, Grenoble-France.

^dLaboratoire de Chimie (UMR5182), École Normale Supérieure de Lyon/CNRS, Lyon-France.

Table of contents:

Fig. ESI 1 : HRMS spectrum of compound $6(PF_6)_4$	2
Fig. ESI 2 : ¹ H NMR spectrum of 6(PF ₆) ₄ (300 MHz, DMSO, 298K)	
Fig. ESI 3 : ¹³ C NMR spectrum of 6(PF ₆) ₄ (75 MHz, DMSO, 298K).	4
Fig. ESI 4 : 13 C NMR spectrum of 6(PF ₆) ₄ (75 MHz, DMSO, 298K).	5
Fig. ESI 5 : 13 C NMR spectrum of 6(PF ₆) ₄ (75 MHz, DMSO, 298K)	6
Fig. ESI 6 : LRMS spectrum of compound 5 (PF ₆) ₄	7
Fig. ESI 7 : HRMS spectrum of compound $6(PF_6)_4$	
Fig. ESI 8 : ¹ H NMR spectrum of 5 (PF ₆) ₄ (500 MHz, DMSO, 298K)	9
Fig. ESI 9 : ¹ H NMR spectrum of 5 (PF ₆) ₄ (125 MHz, DMSO, 298K)	10
Fig. ESI 10 : ¹ H NMR spectrum of $5(PF_6)_4$ (125 MHz, DMSO, 298K)	11
Fig. ESI 11 : ¹ H NMR spectrum of 5 (PF ₆) ₄ (125 MHz, DMSO, 298K)	
Fig. ESI 12-17 : Voltamperometric characterization of 5(PF ₆) ₄ in ACN and DMF elect	trolytes
Fig. ESI 18-23 : Voltamperometric characterization of 6(PF ₆) ₄ in ACN and DMF elect	rolytes
Fig. ESI 24. UV-Vis spectra recorded during the exhaustive reduction of \mathbf{DMV}^{2+}	19
Fig. ESI 25 : UV-Vis spectra recorded during the exhaustive two-electron reduction 6^4	+ 19
Fig. ESI 26 : UV-Vis spectra recorded during the exhaustive two-electron reduction 5^4	20
Fig. ESI 27 : X-band ESR spectra of DMV ^{+•} recorded at room temperature	
Fig. ESI 28 : X-band ESR spectra of 6^{2+} recorded at room temperature	
Fig. ESI 29 : X-band ESR spectra of 5^{2+} recorded at room temperature	
Fig. ESI 30 : Top and side views of the π -dimer complex found for 6^{4+} as a second, all	beit less
stable, minimum of the potential energy surface	

Fig. ESI 1 : HRMS spectrum of compound $6(PF_6)_4$

Calculated mass for $\mathbf{6}(PF_6)_4$: $C_{72}H_{88}F_{24}N_4O_4P_4$; Exact Mass: 1652,54 Calculated mass for $[\mathbf{6}(PF_6)_3]^+$: $C_{72}H_{88}F_{18}N_4O_4P_3$; Exact Mass: 1507,57 Calculated mass for $[\mathbf{6}(PF_6)_3]^{2+}$: $C_{72}H_{88}F_{12}N_4O_4P_2$; Exact Mass: 1362,61 Calculated mass for $[\mathbf{6}(PF_6)_3]^{3+}$: $C_{72}H_{88}F_6N_4O_4P$; Exact Mass: 1217,64

Bruker Compass DataAnalysis 4.0

Page 1 of 1

Fig. ESI 2 : ¹H NMR spectrum of $6(PF_6)_4$ (300 MHz, DMSO, 298K)

5

Fig. ESI 6 : LRMS spectrum of compound $5(PF_6)_4$

Calculated mass for $[5(PF_6)_4 : C_{70}H_{84}F_{24}N_4O_4P_4$; Exact Mass: 1624,51 Calculated mass for $[5(PF_6)_3]^+$: $C_{70}H_{84}F_{18}N_4O_4P_3$; Exact Mass: 1479,54 Calculated mass for $[5(PF_6)_3]^{2+}$: $C_{70}H_{84}F_{12}N_4O_4P_2$; Exact Mass: 1334,58 Calculated mass for $[5(PF_6)_3]^{3+}$: $C_{70}H_{84}F_6N_4O_4P$; Exact Mass: 1189,61

Fig. ESI 7 : HRMS spectrum of compound $6(PF_6)_4$

Calculated mass for $[5(PF_6)_3]^+$: $C_{70}H_{84}F_{18}N_4O_4P_3$; Exact Mass: 1479,54

HIN US CS	Ē		N-96	1411/0410 100
UCLR	USER	LIST FILE (4x500):	hr090130-14-em	v2 SAVE
	1479.54072	33743.00000	0.0000	0.00000
12	1479.54086	2406,00000	0.0000	0.0000
ڊر) ••	1479.54238	4893.00000	0.0000	0.00000
.2	18119 61.11	00000 97.991	0.00000	00000+0
5 	0.00000	0.00000	0.00000	0.0000
07 	0.0000	0.00000	0.00000	0.00000
1 :	0.00000			0.0000
 	0.00000	0.00000	0.00000	0.00000
9:	0.00000	0.00000	0.00000	0.00000
10:	0.00000	0.00000	0.00000	0.00000
11:	0.00000	0.00000	0.00000	0.00000
12:	0.00000	0.00000	0.0000	0.00000
13:	0.00000	0.00000	0.00000	0.00000
14:	0.00000	0.00000	0.00000	0.00000
15:	0.00000	0.00000	0.00000	0.00000
16:	0.00000	0.00000	0.00000	0.00000
17:	0.00000	0.00000	0.00000	0.00000
18:	0.00000	0.00000	0.00000	0.00000
19:	0.00000	0.00000	0.00000	0.00000
20:	0.00000	0.00000	0.00000	30012009.00000
LINK	NONE	NONE	NONE	NONE
SIZE	4.00000	4.00000	0.00000	20.00000
MEAN	1479.54220	21179.50000	0.00000	1500600.45000
SUM	5918.16879	84718.00000	0.00000	30012009.00000
S.D.	0.00191	20669.04633	0.00000	6710889.22653
MAX	1479.54484	43676.00000	0.00000	30012009.00000
MIN	1479.54072	2406.00000	0.00000	0.00000
ULIST: _				

Fig. ESI 9 : ¹H NMR spectrum of $5(PF_6)_4$ (125 MHz, DMSO, 298K)

Fig. ESI 10 : ¹H NMR spectrum of **5**(PF₆)₄ (125 MHz, DMSO, 298K)

Fig. ESI 11 : ¹H NMR spectrum of $5(PF_6)_4$ (125 MHz, DMSO, 298K)

 $5(PF_6)_4$ and $6(PF_6)_4$ were characterized using stationary and non stationary electrochemical methods. Cyclic voltammetry was used to calculate potential values (ΔE_P , E_{pa} , E_{pc}) and to examine the reversibility of each redox processes. Voltammetry recorded at rotating disks was used to confirm that both successive reduction waves involve the same number of electrons.

Fig. ESI 12 : Voltammetric curves of a 1 mM solution of $5(PF_6)_4$ in CH₃CN (TBAP 0.1 M) recorded by cyclic voltammetry at a stationary carbon working electrode ($\emptyset = 3 \text{ mm}, E vs$ Ag/Ag⁺ (10^{-2} M), 298 K, $v = 0.1 \text{ V} \cdot \text{s}^{-1}$).

Fig. ESI 13 : Voltammetric curves of a 1 mM solution of $5(PF_6)_4$ in CH₃CN (TBAP 0.1 M) recorded by square wave voltammetry at a stationary carbon working electrode ($\emptyset = 3 \text{ mm}, E$ vs Ag/Ag⁺ (10⁻² M), 298 K, $\Delta E = 25 \text{ mV}$, IncrE = 4 mV).

Fig. ESI 14 : Voltammetric curves of a 1 mM solution of $5(PF_6)_4$ in CH₃CN (TBAP 0.1 M) recorded by voltammetry at a rotating disk working electrode ($\emptyset = 3 \text{ mm}, E vs \text{ Ag/Ag}^+ (10^{-2} \text{ M}), 298 \text{ K}, v = 0.01 \text{ V} \cdot \text{s}^{-1}$).

Fig. ESI 15 : Voltammetric curves of a 1 mM solution of $5(PF_6)_4$ in DMF (TBAP 0.1 M) recorded by cyclic voltammetry at a stationary carbon working electrode ($\emptyset = 3 \text{ mm}, E vs \text{ Ag/Ag}^+ (10^{-2} \text{ M}), 298 \text{ K}, v = 0.1 \text{ V} \cdot \text{s}^{-1}$).

Fig. ESI 16 : Voltammetric curves of a 1 mM solution of $5(PF_6)_4$ in DMF (TBAP 0.1 M) recorded by square wave voltammetry at a stationary carbon working electrode ($\emptyset = 3 \text{ mm}, E$ vs Ag/Ag⁺ (10^{-2} M), 298 K, $\Delta E = 25$ mV, IncrE = 4mV).

Fig. ESI 17 : Voltammetric curves of a 1 mM solution of $5(PF_6)_4$ in DMF (TBAP 0.1 M) recorded by voltammetry at a rotating disk working electrode ($\emptyset = 3 \text{ mm}, E vs \text{ Ag/Ag}^+ (10^{-2} \text{ M}), 298 \text{ K}, v = 0.01 \text{ V} \cdot \text{s}^{-1}$).

Fig. ESI 18 : Voltammetric curves of a 1 mM solution of $6(PF_6)_4$ in ACN (TBAP 0.1 M) recorded by cyclic voltammetry at a stationary carbon working electrode ($\emptyset = 3 \text{ mm}, E vs \text{ Ag/Ag}^+ (10^{-2} \text{ M}), 298 \text{ K}, v = 0.1 \text{ V} \cdot \text{s}^{-1}$).

Fig. ESI 19 : Voltammetric curves of a 1 mM solution of $6(PF_6)_4$ in ACN (TBAP 0.1 M) recorded by square wave voltammetry at a stationary carbon working electrode ($\emptyset = 3 \text{ mm}, E$ vs Ag/Ag⁺ (10⁻² M), 298 K, $\Delta E = 25 \text{ mV}$, IncrE = 4 mV).

Fig. ESI 20 : Voltammetric curves of a 1 mM solution of $6(PF_6)_4$ in ACN (TBAP 0.1 M) recorded by voltammetry at a rotating disk working electrode ($\emptyset = 3 \text{ mm}, E vs \text{ Ag/Ag}^+ (10^{-2} \text{ M}), 298 \text{ K}, v = 0.01 \text{ V} \cdot \text{s}^{-1}$).

Fig. ESI 21 : Voltammetric curves of a 1 mM solution of $6(PF_6)_4$ in DMF (TBAP 0.1 M) recorded by cyclic voltammetry at a stationary carbon working electrode ($\emptyset = 3 \text{ mm}, E vs \text{ Ag/Ag}^+$ (10^{-2} M), 298 K, $v = 0.1 \text{ V} \cdot \text{s}^{-1}$).

Fig. ESI 22 : Voltammetric curves of a 1 mM solution of $6(PF_6)_4$ in DMF (TBAP 0.1 M) recorded by square wave voltammetry at a stationary carbon working electrode ($\emptyset = 3 \text{ mm}, E$ vs Ag/Ag⁺ (10⁻² M), 298 K, $\Delta E = 25 \text{ mV}$, IncrE = 4mV).

Fig. ESI 23 :Voltammetric curves of a 1 mM solution of $6(PF_6)_4$ in DMF (TBAP 0.1 M) recorded by voltammetry at a rotating disk working electrode ($\emptyset = 3 \text{ mm}, E vs \text{ Ag/Ag}^+ (10^{-2} \text{ M}), 298 \text{ K}, v = 0.01 \text{ V} \cdot \text{s}^{-1}$).

Fig. ESI 24 : UV-Vis spectra recorded during the exhaustive one-electron reduction of DMV(PF6)2 using a platinum plate working electrode whose potential was fixed at $E_{ap} = -1$ V (10⁻⁵ M in DMF/TBAP 0.1 M, l = 1 cm, *E* vs Ag/Ag⁺).

Fig. ESI 25 : UV-Vis spectra recorded during the exhaustive two-electron reduction $6(PF_6)_4$ using a platinum plate working electrode whose potential was fixed at $E_{ap} = -1 \text{ V} (10^{-5} \text{ M in ACN/TBAP } 0.1 \text{ M}, 1 = 1 \text{ cm}, E \text{ vs Ag/Ag}^+).$

Fig. ESI 26 : UV-Vis spectra recorded during the exhaustive two-electron reduction $5(PF_6)_4$ using a platinum plate working electrode whose potential was fixed at $E_{ap} = -1$ V (10⁻⁵ M in ACN/TBAP 0.1 M, 1 = 1 cm, E vs Ag/Ag⁺).

Fig. ESI 27 : X-band ESR spectra of **DMV**^{+•} recorded at room temperature, 10^{-4} M in viologen subunits dissolved in DMF + TBAP (0.1 M) (Microwave Power = 20 mW, Frequency = 9.42 Gz, Mod. Amp. =0.099mT, Mod. Freq 100 KHz)

Fig. ESI 28 : X-band ESR spectra of $[6^{2+}]_{dim}$ recorded at room temperature, 10^{-4} M in viologen subunits dissolved in DMF + TBAP (0.1 M) (Microwave Power = 20 mW, Frequency = 9.42 Gz, Mod. Amp. =0.099mT, Mod. Freq 100 KHz)

Fig. ESI 29 : X-band ESR spectra of $[5^{2+}]_{dim}$ recorded at room temperature, 10^{-4} M in viologen subunits dissolved in DMF + TBAP (0.1 M) (Microwave Power = 20 mW, Frequency = 9.42 Gz, Mod. Amp. =0.099mT, Mod. Freq 100 KHz)

Fig. ESI 30 :Top and side views of the π -dimer complex found for 6^{4+} as a second, albeit less stable, minimum of the potential energy surface ($\Delta E \sim 20$ kcal/mol) (Calculated at the BLYP-D3/DZVP level)

