Formation of C=N bonds by the release of H₂: a new strategy for synthesis of imines and benzazoles

Xukang Jin, Yuxiao Liu, Qiongqiong Lu, Dejun Yang, Jiangkai Sun, Shuangshuang Qin, Jingwu Zhang, Jiaxuan Shen, Changhu Chu, Renhua Liu*

School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China

Fax: (+86)21-64250627

E-mail:liurh@ecust.edu.cn

Supporting Information

26 Page

Page	Contents
S1	Title Page
S2	General Experimental Information
S 3	General Procedure for Synthesis of Imines and Benzazoles
S4	Characterization Data for Benzazoles
S 8	References
S9	Mass Spectra for Imines
S15	¹ H and ¹³ C NMR Spectra for Benzazoles Compounds
S27	H ₂ detection for the dehydrogenation of benzylamine.

General Experimental Information

Pd/C(10%) was washed by dry DMA which was distilled over CaH_2 . All the other chemical reagents were obtained from commercial sources and used without further purification. ¹H NMR (400MHz) and ¹³C NMR (100 MHz) spectra were obtained on a Bruker DRX-400 NMR as solutions in CDCl₃. Chemical shifts are reported in parts per million and coupling constants are in hertz. The reaction mixture was filtered through 300-400 mesh silica gel and then injected into the GC equipped with FID detector (Agilent Technologies, GC7890A) for analysis. The detection of H₂ was carried out with GC with TCD detector (Shimadzu GC-2014C, stationary phase: AE 5A MS 3m*3mm (OD)). The chemical structures of products were confirmed by GC-MS (Agilent Technologies, GC7683B, MS5973).

General procedure for Synthesis of Imines and Benzazoles:

General procedure for the Pd/C catalytic cross-coupling of various benzylamine .

Benzylamine (107mg, 1mmol), Pd/C(53mg, 0.05mmol), *n*-dodecane(17mg, 0.1mmol, internal standard) and DMA(2mL) were added to a two-necks flask which was deoxidized and then heated at 120°Cand stirred under an atmosphere of high-purity nitrogen (N2 balloon). The reaction was detected by GC.

General procedure for the Pd/C catalytic dehydrogenation of cross-coupling of benzylamine and other amines.

Benzylamine (107mg, 1mmol), amine(465mg, 5mmol), Pd/C(53mg, 0.05mmol), n-dodecane(17mg, 0.1mmol, internal standard) and DMA(2mL) were added to a two-necks flask which was deoxidized and then heated at 120°Cand stirred under an atmosphere of high-purity nitrogen (N₂ balloon). The reaction was detected by GC.

General procedure for the synthesis of benzazoles catalyzed by Pd/C.

Benzylamine (2mmol), o-phenylenediamine (2-aminophenol or 2-aminothiophenol) (1mmol), Pd/C(53mg, 0.05mmol) and DMA(2mL) were added to a two-necks flask which was deoxidized and then heated at 120°Cand stirred under an atmosphere of high-purity nitrogen(N₂ balloon). After the reaction was completed, Pd/C was filtrated .5ml water was added to the filtrate and extracted with 5ml EtOAc . The water layer was washed with EtOAc(2×5ml). The combined organic layer was dried over anhydrous Na₂SO₄ and the solvent evaporated under reduced pressure. The crude product was purified by silica gel column to afford the product.

Characterization data for Benzazoles (benzoxazoles, benzimidazoles, and benzothiazoles)

Prepared from Benzylamine (214 mg, 2 mmol) and 2-aminophenol (109mg, 1mmol), white solid, yield 150mg ,77%; ¹H NMR (400MHz, CDCl₃): δ 8.31-8.28 (m, 2 H), 7.82-7.80 (m, 1 H), 7.63-7.61 (m, 1 H), 7.57-7.55 (m, 3 H), 7.40-7.38 (m, 2 H); ¹³C NMR (100MHz, CDCl₃): δ 109.6, 119.0, 123.5, 124.1, 126.2, 126.6, 127.9, 130.5, 141.1, 149.7, 162.0; HRMS-ESI Calcd for C₁₃H₉NO [M]⁺ 195.0684, found 195.0681. This compound was known.¹

Prepared from 4- fluorobenzylamine (250 mg, 2 mmol) and 2-aminophenol (109mg, 1mmol), pale yellow solid, yield 149mg , 70%; ¹H NMR (400MHz, CDCl₃): δ 8.31-8.27 (m, 2 H), 7.80-7.78 (m, 1 H), 7.62-7.60 (m, 1 H), 7.40-7.38 (m, 2 H), 7.27-7.22 (m, 2 H); ¹³C NMR (100MHz, CDCl₃): δ 110.6, 116.1, 116.3, 120.0, 124.7, 125.2, 129.8, 129.9, 142.1, 150.8, 162.2, 163.6, 166.1; HRMS-ESI Calcd for C₁₃H₈FNO [M]⁺ 213.059, found 213.0588. This compound was known.²

Prepared from 4-methylbenzylamine (242 mg, 2 mmol) and 2-aminophenol (109mg, 1mmol), pale yellow solid, yield 180mg , 86% ; ¹H NMR (400MHz, CDCl₃): δ 8.18 (d, 2 H, J = 8.4 Hz), 7.80-7.78 (m, 1 H), 7.61-7.60 (m, 1 H), 7.38-7.35 (m, 4 H), 2.47 (s, 3 H); ¹³C NMR (100MHz, CDCl₃): δ 20.6, 109.5, 118.8, 123.4, 123.5, 123.8. 126.6, 128.6, 141.0, 141.2, 149.7, 162.3; HRMS-ESI Calcd for C₁₄H₁₁NO [M]⁺ 209.0841, found 209.0839. This compound was known.³

Prepared from benzylamine (214 mg, 2 mmol) and 2-aminothiophenol (125mg, 1mmol), white solid, yield 181mg , 85% ; ¹H NMR (400MHz, CDCl₃): δ 8.13-8.10 (m, 3 H), 7.94 (d, 1 H, J = 8.0 Hz), 7.54-7.51 (m, 4 H), 7.44-7.40 (m, 1 H); ¹³C NMR (100MHz, CDCl₃): δ 121.6, 123.2, 125.2, 126.3, 127.6, 129.0, 131.0, 133.6, 135.1, 154.2, 168.1; HRMS-ESI Calcd for C₁₃H₉NS [M]⁺ 211.0456, found 211.0454. This compound was known.⁴

Prepared from 4-methylbenzylamine (242 mg, 2 mmol) and 2-aminothiophenol (125mg, 1mmol), white solid, yield 209mg , 93% ; ¹H NMR (400MHz, CDCl₃): δ 8.09 (d, 1 H, J = 8 Hz), 8.02-8.00 (m, 2 H), 7.92 (d, 1 H, J = 8 Hz), 7.53-7.49 (m, 1 H), 7.42-7.38 (m, 1 H), 7.33 (d, 2 H, J = 8 Hz), 2.46 (s, 3 H); ¹³C NMR (100MHz, CDCl₃): δ 21.5, 121.6, 123.1, 125.0, 126.3, 127.5, 129.7, 131.0, 135.0, 141.4, 154.2, 168.3; HRMS-ESI Calcd for C₁₄H₁₁NS [M]⁺ 225.0612, found 225.0611. This compound was known.⁵

Prepared from 4-tert-butylbenzylamine (326 mg, 2 mmol) and 2-aminothiophenol (125mg, 1mmol), white solid, yield 254mg , 95% ; ¹H NMR (400MHz, CDCl₃): δ 8.10-8.04 (m, 3 H), 7.93 (d, 1 H, J = 8 Hz), 7.55-7.49 (m, 3 H), 7.42-7.38 (m, 1 H), 1.40 (s, 9 H); ¹³C NMR (100MHz, CDCl₃): δ 31.2, 35.0, 121.6, 123.1, 125.0, 126.0, 126.2, 127.4, 130.9, 135.0, 154.2, 154.6, 168.2; HRMS-ESI Calcd for C₁₇H₁₇NS [M]⁺ 267.1082, found 267.1087. This compound was known.⁶

Prepared from 4-methoxybenzylamine (274 mg, 2 mmol) and 2-aminothiophenol (125mg, 1mmol), white solid, yield 169mg , 70% ; ¹H NMR (400MHz, CDCl3): δ 8.07-8.05 (m, 3 H), 7.91 (d, 1 H, J = 7.6 Hz), 7.52-7.48 (m, 1 H), 7.40-7.36 (m, 1 H), 7.03 (d, 2 H, J=8.8 Hz), 3.91 (s, 3 H); ¹³C NMR (100MHz, CDCl3): δ 54.4, 113.3, 120.5, 121.8, 123.8, 125.2, 125.4, 128.1, 133.8, 153.2, 160.9, 166.8; HRMS-ESI Calcd for C₁₄H₁₁NOS [M]+ 241.0561, found 241.0556. This compound was known.⁷

Prepared from benzylamine (214 mg, 2 mmol) and o-phenylenediamine (122mg, 1mmol), pale yellow solid, yield 156mg , 75% ; ¹H NMR (400MHz, CDCl₃): δ 7.87-7.85 (m, 1 H), 7.81-7.79 (m, 2 H), 7.59-7.55 (m, 3 H), 7.44-7.42 (m, 1 H), 7.38-7.32 (m, 2 H), 3.90 (s, 3 H); ¹³C NMR (100MHz, CDCl₃): δ 31.7, 109.6, 119.9, 122.5, 122.8, 128.7, 129.5, 129.7, 130.3, 136.6, 143.0, 153.8; HRMS-ESI Calcd for C₁₄H₁₂N₂ [M]⁺ 208.1, found 208.0996. This compound was known.⁸

Prepared from 4-methylbenzylamine (242 mg, 2 mmol) and o-phenylenediamine (122mg, 1mmol), white solid, yield 191mg , 86% ; ¹H NMR (400MHz, CDCl₃): δ 7.86-7.83 (m, 1 H), 7.69 (d, 2 H, J = 8 Hz), 7.43-7.41 (m, 1 H), 7.37-7.33 (m, 4 H), 3.89 (s,3 H), 2.47 (s, 3 H); ¹³C NMR (100MHz, CDCl₃): δ 21.5, 31.7, 109.6, 119.7, 122.4, 122.6, 127.3, 129.3, 129.4, 136.6, 139.8, 143.0, 154.0; HRMS-ESI Calcd for C₁₅H₁₄N₂ [M]⁺222.1157, found 222.1156. This compound was known.⁹

Prepared from 4- fluorobenzylamine (250 mg, 2 mmol) and o-phenylenediamine

(122mg, 1mmol), white solid, yield 207mg , 92%; ¹H NMR (400MHz, CDCl₃): δ 7.85-7.83 (m, 1 H), 7.80-7.77 (m, 2 H), 7.44-7.42 (m, 1 H), 7.37-7.35 (m, 2 H), 7.28-7.24 (m, 2 H), 3.89 (s, 3 H); ¹³C NMR (100MHz, CDCl₃): δ 31.7, 109.7, 115.8, 116.0, 119.8, 122.6, 122.9, 131.4, 131.5, 136.5, 142.9, 152.8, 162.4, 164.9; HRMS-ESI Calcd for C₁₄H₁₁FN₂ [M]⁺ 226.0906, found 226.0903.

Prepared from 4-tert-butylbenzylamine (326 mg, 2 mmol) and o-phenylenediamine (122mg, 1mmol), white solid, yield 237mg , 90% ; ¹H NMR (400MHz, CDCl₃): δ 7.86-7.83 (m, 1 H), 7.74 (d, 2 H, J = 8.8 Hz), 7.58-7.56 (m, 2 H), 7.43-7.41 (m, 1 H), 7.36-7.33 (m, 2 H), 3.91 (s, 3 H), 1.41 (s, 9 H); ¹³C NMR (100MHz, CDCl₃): δ 31.3, 31.7, 34.9, 109.5, 119.8, 122.3, 122.6, 125.6, 127.2, 129.2, 136.6, 143.0, 153.0, 153.9; HRMS-ESI Calcd for C₁₈H₂₀N₂ [M]⁺ 264.1626, found 264.1627.

Prepared from 4-methoxybenzylamine (274 mg, 2 mmol) and o-phenylenediamine (122mg, 1mmol), white solid, yield 202mg ,85% ; ¹H NMR (400MHz, CDCl3): δ 7.84-7.82 (m, 1 H), 7.74 (d, 2 H, J = 8.8 Hz), 7.42-7.39 (m, 1 H), 7.34-7.32 (m, 2 H), 7.07 (d, 2 H, J = 8.8 Hz), 3.91 (s, 3 H), 3.88 (s, 3 H); ¹³C NMR (100MHz, CDCl3): δ 31.7, 55.4, 109.5, 114.2, 119.6, 122.3, 122.5, 122.6, 130.9, 136.6, 143.0, 153.8, 160.8; HRMS-ESI Calcd for C₁₅H₁₄N₂O [M]+ 238.1106, found 238.1107. This compound was known.¹⁰

References

- 1. Chen, Y-X.; Qian, L-F.; Zhang, W.; Han, B. Angew. Chem., Int. Ed., 2008, 47, 9330.
- 2. Wu, M.; Hu, X.; Liu, J.; Liao, Y.; Deng, G.-J. Org. Lett., 2012, 14, 2722.
- 3. Yoo, W.-J.; Yuan, H.; Miyamura, H.; Kobayashi, S. Adv. Synth. Catal., 2011, 353, 3085.
- 4. Bougrin, K.; Loupy, A.; Souflaoui, M. Tetrahedron, 1998, 54, 8055.
- 5. Cohen, V. I. J. Heterocycl. Chem., 1979, 16, 13.
- 6. Chen, R.; Liu, S.; Liu, X.; Yang, L.; Deng, G-J. Org. Biomol. Chem., 2011, 9, 7675.
- Anthony, K.; Brown, R. G.; Hepworth, J. D.; Hodgson, K. W.; May, B.; West, M. A. J. Chem. Soc. Perkin Trans. II, 1984, 2111.
- 8. Turner, D. L.; Morris, J. A.; Greaney, M. F. Angew. Chem., Int. Ed., 2007, 46, 7996.
- 9. Chakrabarty, M.; Mukherji, A.; Mukherjee, R.; Arima, S.; Harigaya, Y. *Tetrahedron Lett.*, **2007**, *48*, 5239.
- 10. Fekner, T.; Gullucci, J.; Chan, M. K. Org. Lett., 2003, 5, 4795.

m/z-->

Abundance Stan 2390 (21.757 min): JAK 120525 N2-8HD 180 æ anno 33000 o↓ 40 207 250 284 327 355 401 200 220 240 280 280 300 320 340 380 380 400 ÷ έc m/z-> MeO Abundance Scan 2859 (24.440 min): JXK120605-2-11H.D 210 139 152 _241_252__267 _____240 260 Щ ىللىت ...باللب ц.ц., 140 щ. 180

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

Supporting Information

m/z-->

2-phenylbenzo[d]oxazole

2-(4-fluorophenyl)benzo[d]oxazole

S16

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

2-p-tolylbenzo[d]thiazole

2-(4-tert-butylphenyl)benzo[d]thiazole

Supporting Information

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

2-(4-methoxyphenyl)benzo[d]thiazole

1-methyl-2-phenyl-1H-benzo[d]imidazole

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

N-methyl-2-p-tolyl-1H-benzo[d]imidazole

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

2-(4-fluorophenyl)-1-methyl-1H-benzo[d]imidazole

2-(4-tert-butylphenyl)-1-methyl-1H-benzo[d]imidazole

2-(4-methoxyphenyl)-1-methyl-1H-benzo[d]imidazole

GC H₂ detection for the dehydrogenation of benzylamine.

GC for air.

GC for the mixture of hydrogen gas and air.

GC for the gas from reaction system (some air infiltrated into the gas sample during sampling).

