NHC-mediated enantioselective formal [4+2] cycloadditions of alkylarylketenes and β,γ-unsaturated α-ketocarboxylic esters and amides

Stuart M. Leckie,^{*a*} T. Bruce Brown,^{*b*} David Pryde,^{*c*} Tomas Lebl,^{*a*} Alexandra M. Z. Slawin^{*a*} and Andrew D. Smith*^{*a*}

^aEaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK. Tel: 44 (0)1334 463 89; E-mail: <u>ads10@st-andrews.ac.uk</u>

^bPfizer Global Research and Development, 388 Ramsgate Road, Sandwich, Kent, CT13 9NJ, UK. ^cPfizer Neusentis, The Portway Building, Granta Park, Great Abington, Cambridge, CB21 6GS, UK.

SUPPORTING INFORMATION

Contents

I General Information	2
II General Experimental Procedures	3
III Experimental Procedures	4
IV nOe Studies on compounds 21 and 29	7
V Absolute configuration of <i>anti</i> -dihydropyranone 11	9
VI List of Unsuccessful Substrates	10
VII Crystal data and structure refinement for enantiopure (3 <i>R</i> ,4 <i>R</i>)-8	12
VIII HPLC and NMR Spectra	17

I General Information

Reactions involving moisture sensitive reagents were carried out under an argon atmosphere using standard vacuum line techniques in addition to dry solvents. All glassware used was flame dried and cooled under vacuum. Solvents (CH₂Cl₂, toluene, and Et₂O) were obtained anhydrous and purified by an alumina column (Mbraun SPS-800). Petrol is defined as petroleum ether 40-60 °C. All other solvents were used as supplied without further purification unless stated otherwise. Unless stated chemicals were purchased from Acros-UK, Alfa Aeasar, Apollo Sientific, Fluorochem, Sigma-TCI UK and used without further purification. Potassium Aldrich, or bis(trimethylsilyl)amide (KHMDS) was used as a 0.5M solution in toluene as supplied (Aldrich). Triethylamine for ketene synthesis was distilled from CaH₂ before use. Where necessary, any requisite aldehydes were purified by Kugelrohr distillation under reduced pressure prior to use. Room temperature (rt) refers to 20-25 °C. Temperatures of 0 °C to -10 °C were obtained using ice/brine bath. Reflux conditions were obtained using either an oil bath equipped with a contact thermometer or a DrySyn heating plate equipped with a contact thermometer. In vacuo refers to the use of a Büchi Rotavapor R-2000 rotary evaporator with a Vacubrand CVC2 vacuum controller or a Heidolph Laborota 4001 rotary evaporator with a vacuum controller. Analytical thin layer chromatography (TLC) was performed on pre-coated aluminium plates (Kieselgel 60 F254 silica). TLC visualisation was carried out with ultraviolet light (254 nm), followed by staining with a 1% aqueous KMnO₄ solution. Flash silica chromatography was performed on Kieselgel 60 silica in the solvent system stated. ¹H, ¹³C and ¹⁹F nuclear magnetic resonance (NMR) spectra were acquired on either a Bruker Avance 300 (300 MHz, ¹H, 75 MHz ¹³C and 282 MHz ¹⁹F), a Bruker Avance II 400 (400 MHz, ¹H, 100 MHz ¹³C and 376 MHz ¹⁹F) or a Bruker Ultrashield 500 (500 MHz, ¹H, 125 MHz ¹³C and 470 MHz) spectrometer at ambient temperature in the deuterated solvent stated. All chemical shifts are quoted in parts per million (ppm) relative to the residual solvent as the internal standard. All coupling constants, J, are quoted in Hz and reported high to low. Multiplicities are indicated by: s (singlet), d (doublet), t (triplet), q (quartet), sept (septet), m (multiplet), dd (doublet of doublets), ddd (doublet of doublet of doublets, dt (doublet of triplets), dq (doublet of quartets), td (triplet of doublets), dqt (doublet of quartets of triplets), dqd (doublet of quartets of doublets), qd (quartet of doublets), dquintet (doublet of quintets) and sept (septet). The abbreviation *Ph* is used to denote phenyl, br to denote broad and app to denote

apparent. Infrared spectra (μ_{max}) were recorded on either a Perkin-Elmer Spectrum GX FT-IR spectrometer using either thin films on NaCl plates, KBr discs or a Shimadzu IRAffinity-1 using a Pike attenuated total reflectance (ATR) accessory. Only characteristic absorbances are quoted. Melting points were recorded on an Electrothermal 9100 melting point apparatus and are uncorrected. Dec refers to decomposition. HPLC analyses were obtained on a Gilson HPLC consisting of a Gilson 305 pump, Gilson 306 pump, Gilson 811C dynamic mixer, Gilson 805 manometric module, Gilson 401C dilutor, Gilson 213XL sample injector and sample detection was performed with a Gilson 118 UV/vis detector. Separation was achieved using the DACIEL CHIRALPAK or CHIRALCEL column stated. All chiral HPLC traces were compared to the authentic racemic spectrum prepared in analogous fashion. Mass spectrometric (m/z) data were acquired by electrospray ionisation (ESI), electron impact (EI), chemical ionisation (CI), atmospheric solids analysis probe (ASAP) or nanospray ionisation (NSI) either at the University of St Andrews Mass Spectrometry facility ([A] quoted) or at the EPSRC National Mass Spectrometry Service Centre, Swansea ([A]+ or [A]- quoted). At the University of St Andrews, high resolution ESI was carried out on a Micromass LCT spectrometer and low and high resolution EI and CI were carried out on a Micromass GCT spectrometer. At the EPSRC National Mass Spectrometry Service Centre, high resolution ESI and NSI were carried out on a Finnigan MAT 900 XLT or a Finnigan MAT 95 XP. Values are quoted as a ratio of mass to charge in Daltons. Optical rotations were measured on a Perkin Elmer Precisely/Model-341 polarimeter operating at the sodium D line with a 100 mm path cell at 20 °C.

All alkylarylketenes were prepared according to literature procedures.¹

All γ -substituted- β , γ -unsaturated α -ketoesters and α -ketoamides were prepared according to procedure previously reported by our group.²

II General Experimental Procedures

General Procedure 1: NHC-Mediated formal [4+2] cycloaddition protocol

To a flame dried Schlenk flask under an atmosphere of argon was added azolium salt (0.0245 mmol), base (0.0221 mmol) and toluene (1.5 mL) and the resultant suspension was stirred at rt for 30 minutes. The requisite ketoester (0.245 mmol) was

added either as a solid with toluene (1.5 mL) added to wash any residual solid into the reaction mixture, or as a solution in toluene (1.5 mL). As soon as the addition of the ketoester was complete, a solution of the desired ketene (0.319 mmol or 0.588 mmol) in toluene (4 mL) was added over 2 h *via* syringe pump. Once the addition was complete the solution was left to stir at rt overnight before concentration *in vacuo* to give the crude product. Purification *via* column chromatography on silica gel gave the title compound.

III Experimental Procedures

Catalyst and Base Optimisation

Table 1 Entry 1: Following *general procedure* **1**, imidazolinium salt **2** (14.0 mg, 0.0245 mmol), KHMDS (0.05 mL, 0.5M in toluene, 0.0221 mmol) with ethylphenylketene **7** (47.0 mg, 0.319 mmol) and ketoester **6** (50.0 mg, 0.245 mmol) at rt overnight gave the crude product (87:13 dr *syn:anti*). Purification *via* column chromatography on silica gel (eluent petrol:EtOAc 90:10) gave lactones (**3***R*,**4***R*)-**8** and (*anti*)-**8** (46.4 mg, 54%) as a colourless solid; Chiral HPLC (**3***R*,**4***R*)-**8** Chiralpak AS-H (5% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm) t_R(3*S*,4*S*): 14.1 min, t_R(3*R*,4*R*): 27.1 min, 10% ee; (*anti*)-**8** Chiralpak AS-H (3% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm) t_R(3*R*,4*S*): 15.7 min, t_R(3*S*,4*R*): 29.1 min, <5% ee.

Table 1 Entry 2: Following *general procedure* **1**, triazolium salt **3** (14.0 mg, 0.0245 mmol), KHMDS (0.05 mL, 0.5M in toluene, 0.0221 mmol) with ethylphenylketene **7** (47.0 mg, 0.319 mmol) and ketoester **6** (50.0 mg, 0.245 mmol) at rt overnight gave the crude product (87:13 dr *syn:anti*). Purification *via* column chromatography on silica gel (eluent petrol:EtOAc 90:10) gave lactones (**3***S*,**4***S*)-**8** and (**3***R*,**4***S*)-**8** (29.1 mg. 34%) as a colourless solid; Chiral HPLC (**3***S*,**4***S*)-**8** Chiralpak AS-H (5% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm) t_R(3*S*,4*S*): 14.2 min, t_R(3*R*,4*R*): 27.3 min, 16% ee; (**3***R*,**4***S*)-**8** Chiralpak AS-H (3% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm) t_R(3*R*,4*S*): 15.8 min, t_R(3*S*,4*R*): 30.3 min, 24% ee.

Table 1 Entry 3: Following *general procedure* **1**, triazolium salt **3** (14.0 mg, 0.0245 mmol), Cs_2CO_3 (7.2 mg, 0.0221 mmol) with ethylphenylketene **7** (47.0 mg, 0.319

mmol) and ketoester **6** (50.0 mg, 0.245 mmol) at rt overnight gave the crude product (68:32 dr *syn:anti*). Purification *via* column chromatography on silica gel (eluent petrol:EtOAc 90:10) gave lactones (**3***S*,**4***S*)-**8** and (**3***R*,**4***S*)-**8** (12.0 mg, 14%) as a colourless solid; Chiral HPLC (**3***S*,**4***S*)-**8** Chiralpak AS-H (3% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm) $t_R(3S,4S)$: 17.9 min, $t_R(3R,4R)$: 36.4 min, 89% ee; (**3***R*,**4***S*)-**8** Chiralpak AS-H (3% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm) $t_R(3S,4S)$: 20.4 min, $t_R(3S,4R)$: 41.5 min, 84% ee.

Table 1 Entry 4: Following *general procedure* **1**, triazolium salt **4** (14.0 mg, 0.0245 mmol), KHMDS (0.05 mL, 0.5M in toluene, 0.0221 mmol) with ethylphenylketene **7** (47.0 mg, 0.319 mmol) and ketoester **6** (50.0 mg, 0.245 mmol) at rt overnight gave the crude product (98:2 dr *syn:anti*). Purification *via* column chromatography on silica gel (eluent petrol:EtOAc 90:10) gave lactone (*syn*)-**8** (36.8 mg, 47%) as a colourless solid; Chiral HPLC (*syn*)-**8** Chiralpak AS-H (5% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm) t_R(3*S*,4*S*): 14.1 min, t_R(3*R*,4*R*): 26.9 min, <5% ee.

Table 1 Entry 8: Following *general procedure* **1**, triazolium salt **1** (14.0 mg, 0.0245 mmol), KHMDS (0.05 mL, 0.5M in toluene, 0.0221 mmol) with ethylphenylketene **7** (47.0 mg, 0.319 mmol) and ketoester **6** (50.0 mg, 0.245 mmol) at rt overnight gave the crude product (61:39 dr *syn:anti*). Purification *via* column chromatography on silica gel (eluent petrol:EtOAc 90:10) gave lactones (**3***R***,4***R***)-8** and (**3***R***,4***S***)-8** (44.5 mg. 52%) as a colourless solid; Chiral HPLC (**3***R***,4***R***)-8** Chiralpak AS-H (3% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm) t_R(3*S*,4*S*): 17.4 min, t_R(3*R*,4*R*): 32.7 min, 88% ee; (**3***R***,4***S*)-**8** Chiralpak AS-H (3% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm) t_R(3*R*,4*S*): 19.1 min, t_R(3*S*,4*R*): 36.0 min, 17% ee.

Table 1 Entry 9: Following *general procedure* **1**, triazolium salt **1** (14.0 mg, 0.0245 mmol), Cs_2CO_3 (7.2 mg, 0.0221 mmol) with ethylphenylketene **7** (47.0 mg, 0.319 mmol) and ketoester **6** (50.0 mg, 0.245 mmol) at rt overnight gave the crude product (67:33 dr *syn:anti*). Purification *via* column chromatography on silica gel (eluent petrol:EtOAc 90:10) gave lactones (**3***R*,**4***R*)-**8** and (**3***R*,**4***S*)-**8** (37.8 mg, 44%) as a colourless solid; (**3***R*,**4***R*)-**8** and (**3***R*,**4***S*)-**8** Chiral HPLC *syn* (**3***R*,**4***R*)-**8** Chiralpak AS-H (3% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm) t_R(3*S*,4*S*): 17.4 min, t_R(3*R*,4*R*):

34.1 min, 96% ee; (**3***R*,**4***S*)-**8** Chiralpak AS-H (3% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm) $t_R(3R,4S)$: 19.6 min, $t_R(3S,4R)$: 38.5 min, 43% ee.

Table 1 Entry 10: Following *general procedure* **1**, triazolium salt **1** (14.0 mg, 0.0245 mmol), Cs₂CO₃ (7.2 mg, 0.0221 mmol) with ethylphenylketene **7** (86.0 mg, 0.588 mmol) and ketoester **6** (50.0 mg, 0.245 mmol) at rt overnight gave the crude product (66:34 dr *syn:anti*). Purification *via* column chromatography on silica gel (eluent petrol:EtOAc 90:10) gave lactones (**3***R***,4***R***)-8** and (**3***R***,4***S***)-8** (68.7 mg, 80%) as a colourless solid; Chiral HPLC (**3***R***,4***R***)-8** Chiralpak AS-H (3% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm) t_R(3*S*,4*S*): 16.2 min, t_R(3*R*,4*R*): 35.0 min, 96% ee; (**3***R*,4*S*)-8 Chiralpak AS-H (3% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm) t_R(3*S*,4*S*): 16.2 min, t_R(3*R*,4*R*): 35.0 min, 96% ee; (**3***R*,4*S*)-8 Chiralpak AS-H (3% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm) t_R(3*R*,4*S*): 18.5 min, t_R(3*S*,4*R*): 35.0 min, 19% ee.

IV nOe Studies on compounds 21 and 29

nOe Studies on isomeric dihydropyranone 21

Figure 1: (i) MMFF optimised geometries of (*anti*)-21 show the distance between C(2)H and *o*-Ph to be 3.194\AA ; (ii) 1D gradient NOESY shows strong reciprocal nOe between C(2)H and *o*-Ph (iii) ¹H NMR spectrum of 21 in CDCl₃.

nOe Studies on anti-dihydropyranone 29

Figure 1: (i) MMFF optimised geometries of (*anti*)-29 show the distances between C(4)Me and C(3)CH₂ and C(4)H and *o*-Ph to be 2.325Å and 2.184Å respectively; (ii) 1D gradient NOESY shows strong reciprocal NOE between C(4)Me and C(3)CH₂ (iii) 1D gradient NOESY shows strong reciprocal NOE between C(4)H and *o*-Ph (iv) ¹H NMR spectrum of 29 in CDCl₃.

V Absolute configuration of anti-dihydropyranone 11

The base catalysed isomerisation process allows the absolute configuration of the *anti*-dihydropyranone products to be deduced. From the known relative and absolute configuration of *syn*-dihydropyranone **11**, control experiments show that the ee of *syn*-dihydropyranone **11** remains unchanged after treatment with Cs_2CO_3 as presumably there is only epimerisation from the *syn* to the thermodynamically more stable *anti*-diastereoisomer and little or no epimerisation of the *anti* to the *syn*-diastereoisomer. Presumably in this base catalysed isomerisation process, the configuration of the all carbon quaternary stereocentre at C(3) remains unchanged (assuming that there is no retro Michael reaction). As a result any *anti*-dihydropyranone arising from the *syn*-dihydropyranone must have the (3*R*,4*S*) configuration (Scheme **1**).

Scheme 1: Utilisation of the base catalysed epimerisation to determine the absolute configuration of the *anti* dihydropyranone

HPLC analysis of *anti*-dihydropyranone **11** from this epimerisation process showed that the retention times of the major and minor enantiomer matched those of the synthesised *anti*-dihydropyranone **11** (Figure **2**). Based on the epimerisation mechanism shown above, the absolute configuration of *anti*-dihydropyranone **11** which was epimerised from *syn*-dihydropyranone **11** is (3R,4S). Therefore, synthesised *anti*-dihydropyranone **11** also has the (3R,4S) absolute configuration.

Figure 2: HPLC traces comparing synthesised *anti*-dihydropyranone with *anti*-dihydropyranone epimerised from *syn*-dihydropyranone

VI List of Unsuccessful Substrates

Figure 3: Ketenes that gave no conversion to cycloaddition products under optimised conditions

Figure 4: α-Ketocarboxylate substrates that gave no conversion to cycloaddition products under optimised conditions

 β -Methylene α -ketocarboxylate substrates were prepared according to literature procedures³

¹ a) B. L. Houdous and G. C. Fu, *J. Am. Chem. Soc.* 2002, **124**, 1578; b) L. M.
Baigrie, H. R. Seiklay and T. T. Tidwell, *J. Am. Chem. Soc.* 1985, **107**, 5391; c) A.
Sudo, S. Uchino and T. Endo, *J. Polym. Sci. Part A: Polym. Chem.* 2001, **39**, 2093; d)
J. Douglas, J. E. Taylor, G. Churchill, A. M. Z. Slawin and A. D. Smith, *J. Org. Chem.* 2013, *accepted*² D. Belmessieri, L. C. Morrill, C. Simal, A. M. Z. Slawin and A. D. Smith, *J. Am. Chem. Soc.*, 2011, **133**, 2714

³ a) S. C. M. Fell, M. J. Pearson, G. Burton and J. S. Elder, *J. Chem. Soc. Perkin. Trans. 1*, 1995, 1483; b) H. Stetter and G. Lorenz, *Chem. Ber.*, 1985, **118**, 1115

VII Crystal data and structure refinement for enantiopure (3R,4R)-8

(3*R*,4*R*)-8 A. Crystal Data

Empirical Formula	C ₂₂ H ₂₂ O ₄
Formula Weight	350.41
Crystal Color, Habit	colorless, prism
Crystal Dimensions	0.200 X 0.100 X 0.050 mm
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	a = 12.174(6) Å
	b = 6.293(3) Å
	c = 12.398(6) Å
	$\beta = 98.90(2)^{\text{O}}$
	$V = 938.3(8) Å^3$
Space Group	P2 ₁ (#4)
Z value	2
D _{calc}	1.240 g/cm ³
F000	372.00
μ(CuKα)	6.853 cm ⁻¹

B. Intensity Measurements

Diffractometer Radiation	Saturn70 CuKα (λ = 1.54187 Å)
Voltage, Current	40kV, 20mA
Temperature	-100.0 ^o C
Detector Aperture	70 x 70 mm
ω oscillation Range	1.0 - 0.0 ⁰
Pixel Size	0.034 mm
20 _{max}	137.0 ^o
No. of Reflections Measured	Total: 9926
	Unique: 3143 (Rint = 0.0642)
	Friedel pairs: 1387
Corrections	Lorentz-polarization
	Absorption
	(trans. factors: 0.688 - 0.966)

C. Structure Solution and Refinement

Structure Solution	Direct Methods
Refinement	Full-matrix least-squares on F^2

Function Minimized	$\Sigma \text{ w} (\text{Fo}^2 - \text{Fc}^2)^2$
Least Squares Weights	w = 1/ [$\sigma^2(Fo^2) + (0.0898 \cdot P)^2$
	+ 0.1250 · P]
	where $P = (Max(Fo^2, 0) + 2Fc^2)/3$
2θ _{max} cutoff	137.0 ^o
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	3143
No. Variables	235
Reflection/Parameter Ratio	13.37
Residuals: R1 (I> $2.00\sigma(I)$)	0.0508
Residuals: R (All reflections)	0.0548
Residuals: wR2 (All reflections)	0.1471
Goodness of Fit Indicator	1.045
Flack Parameter (Friedel pairs = 1387)	0.1(3)
Max Shift/Error in Final Cycle	0.003
Maximum peak in Final Diff. Map	$0.28 e^{-}/Å^{3}$
Minimum peak in Final Diff. Map	-0.19 e ⁻ /Å ³

Table 1. Atomic coordinates and B_{iso}/B_{eq} for $\boldsymbol{8}$

atom	Х	У	Z	Beq
01	0.3233(2)	0.5315(3)	0.1670(2)	3.77(4)
O22	0.3534(2)	0.2975(4)	-0.0842(2)	4.69(5)
O2	0.3216(2)	0.6344(3)	0.3349(2)	4.31(4)
O21	0.4087(2)	0.6151(4)	-0.0130(2)	5.80(6)
C2	0.3083(2)	0.4878(4)	0.2723(2)	3.29(5)
C3	0.2875(2)	0.2583(4)	0.3013(2)	2.84(4)
C4	0.2185(2)	0.1407(4)	0.2023(2)	3.06(4)
C5	0.2680(2)	0.1861(4)	0.1009(3)	3.51(5)
C6	0.3149(2)	0.3736(5)	0.0886(2)	3.51(5)
C7	0.4072(2)	0.1590(4)	0.3224(2)	3.16(5)
C8	0.4840(3)	0.2481(4)	0.4204(3)	4.03(6)
C9	0.2297(2)	0.2372(4)	0.4018(2)	3.07(5)
C10	0.2340(2)	0.0412(4)	0.4556(2)	3.40(5)
C11	0.1781(3)	0.0081(4)	0.5437(3)	3.81(5)
C12	0.1178(2)	0.1702(5)	0.5809(3)	3.96(5)
C13	0.1113(2)	0.3637(5)	0.5285(3)	4.16(6)
C14	0.1660(2)	0.3976(5)	0.4395(3)	3.67(5)
C15	0.0944(2)	0.1938(4)	0.1835(2)	3.20(5)
C16	0.0547(3)	0.3871(5)	0.1395(3)	4.25(6)
C17	-0.0588(3)	0.4323(6)	0.1233(3)	5.02(7)
C18	-0.1327(3)	0.2837(7)	0.1501(3)	5.22(7)
C19	-0.0949(3)	0.0896(7)	0.1915(3)	5.54(8)
C20	0.0186(3)	0.0458(5)	0.2090(3)	4.34(6)
C21	0.3649(3)	0.4451(5)	-0.0061(3)	4.22(6)
C23	0.4115(3)	0.3378(8)	-0.1756(3)	5.84(9)
C24	0.4002(3)	0.1513(11)	-0.2435(4)	7.93(12)

atom	Х	v	Z	Biso
H4	0.2259	-0.0153	0.2168	3.67
H5	0.2658	0.0809	0.0457	4.21
H7A	0.4001	0.0039	0.3326	3.80
H7B	0.4425	0.1810	0.2565	3.80
H8A	0.4959	0.4001	0.4094	4.83
H8B	0.5555	0.1736	0.4286	4.83
H8C	0.4501	0.2279	0.4864	4.83
H10	0.2760	-0.0715	0.4313	4.08
H11	0.1815	-0.1268	0.5784	4.57
H12	0.0809	0.1487	0.6422	4.76
H13	0.0690	0.4752	0.5534	5.00
H14	0.1600	0.5317	0.4039	4.40
H16	0.1055	0.4898	0.1202	5.10
H17	-0.0849	0.5656	0.0938	6.02
H18	-0.2100	0.3149	0.1400	6.27
H19	-0.1462	-0.0146	0.2082	6.65
H20	0.0442	-0.0875	0.2389	5.20
H23A	0.3790	0.4626	-0.2175	7.00
H23B	0.4910	0.3671	-0.1492	7.00
H24A	0.4363	0.0306	-0.2024	9.51
H24B	0.4356	0.1765	-0.3082	9.51
H24C	0.3212	0.1199	-0.2662	9.51

Table 2. Atomic coordinates and Biso involving hydrogen atoms for 8

Table 3. Bond lengths (Å) for 8

atom	atom	distance	atom	atom	distance
01	C2	1.373(4)	01	C6	1.383(4)
O22	C21	1.334(4)	O22	C23	1.448(5)
O2	C2	1.200(3)	O21	C21	1.204(4)
C2	C3	1.519(4)	C3	C4	1.562(4)
C3	C7	1.570(4)	C3	C9	1.529(4)
C4	C5	1.502(4)	C4	C15	1.530(4)
C5	C6	1.330(4)	C6	C21	1.474(5)
C7	C8	1.521(4)	C9	C10	1.399(4)
C9	C14	1.397(4)	C10	C11	1.389(4)
C11	C12	1.378(4)	C12	C13	1.376(5)
C13	C14	1.390(5)	C15	C16	1.389(4)
C15	C20	1.382(4)	C16	C17	1.394(4)
C17	C18	1.374(5)	C18	C19	1.377(6)
C19	C20	1.392(4)	C23	C24	1.439(8)

Table 4. Bond lengths involving hydrogens (Å) for 8

atom	atom	distance	atom	atom	distance
C4	H4	1.000	C5	H5	0.950
C7	H7A	0.990	C7	H7B	0.990

C8	H8A	0.980	C8	H8B	0.980
C8	H8C	0.980	C10	H10	0.950
C11	H11	0.950	C12	H12	0.950
C13	H13	0.950	C14	H14	0.950
C16	H16	0.950	C17	H17	0.950
C18	H18	0.950	C19	H19	0.950
C20	H20	0.950	C23	H23A	0.990
C23	H23B	0.990	C24	H24A	0.980
C24	H24B	0.980	C24	H24C	0.980

Table **5**. Bond angles (⁰) for **8**

atom	atom	atom	angle	atom	atom	atom	angle
C2	01	C6	121.19(19)	C21	O22	C23	115.9(3)
O1	C2	O2	115.9(3)	01	C2	C3	117.8(2)
O2	C2	C3	126.0(3)	C2	C3	C4	110.70(19)
C2	C3	C7	103.47(18)	C2	C3	C9	113.0(2)
C4	C3	C7	108.36(19)	C4	C3	C9	109.91(19)
C7	C3	C9	111.21(19)	C3	C4	C5	109.3(2)
C3	C4	C15	114.5(2)	C5	C4	C15	110.23(19)
C4	C5	C6	119.9(3)	01	C6	C5	122.9(3)
01	C6	C21	110.2(3)	C5	C6	C21	126.9(3)
C3	C7	C8	115.3(2)	C3	C9	C10	118.5(2)
C3	C9	C14	124.0(3)	C10	C9	C14	117.4(3)
C9	C10	C11	121.3(3)	C10	C11	C12	120.2(3)
C11	C12	C13	119.5(3)	C12	C13	C14	120.7(3)
C9	C14	C13	120.9(3)	C4	C15	C16	121.7(3)
C4	C15	C20	119.8(3)	C16	C15	C20	118.4(3)
C15	C16	C17	120.8(3)	C16	C17	C18	119.9(3)
C17	C18	C19	120.0(3)	C18	C19	C20	120.1(3)
C15	C20	C19	120.8(3)	O22	C21	O21	124.4(3)
O22	C21	C6	110.8(3)	O21	C21	C6	124.7(3)
O22	C23	C24	107.5(4)				

Table 6. Bond angles involving hydrogens $(^{O})$ for 8

atom	atom	atom	angle	atom	atom	atom	angle
C3	C4	H4	107.5	C5	C4	H4	107.5
C15	C4	H4	107.5	C4	C5	H5	120.0
C6	C5	H5	120.0	C3	C7	H7A	108.5
C3	C7	H7B	108.5	C8	C7	H7A	108.5
C8	C7	H7B	108.5	H7A	C7	H7B	107.5
C7	C8	H8A	109.5	C7	C8	H8B	109.5
C7	C8	H8C	109.5	H8A	C8	H8B	109.5
H8A	C8	H8C	109.5	H8B	C8	H8C	109.5
C9	C10	H10	119.3	C11	C10	H10	119.3
C10	C11	H11	119.9	C12	C11	H11	119.9
C11	C12	H12	120.3	C13	C12	H12	120.3
C12	C13	H13	119.6	C14	C13	H13	119.6
C9	C14	H14	119.6	C13	C14	H14	119.6

C15	C16	H16	119.6	C17	C16	H16	119.6
C16	C17	H17	120.1	C18	C17	H17	120.1
C17	C18	H18	120.0	C19	C18	H18	120.0
C18	C19	H19	120.0	C20	C19	H19	120.0
C15	C20	H20	119.6	C19	C20	H20	119.6
O22	C23	H23A	110.2	O22	C23	H23B	110.2
C24	C23	H23A	110.2	C24	C23	H23B	110.2
H23A	C23	H23B	108.5	C23	C24	H24A	109.5
C23	C24	H24B	109.5	C23	C24	H24C	109.5
H24A	C24	H24B	109.5	H24A	C24	H24C	109.5
H24B	C24	H24C	109.5				

Table 7. Torsion $Angles(^{O})$ for 8

(Those having bond angles > 160 or < 20 degrees are excluded.)

atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom	4 angle
C2	O1	C6	C5	15.9(4)	C2	O1	C6	C21	-163.82(18)
C6	O1	C2	O2	177.27(19)	C6	O1	C2	C3	2.7(3)
C21	O22	C23	C24	173.1(2)	C23	O22	C21	021	8.7(4)
C23	O22	C21	C6	-172.4(2)	01	C2	C3	C4	-34.3(3)
01	C2	C3	C7	81.6(3)	01	C2	C3	C9	-158.08(17)
O2	C2	C3	C4	151.7(3)	O2	C2	C3	C7	-92.4(3)
O2	C2	C3	C9	28.0(3)	C2	C3	C4	C5	47.3(3)
C2	C3	C4	C15	-76.9(3)	C2	C3	C7	C8	65.5(3)
C2	C3	C9	C10	-161.92(17)	C2	C3	C9	C14	22.6(3)
C4	C3	C7	C8	-177.00(17)	C7	C3	C4	C5	-65.5(3)
C7	C3	C4	C15	170.26(17)	C4	C3	C9	C10	73.9(3)
C4	C3	C9	C14	-101.6(3)	C9	C3	C4	C5	172.78(16)
C9	C3	C4	C15	48.6(3)	C7	C3	C9	C10	-46.1(3)
C7	C3	C9	C14	138.43(19)	C9	C3	C7	C8	-56.1(3)
C3	C4	C5	C6	-33.3(3)	C3	C4	C15	C16	74.1(3)
C3	C4	C15	C20	-106.9(3)	C5	C4	C15	C16	-49.7(3)
C5	C4	C15	C20	129.3(2)	C15	C4	C5	C6	93.4(3)
C4	C5	C6	01	1.6(4)	C4	C5	C6	C21	178.64(19)
01	C6	C21	O22	-177.49(18)	01	C6	C21	O21	1.4(4)
C5	C6	C21	O22	2.8(4)	C5	C6	C21	O21	-178.3(3)
C3	C9	C10	C11	-176.41(18)	C3	C9	C14	C13	176.83(18)
C10	C9	C14	C13	1.3(4)	C14	C9	C10	C11	-0.6(4)
C9	C10	C11	C12	-0.7(4)	C10	C11	C12	C13	1.4(4)
C11	C12	C13	C14	-0.8(4)	C12	C13	C14	C9	-0.6(4)
C4	C15	C16	C17	-179.8(2)	C4	C15	C20	C19	-179.3(2)
C16	C15	C20	C19	-0.3(4)	C20	C15	C16	C17	1.1(4)
C15	C16	C17	C18	-0.6(5)	C16	C17	C18	C19	-0.8(5)
C17	C18	C19	C20	1.7(5)	C18	C19	C20	C15	-1.2(5)

VIII HPLC and NMR Spectra

HPLC data compound **8**: *syn* Chiralpak AS-H 3% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm, 96% ee; *anti* Chiralpak AS-H 3% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm, 19% ee.

HPLC data compound **11**: *syn* Chiralpak AS-H 5% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm, 95% ee.

anti Chiralpak AS-H 10% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm, 18% ee.

HPLC data compound **12**: *syn* Chiralpak AD-H 20% IPA:hexane, flowrate 0.1 mL min⁻¹, 254 nm, 88% ee.

anti Chiralpak IC 10% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm, 86% ee.

HPLC data compound 14: syn + anti Chiralcel OJ-H 20% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm, syn 41% ee, *anti* 39% ee.

HPLC data compound **15**: *syn* + *anti* Chiralpak AD-H 3% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm, *syn* 52% ee, *anti* 52% ee.

HPLC data compound syn 16: Chiralpak AS-H 10% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm, 52% ee.

HPLC data compound *anti* **16**: Chiral HPLC Chiralpak AS-H 5% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm, 51% ee.

HPLC data compound 17: Chiralpak AD-H 10% IPA:hexane, flowrate 0.25 mL min⁻¹,

254 nm, syn 52% ee anti 37% ee.

HPLC data compound syn 18: Chiralpak AS-H 3% IPA:hexane, flowrate 1 mL min⁻¹,

254 nm, 92% ee.

HPLC data compound anti 18: Chiralpak AS-H 3% IPA:hexane, flowrate 1 mL min⁻¹,

254 nm, 36% ee.

HPLC data compound 19: Chiralpak AD-H 2% IPA:hexane, flowrate 1 mL min⁻¹, 254

nm, syn 88% ee, anti, 38% ee.

HPLC data compound anti 20: Chiralpak AS-H 5% IPA:hexane, flowrate 1 mL min⁻¹,

 $(j_{i}, j_{i}, j_{i},$

	Inj. Number	Peak Name	R. Time	Area	Area %
1	1.00	*1	22.67	11291442.00	50.35
2	1.00	2	31.14	11133028.00	49.65

254 nm, 32% ee.

HPLC data compound *syn* + *anti* **21**:

Chiralpak AS-H 20% IPA:hexane, flowrate 0.25 mL min⁻¹, 254 nm, *anti* 41% ee, *syn* 91% ee.

HPLC data compound *syn* + *anti* **22**: Chiralpak AS-H 3% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm, *syn* 94% ee, *anti* 18% ee.

HPLC data compound *syn* + *anti* **23**: Chiralpak AS-H 1% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm, *syn* 93% ee, *anti* 93% ee.

HPLC data compound syn + anti 24: Chiralpak AD-H 10% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm, syn 98% ee, *anti* 57% ee.

HPLC data compound syn + anti **25**: Chiralpak AS-H 10% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm, syn 80% ee, *anti* 4% ee.

HPLC data compound *syn* **26**: Chiralpak AS-H 10% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm, 89% ee.

HPLC data compound *anti* **26**: Chiralpak AS-H 20% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm, 39% ee.

HPLC data compound *syn* **27**: Chiralpak AS-H 20% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm, 89% ee.

HPLC data compound *anti* 27: Chiralpak AS-H 20% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm, 31% ee.

HPLC data compound *syn* **28**: Chiralpak AS-H 20% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm, 93% ee.

HPLC data compound *anti* 28: Chiralpak AS-H 20% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm, 26% ee.

HPLC data compound *anti* + *syn* **29**: Chiralpak AS-H 5% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm, 70% ee *anti*, 94% ee *syn*.

HPLC data compound *anti* + *syn* **30**: Chiralpak AD-H 2% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm, 75% ee *anti*, 97% ee *syn*.

HPLC data compound *anti* + *syn* **31**: Chiralpak OJ-H 20% IPA:hexane, flowrate 0.25 mL min⁻¹, 254 nm, 71% ee *anti*, 94% ee *syn*.

HPLC data compound *anti* + *syn* **32**: Chiralpak AS-H 10% IPA:hexane, flowrate 1 mL min⁻¹, 254 nm, 74% ee *anti*, 95% ee *syn*.

5.679 5.669 5.606 5.592

____2.799 ____2.775

 $\begin{array}{c} 7.481 \\ 7.474 \\ 7.469 \\ 7.453 \\ 7.453 \\ 7.453 \\ 7.3390 \\ 7.380 \\ 7.380 \\ 7.380 \\ 7.3355 \\ 7.355$

14 syn + anti

-170.133 -169.860

-160.297 -160.147

____118.126 ____117.106

-50.602 -50.467 -49.248 -48.524

-24.421 -24.109

-14.332 -14.211

Thi	s journal is the Royal Society of Chemistry 2013
-	
18	
8	
-	
_	
70	
-	
160	
_	Share and the second seco
150	
_	
140	
_	
130	
120	
110	
100	
_	
90	
_	
80	
_	in the second
70	
_	

-122.136

—170.053

-118.364

~ Ŧ

60	alan and an and an	62.225
-		
50		50.251 48.874
-		
40-		
-		
30 0		
-		24.397
20		————21.042
-		———————————————————————————————————————
10		
-		

131.428 130.014 129.928 129.648 127.449 126.889	8488))
122.633 120.419 119.299	;

144.204 142.864

-136.882

	76 742
	- 0.1 TE
	70 007
_	-76.397
	-75.944

3.785

_____167.778

_____117.466

60	62.277
_	54.905
50	50.291
_	
40-	
_	
30_	29.228
20	
_	——14.336
10	9.476

_____169.826

_____122.457

——117.353

-4.372
-4.330 -4.219 -4.196
-4.172 -4.148

-168.017

-160.924

_____170.029

_____160.756

-136.266

——118.413

60			
_	_		54.005 52.673
50			
-			46.296
40			
-			
30	_		28.539
_			
20			
-			
10	_		8.448
_			

-7.396 -7.391 -7.388 -7.377 -7.373 -7.369 -7.366 -7.358 -7.350 -7.350 -7.326 -7.326 -7.322 -7.3216 -7.322 -7.3216 -7.313 -7.322 -7.320 -7.200

-7.188 -7.184 -7.157 -7.153 -7.150 -7.141 -7.135 -7.129 -7.120 -7.120

-7.117

-7.113

-7.101

-7.092 -7.090 -7.072 -7.066 -7.060 -7.055 -7.051 -6.900 -6.896 -6.892 -6.889 -6.889

-6.881-6.876-6.688

-6.688 -6.680 -6.667 -6.662 -6.659 -6.641 -6.631 -6.621 -6.617 -6.605

-6.605

-5.271 -5.256 -5.249 -5.241 -5.234 -5.225 -5.194 -5.166 -5.162 -5.162 -5.086 -5.070 -5.063 -5.054

-5.034 -5.039 -5.023 -5.016 -5.007 -4.992

-4.193-4.176-3.798-3.785

0

-114.398

 ω_{-}

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013

 ω_{-}

-167.681

3.716

0_

-7.474 -7.454 -7.282 -7.268 -7.261 -7.248 -7.086 -7.064 -7.038 -7.017

-6.616 -6.600

3.747 3.728

⊕lectror This jou	nic Supplementary Material (ESI) for Organic & Biomolecular urnal is Cothe Royal Society of Chemistry 2013	Chemistry	
180	an a		
170	miseran period		
160	יינקרייקרייקרייקרייקרייקרייקרייקרייקרייק		<u>س</u>
150	יארילאאטן וגאיליקאינען איז		
140	interest and inter		
130			O E E
120			
110	SADANA ANA ANA ANA ANA ANA ANA ANA ANA AN		
100	n man an a		
90	1. A MAY AN INTERNAL AND AN AN ANALYSI AND AN AN ANALYSI AND AN AN ANALYSI AND AN AN ANALYSI AND AND AN ANALYSI		
8_	And the second sec		
70	164 martine and a second and as second and a		

—169.325

—159.998

-141.774

-136.567 -134.968

-132.469 -132.121 -130.359 -128.716

-122.625 -122.199

-117.026

Br⁄

60	in the second	
50	han have been ha	———————————————————————————————————————
-	андаранан алан алан алан алан алан алан ала	45.898
40		
30		28.067
20	siland set for constant of the set of the se	
10		
0		

