Electronic Supplementary Information

Catalyst-Controlled Switchable Phosphination of α-Diazoesters

Honglai Jiang,^a Hongming Jin,^a Ablimit Abdukader,^{a,c} Aijun Lin,^a Yixiang Cheng ^a and Chengjian Zhu^{a,b}

^{*a*} State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China. E-mail: <u>cjzhu@nju.edu.cn</u>

^b Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China

^c School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, P. R. China

General Information

All reagents were obtained from commercial suppliers and used without further purification except as indicated below. Solvents were dried and distilled prior to use according to the standard method. For thin-layer chromatography (TLC), compounds were visualized by irradiation with UV light on GF 254 silica gel plates. Column chromatography was generally performed on silica gel (200-300 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ at Bruker ARX-300 MHz spectrometer with chemical shifts referenced to SiMe₄ as internal standard. Chemical shifts are reported in parts per million (ppm) and referenced to the residual solvent resonance. Coupling constant (*J*) are reported in hertz (Hz). Standard abbreviations indicating multiplicity were used as follows: s = singlet, d = double, t = triplet, dd = double doublet, tt = triplet triplet, q = quartet, m = multiplet, b = broad. HRMS were recorded on an Agilent 6210 TOF LC/MS equipped with electrospray ionization (ESI) probe operating in positive or negative ion mode.

	$\begin{array}{c c} N_2 \\ \hline \\ OMe \\ O \\ + \\ R \\ H \\ R \\ H \\ Solvent \\ \hline \\ solvent \\ \end{array}$	O R-P-R HN N OMe or 3a		Me
Entry	Cat(mol%)	Solvent	R	Yield[%] ^c
1	K ₂ CO ₃ /CuBr ^b	DMF	OMe	3a /20
2	K ₂ CO ₃ (20)	DMF	OMe	3a /20
3	-	DMF	OMe	3a /0
4	Li ₂ CO ₃ (20)	DMF	OMe	3a/trace
5	$KOBu^{t}(20)$	DMF	OMe	3a/trace
6	DBU(20)	DMF	OMe	3a /55
7	DMAP(20)	DMF	OMe	3a /0
8	DABCO(20)	DMF	OMe	3a /0
9	DMEDA(20)	DMF	OMe	3a /0
10	Hexamethylenetetramine	DMF	OMf	3a /0
11	DBU (20)	CH ₃ CN	OMe	3a/66
12	DBU(20)	MeNO ₂	OMe	3a/trace
13	DBU(20)	DMSO	OMe	3a /45
14	DBU(20)	THF	OMe	3a /24
15	DBU(20)	EtOAc	OMe	3a /26
16	DBU(20)	Hexane	OMe	3a /43
17	CuBr(5)	CH_2Cl_2	OMe	4a /0
18	CuBr(5)	CH_2Cl_2	OEt	4a /0
19	CuBr(5)	CH_2Cl_2	OiPr	4a /0
20	CuBr(5)	CH_2Cl_2	OPh	4a /45
21	CuBr (5)	ClCH ₂ CH ₂ Cl	OPh	4a/87
22	CuBr(5)	toluene	OPh	4a /12
23	CuBr(5)	hexane	OPh	4a /0
24	CuCl(5)	ClCH ₂ CH ₂ Cl	OPh	4a /58
25	CuI(5)	ClCH ₂ CH ₂ Cl	OPh	4a /61
26	CuOTf(5)	ClCH ₂ CH ₂ Cl	OPh	4a /68

Table 1: Optimization of reaction conditions.^a

^{*a*} mixture of **1a** (0.5 mmol), **2** (0.55 mmol) and catalyst in solvent (2 mL) was stirred at room temperature for 48 h (**3a**), 12h (**4a**). ^{*b*} K₂CO₃ (20 mol%) and CuBr (5 mol%). ^{*c*} Yield of isolated products.

General procedure A for the N–P bond formation:

A 10 mL reaction tube was charged with α -Diazoacetates (0.5mmol) in the dry acetonitrile under air. Next, phosphorous compounds (0.55mmol) and DBU (0.1

mmol, 20 mol%) were added. The tube was then sealed and the resulting mixture was stirred at room temperature. After the indicated time the crude products were purified by silica gel chromatography to yield the desired product **3**. It should be noted that the silica gel should be treated with NEt₃.

General procedure B for the C–P bond formation:

A solution of α -Diazoacetates (0.5 mmol), phosphorous compounds (0.55mmol), and CuBr (0.025 mmol, 5 mol%) in dry ClCH₂CH₂Cl(2.0 mL) was stirred at room temperature under argon for 12h in a reaction tube. After the reaction, the mixture was concentrated in vacuo. The residue was purified by columnchromatography (silica gel, petroleum ether/EtOAc) to afford the corresponding products **4**.

The other procedure for the synthesis of products 3

In order to further make sure the product 3, we tried our best to synthesis the compound **31**.

(1) Preparation of diethyl phosphorohydrazidate¹.

$$\begin{array}{c} 0 \\ \text{EtO}-\underset{H}{\overset{||}{P}-\text{OEt}} & \underset{+}{\overset{NH_2NH_2 \bullet H_2O}{H}} & \underbrace{\text{TEBAC (0.1 eq)}}_{K_2CO_3 (15 eq)} & \underset{+}{\overset{O}{\underset{+}{\overset{||}{P}-\text{NH}_2}} \\ 1 eq & 20 eq & CCl_4:CH_2Cl_2 (4:7) & \overset{O}{OEt} \end{array}$$

Hydrazine hydrate (20 equiv) was added dropwise to a stirred solution of K_2CO_3 (15 equiv) and triethylbenzyl ammonium chloride (0.1 equiv) in CCl_4 – CH_2Cl_2 (4:7) at room temperature. Diethylphosphite (1 equiv) was then added in dropwise. The mixture was stirred for one night and the residue was filtered off and washed with CH_2Cl_2 . The solvents were removed and kept under high vacuum until the solvents were removed. The pale yellow liquid was used without further purification.

(2) The product 3l was prepared by a modified method ².

Diethyl phosphorohydrazidate (10 mol) was added into a stirred solution of methyl 2-oxo-2-phenylacetate (10 mol) in toluene 80mL. The mixture was heated to reflux for one night, and the Dean-Stark apparatus was applied to remove the water from the reaction. When the reaction finished, the residue was purified by silica gel chromatography to yield the desired product **3l** in 31% yield. It should be noted that the silica gel should be treated with NEt₃.

Ref: (1) V. A. Sauro and M. S. Workentin, *Can. J. Chem.* 2002, **80**, 250; (2) K. Anna, T. Krzysztof and Z. Andrzej, *Synthesis.* 1986, **4**, 298.

Proposed catalytic process for the catalytic N–P bond formation.

The spectroscopic data of phosphinamide compounds

(E)-methyl 2-(2-(dimethyoxyphosphoryl)hydraono)-2-phenylacetate (3a).

White solid, 66% yield, mp. 93–95°C. ¹H NMR (300 MHz, CDCl₃) δ = 7.56–7.44 (m, 3H), 7.30–7.19 (m, 2H), 7.07 (d, J = 30.5, 1H), 3.86 (s, 3H), 3.83 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ = 163.8, 143.5(d, J = 16.9), 130.2, 129.6, 128.3, 128.2, 54.3 (d, J = 5.9), 52.6; ³¹P

NMR (202 MHz, CDCl3): $\delta = 1.6$ (s); HRMS: calculated for $C_{11}H_{15}N_2O_5PNa$: 309.0611. [M+Na]⁺; found: 309.0616.

(E)-ethyl 2-(2-(dimethoxyphosphoryl)hydrazono)-2-phenylacetate (3b).

128.2, 61.7, 54.3 (d, J = 5.9), 14.0; ³¹P NMR (202 MHz, CDCl₃) $\delta = 1.5$; HRMS: calculated for C₁₂H₁₇N₂O₅PNa: 323.0767. [M+Na]⁺; found: 323.0762.

(E)-isopropyl 2-(2-(dimethoxyphosphoryl)hydrazono)-2-phenylacetate (3c).

White solid, 72% yield, mp. 87–89°C. ¹H NMR (300 MHz, CDCl₃) $\delta = 7.55-7.41$ (m, 3H), 7.26–7.18 (m, 2H), 7.05 (d, J = 30.5, 1H), 5.24–4.96 (m, 6H), 3.85 (d, J = 11.3, 3H), 1.27 (s, 1H), 1.25 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 162.81$, 143.96 (d, J = 17.0 Hz),

130.04, 129.44, 128.52, 128.15, 77.40, 76.98, 76.56, 69.38, 54.42 (d, J = 6.1), 21.59; ³¹P NMR (202 MHz, CDCl₃) $\delta = 1.3$; HRMS: calculated for C₁₃H₁₉N₂O₅PNa: 337.0924. [M+Na]⁺; found: 337.0927.

(E)-methyl 2-(2-chlorophenyl)-2-(2-(dimethoxyphosphoryl)hydrazono)acetate (3d).

White solid, 93% yield, mp. 144–145°C. ¹H NMR (300 MHz, CDCl₃) $\delta = 7.52-7.36$ (m, 3H), 7.19–7.16 (m, 1H), 6.88 (d, J = 30, 1H), 3.87–3.77 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 163.1$, 141.0 (d, J = 17.3 Hz), 133.0, 131.7, 130.4, 130.1, 127.8, 77.4, 77.0, 76.6, 54.3

(d, J = 15.1), 52.71; ³¹P NMR (202 MHz, CDCl₃) $\delta = 1.0$; HRMS: calculated for C₁₁H₁₄ClN₂O₅PNa: 343.0221. [M+Na]⁺; found: 343.0228.

(E)-methyl 2-(3-chlorophenyl)-2-(2-(dimethoxyphosphoryl)hydrazono)acetate (3e).

White solid, 80% yield, mp. 134–136°C. ¹H NMR (300 MHz, CDCl₃) δ = 7.42–7.41 (m, 2H), 7.25–7.08 (m, 3H), 3.81–3.77 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) δ = 163.4, 141.7(d, *J* = 17.2), 135.5, 130.8 130.4 130.2 128.4, 126.4, 54.3 (d, *J* = 5.9), 52.7. ³¹P

NMR (202 MHz, CDCl₃) δ = 1.0; HRMS: calculated for C₁₁H₁₄ClN₂O₅PNa: 343.0221. [M+Na]⁺; found: 343.0229.

(E)-methyl 2-(4-chlorophenyl)-2-(2-(dimethoxyphophoryl)hydrazono)acetate (3f).

O
MEO-P-OME
HN
NWhite solid, 75% yield, mp. 159–162°C. ¹H NMR (300 MHz,
CDCl3) δ = 7.51–7.44 (m, 2H), 7.22–7.07 (m, 3H), 3.83 (s, 3H),
3.80 (d, J = 2.6, 6H); ¹³C NMR (75 MHz, CDCl3) δ = 163.6,
142.1 (d, J = 17.0), 136.4, 129.8, 129.8, 126.6, 54.3 (d, J = 5.9),

52.7; ³¹P NMR (202 MHz, CDCl₃) δ = 1.0; HRMS: calculated for C₁₁H₁₄ClN₂O₅PNa: 343.0221. [M+Na]⁺; found: 343.0212.

(E)-methyl 2-(2-(dimethoxyphosphoryl)hydrazono)-2-p-tolyacetate (3g).

White solid, 65% yield, mp. 92–94°C. ¹H NMR (300 MHz, CDC13) $\delta = 7.33-7.27(m, 2H)$, 7.15–7.03(m, 3H), 3.86–3.78(m, 9H), 2.40–2.37(d, 2H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 163.9$, 143.7 (d, J = 17.0), 140.5, 130.3, 128.0, 125.2, 54.3 (d, J = 5.5 Hz)

52.6, 21.3; ³¹P NMR (202 MHz, CDCl₃) δ = 1.7; HRMS: calculated for C₁₈H₁₆O₄Na: 323.0767. [M+Na]⁺; found: 323.0761.

(E)-methyl 2-(2-(dimethoxyphosphoryl)hydrazono)-2-(4-fluorophenyl)acetate (3h).

White solid, 72% yield, mp. 143–146°C. ¹H NMR (300 MHz, CDCl₃) δ = 7.43–6.88 (m, 5H), 3.84–3.77 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) δ = 165.1, 162.7 (d, *J* = 151.1), 142.3 (d, *J* = 17.3), 130.6 (d, *J* = 8.5), 124.2, 116.8 (d, *J* = 21.9), 54.3 (d, *J* = 5.8),

52.7; ³¹P NMR (202 MHz, CDCl₃) δ = 1.5; HRMS: calculated for C₁₁H₁₄FN₂O₅PNa: 327.0517. [M+Na]⁺; found: 327.0514.

(E)-methyl 2-(2-(dimethoxyphosphoryl)hydrazono)-2-(4-methoxyphenyl)acetate (3i). White solid, 78% yield, mp. 157–159°C. ¹H NMR (300 MHz, CDCl₃) δ = 7.18–7.07

(m, 3H), 6.98 (d, J = 8.7, 2 H), 3.83–3.79 (m, 12H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 164.1$, 160.8, 143.4 (d, J = 17.2), 129.8, 120.0, 115.0, 77.5, 77.0, 76.6, 54.24 (d, J = 5.9), 54.2, 52.6. ³¹P NMR (202 MHz, CDCl₃) $\delta = 1.8$. HRMS: calculated for

 $C_{12}H_{17}N_2O_6PNa: 339.0716.$ [M+Na]⁺; found: 339.0722.

(E)-methyl 2-(4-bromophenyl)-2-(2-(dimethoxyphosphoryl)hydrazono)acetate (3j).

(202 MHz, CDCl₃) δ = 1.3; HRMS: calculated for C₁₁H₁₄BrN₂O₅PNa: 386.9716. [M+Na]⁺; found: 386.9703.

(E)-methyl 2-(2,4-dichlorophenyl)-2-(2-(dimethoxyphosphoryl)hydrazono)acetate (3k).

White solid, 91% yield, mp. 152–154°C. ¹H NMR (300 MHz, CDCl₃) δ = 7.49–7.44(m, 3H), 7.13–7.09 (m, 1H), 3.78 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ = 163.0, 139.7 (d, *J* = 17.8), 137.0, 134.1, 131.1, 130.2, 128.1, 126.8, 54.2 (d, *J* = 7.1), 52.7; ³¹P NMR

(202 MHz, CDCl₃) $\delta = 0.9$; HRMS: calculated for C₁₁H₁₃Cl₂N₂O₅PNa: 376.9831. [M+Na]⁺; found: 376.9838.

(E)-methy 2-(2-(diethoxyphosphoryl)hydrazono)-2-phenylacetate (31).

White solid, 70% yield, mp. 59–61°C. ¹H NMR (300 MHz, CDCl₃) δ = 7.55–7.45 (m, 3H), 7.26–7.21 (m, 2H), 7.07 (d, *J* = 30.4, 1H), 4.27–4.12 (m, 4H), 3.82 (s, 3H), 1.37 (tt, *J* = 6.2, 3.1, 6H); ¹³C NMR (75 MHz, CDCl₃) δ = 164.0, 142.9 (d, *J* = 17.0), 130.2, 129.6, 128.4,

128.2, 64.0 (d, J = 5.8), 52.6, 16.0 (d, J = 6.6); ³¹P NMR (202 MHz, CDCl₃) $\delta = -1.0$; HRMS: calculated for C₁₃H₁₉N₂O₅PNa: 337.0924. [M+Na]⁺; found: 337.0924.

(E)-methyl 2-(2-(diisopropoxyphosphoryl)hydrazono)-2-phenylacetate (3m).

White solid, 75% yield, mp. 70–72°C. ¹H NMR (300 MHz, CDCl₃) $\delta = 7.54-7.41$ (m, 3H), 7.22–7.19 (m, 2H), 7.05 (d, J = 30.5, 1H), 4.69 (dq, J = 12.5, 6.2, 1H), 3.80 (s, 3H), 1.35 (dd, J = 8.1, 6.3, 12H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 164.1$, 142.3 (d, J = 17.1),

130.1, 129.5, 128.6, 128.2, 72.9 (d, J = 5.8), 52.4, 23.6 (d, J = 4.6), 23.4 (d, J = 4.9); ³¹P NMR (202 MHz, CDCl₃) $\delta = -3.0$; HRMS: calculated for C₁₅H₂₃N₂O₅PNa: 365.1237. [M+Na]⁺; found: 365.1228.

(E)-methyl 2-(2-(diphenoxyphosphoryl)hydrazono)acetate (3n).

CDCl₃) $\delta = 7.32-7.27$ (m, 4H), 7.22–7.12 (m, 7H), 4.30 (q, J = 7.1, H), 1.35 (t, J = 7.1, 1H). ¹³C NMR (75 MHz, CDCl₃) $\delta = 162.7$, 149.9 (d, J = 6.9), 136.8, 136.6, 129.6, 125.5, 120.6 (d, J = 4.5), 61.2,

14.1; ³¹P NMR (202 MHz, CDCl₃) δ = -8.3; HRMS: calculated for C₁₅H₁₅N₂O₅PNa: 371.0767. [M+Na]⁺; found: 371.0761.

(E)-methyl 2-(2-(diphenylphosphoryl)hydrazono)-2-p-tolylacetate (30).

³¹P NMR (202 MHz, CDCl₃) δ = 25.43; HRMS: calculated for C₂₂H₂₁N₂O₃PNa: 415.1182. [M+Na]⁺; found: 415.1189.

The spectroscopic data of compounds from C-P bond formation.

Methyl 2-(diphenoxyphosphoryl)-2-phenylacetate (4a).

Colorless oil, 87% yield.¹H NMR (300 MHz, CDCl₃) δ = 7.66–7.62 PhO-P-OPh (m, 2H), 7.45–7.08 (m, 11H), 7.00–6.94 (m, 2H), 4.67 (d, J = 23.7, 1H), 3.76 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ = 167.2, 150.2 (d, J = 9.4), 130.0, 129.9, 129.8, 129.7, 129.5, 128.8, 128.8, 128.5, 128.4, 125.3, 125.2, 120.5, 120.4, 120.4, 53.0, 51.1; ³¹P NMR (202 MHz, CDCl₃) δ = 11.24; HRMS (ESI): calculated for C₂₁H₁₉O₅PNa: 405.0862 [M+Na]⁺; found: 405.0869.

Ethyl 2-(diphenoxyphosphoryl)-2-phenylacetate (4b).

White solid, 92% yield, mp. 80–82°C. ¹H NMR (300 MHz, CDCl₃) δ = 7.65–7.61 (m, 2H), 7.44–7.08 (m, 11H), 7.00–6.93 (m, 2H), 4.62 (d, J = 23.7, 1H), 4.43–4.11 (m, 2H), 1.26 (t, J = 7.1, 3H); ¹³C NMR (75 MHz, CDCl₃) δ = 166.7, 150.3 (d, J = 9.3), 129.9, 129.9, 129.6, 129.5, 128.7, 128.4, 128.3, 125.2, 125.1, 120.4, 120.4, 120.34, 62.5, 52.26 (d, J = 138.3), 13.5; ³¹P NMR (202 MHz, CDCl₃) δ = 11.32; HRMS (ESI): calculated for C₂₂H₂₁O₅PNa: 419.1016 [M+Na]⁺; found: 419.1026.

Methyl 2-(diphenoxyphosphoryl)-2-(4-fluorophenyl)acetate (4c).

 $\begin{array}{c} & \bigcirc \\ & \square \\ & \square$

164.4 (d, J = 3.1), 161.1 (d, J = 3.0), 150.2 (dd, J = 9.3, 3.8), 131.8, 131.7, 131.6, 129.7, 129.6, 125.7 (d, J = 3.0), 125.6 (d, J = 3.1), 120.4, 120.3, 120.3, 115.8 (d, J = 1.6), 115.6 (d, J = 1.6), 53.1, 51.1 (d, J = 138.6). ³¹P NMR (202 MHz, CDCl₃) $\delta = 11.23$; HRMS (ESI): calculated for C₂₁H₁₈FO₅PNa: 423.0768 [M+Na]⁺; found: 423.0786.

Methyl 2-(4-chlorophenyl)-2-(diphenoxyphosphoryl)acetate (4d).

Colorless oil, 89% yield. ¹H NMR (300 MHz, CDCl₃) $\delta =$ 7.59–7.56 (m, 2H), 7.40–7.09 (m, 11H), 7.00–6.98 (m, 2H), 4.64 (d, J = 24.1, 1H), 3.76 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta =$

166.9, 150.2 (d, J = 4.4), 150.1 (d, J = 4.1), 134.6, 134.5, 131.3, 131.2, 129.7, 129.6, 128.9, 128.9, 128.5, 128.4, 125.4, 125.3, 120.4, 120.3, 120.3, 53.1, 52.24, 51.32 (d, J = 138.2); ³¹P NMR (202 MHz, CDCl₃) $\delta = 10.55$; HRMS (ESI): calculated for C₂₁H₁₈ClO₅PNa: 439.0473 [M+Na]⁺; found: 439.0478.

Methyl 2-(4-bromophenyl)-2-(diphenoxyphosphoryl)acetate (4e).

Colorless oil, 90% yield. ¹H NMR (300 MHz, CDCl₃) δ = 7.51 (s, ^{OMe} 4H), 7.37–7.08 (m, 8H), 7.00–6.97 (m, 2H), 4.63 (d, *J* = 24.1, 1H), 3.76 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 166.8 (d, *J* = 3.0 Hz),

150.2 (d, J = 4.1 Hz), 150.0 (d, J = 3.9 Hz), 131.9 (d, J = 1.6 Hz), 131.6 (d, J = 6.8 Hz), 129.7, 129.7, 129.0, 128.9, 125.4 (d, J = 4.2 Hz), 122.8 (d, J = 3.8 Hz), 120.4, 120.3, 120.3, 53.2, 51.4 (d, J = 138.1 Hz); ³¹P NMR (202 MHz, CDCl₃) $\delta = 10.31$; HRMS (ESI): calculated for C₂₁H₁₈BrO₅PNa: 482.9967 [M+Na]⁺; found: 482.9958. *Methyl 2-(2-chlorophenyl)-2-(diphenoxyphosphoryl)acetate (4f)*.

Colorless oil, 93% yield. ¹H NMR (300 MHz, CDCl₃) $\delta = 8.07-8.03$ (m, 1H), 7.45–7.42 (m, 1H), 7.35–7.08 (m, 10H), 6.97–6.97 (m, 2H), 5.45 (d, J = 25.6, 1H), 3.76 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 166.7$ (d, J = 2.7), 150.2 (t, J = 9.2), 134.5 (d, J = 10.0), 131.6 (d, J = 4.7), 129.7, 129.6, 128.1 (d, J = 7.0), 127.1 (d, J = 2.2), 125.3 (d, J = 10.4), 120.4 (d, J = 4.4), 120.2 (d, J = 4.4), 53.2, 47.4 (d, J = 140.7); ³¹P NMR (202 MHz, CDCl₃) $\delta = 10.67$; HRMS (ESI): calculated for C₂₁H₁₈ClO₅PNa: 439.0473 [M+Na]⁺; found: 439.0478.

Methyl 2-(3-chlorophenyl)-2-(diphenoxyphosphoryl)acetate (4g).

Methyl 2-(2,4-dichlorophenyl)-2-(diphenoxyphosphoryl)acetate (4h).

Colorless oil, 91% yield. ¹H NMR (300 MHz, CDCl₃) $\delta = 8.00$ (dd, J = 8.6, 2.5, 1H), 7.45 (s, 1H), 7.36–7.10 (m, 9H), 7.01–6.98 (m, 2H), 5.37 (d, J = 25.8, 1H), 3.76 (s, 3H); ¹³C NMR (75 MHz,

CDCl₃) $\delta = 166.3$, 150.2 (d, J = 9.7), 150.0 (d, J = 9.6), 135.2 (d, J = 10.0), 135.0 (d, J = 3.0), 132.6 (d, J = 4.5), 129.7 (d, J = 7.1), 129.3, 127.5, 126.8 (d, J = 7.1), 125.4 (d, J = 7.1), 120.3 (d, J = 4.3), 120.1 (d, J = 4.3), 53.3, 46.9 (d, J = 140.0); ³¹P NMR (202

MHz, CDCl₃) δ = 10.00; HRMS (ESI): calculated for C₂₁H₁₇Cl₂O₅PNa: 473.0083 [M+Na]⁺; found: 473.0044.

Methyl 2-(diphenoxyphosphoryl)-2-p-tolylacetate (4i).

White solid, 90% yield, mp. 94–96°C. ¹H NMR (300 MHz, CDCl₃) δ 7.56–7.53 (m, 2H), 7.36–7.08 (m, 10H), 7.03–7.00 (m, 2H), 4.65 (d, J = 23.6, 1H), 3.75 (s, 3H), 2.37 (d, J = 1.8, 3H); ¹³C NMR (75 MHz, CDCl₃) δ = 167.3, 150.4 (d, J = 1.7), 150.2 (d, J = 1.3), 138.3 (d, J = 2.9), 129.8, 129.7, 129.7, 129.5, 129.5, 126.8 (d, J = 8.8 H), 125.2 (d, J = 5.8), 120.5, 120.5, 120.4, 52.9, 51.7 (d, J = 139.2), 21.1; ³¹P NMR (202 MHz, CDCl₃) δ = 11.51; HRMS (ESI): calculated for C₂₂H₂₂O₅PNa: 419.1019 [M+Na]⁺; found: 419.1018.

Ethyl 2-(diphenoxyphosphoryl)acetate (4j).

Colorless oil, 86% yield. ¹H NMR (300 MHz, CDCl₃) δ = 7.58–6.92 (m, PhO-P-OPh H OEt 10H), 4.23 (q, J = 7.1, 2H), 3.27 (d, J = 21.6, 1H), 1.28 (t, J = 7.1, 3H); ¹³C NMR (75 MHz, CDCl₃) δ = 164.7, 149.9 (d, J = 8.6), 129.8, 125.5, 120.5 (d, J = 4.3), 61.9, 34.0 (d, J = 137.2), 14.0; ³¹P NMR (202 MHz, CDCl₃) δ = 13.03; HRMS (ESI): calculated for C₁₆H₁₇O₅PNa: 343.0706 [M+Na]⁺; found: 343.0744.

Methyl 2-(diphenylphosphoryl)-2-(4-methoxyphenyl)acetate (4k).

White solid, 93% yield, mp. 192–194°C. ¹H NMR (300 MHz, CDCl₃) $\delta = 7.96-7.83$ (m, 2H), 7.66–7.29 (m, 10H), 6.76 (d, J = 8.6, 2H), 4.66 (d, J = 11.4, 1H), 3.74 (s, 3H), 3.52 (s, 3H); ¹³C

NMR (75 MHz, CDCl₃) δ = 168.5, 159.24, 132.03 (d, *J* = 1.7 Hz), 131.79 (d, *J* = 1.8 Hz), 131.7, 131.5, 131.3, 131.3, 131.2, 130.1 (d, *J* = 21.0), 128.4, 128.3, 128.1, 121.94 (d, *J* = 6.3 Hz), 113.7, 55.1, 54.6 (d, *J* = 59.4), 52.4; ³¹P NMR (202 MHz, CDCl₃) δ = 27.25; HRMS (ESI): calculated for C₂₂H₂₁O₃PNa: 403.1070 [M+Na]⁺; found: 403.1074.

Methyl 2-(2,4-dichlorophenyl)-2-(diphenylphosphoryl)acetate (41).

 $\begin{array}{c} O \\ Ph-P-Ph \\ O \\ OMe \\ Cl \\ OMe \\ Cl \\ OMe \\ Cl \\ OMe \\ Cl \\ OMe \\ OM$

5H), 7.47–7.17 (m, 5H), 5.40 (d, J = 10.6 Hz, 1H), 3.52 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 166.8$, 134.5, 133.54 (d, J = 3.8), 132.2, 132.1, 131.3 (d, J = 9.1), 130.9, 130.8, 128.6, 128.4, 128.4, 128.2, 127.5, 127.4, 127.3, 52.7, 49.3 (d, J = 57.5); ³¹P NMR (202 MHz, CDCl₃) $\delta = 28.64$; HRMS (ESI): calculated for C₂₁H₁₇Cl₂O₃PNa: 441.0185 [M+Na]⁺; found: 441.0190.

PDF file of copies ¹H NMR, ¹³C NMR and ³¹P NMR spectra for new

90 fl (ppm)

磷谙 LL-1 CDCL3 31P BRUKER DRX500

112

90 80 70 60 50 40 30 20 0 f1 (ppm) -10 -20 -30 -40 -50 -60 -70 -80 10

100 90 f1 (ppm)

180 160 140 120 100 80 60 40 20 0 -10 -30 -50 -70 -90 -120 -150 f1 (ppm)

磷谱 IR-P-ACID CDCL3 31P BRUKER DRX500

-1.74

f1 (ppm)

磷谙 IR-P-ACID CDCL3 31P BRUKER DRX500

20 0 -10 fl (ppm) -30 -50 -70 -120 -150 -90

磷谙 IR-P-ACID CDCL3 31P BRUKER DRX500

-1.80

90 f1 (ppm) 230 210 190 170 150 130 110 80 70 60 50 40 30 20 10 0 -20 -40

-1.34

磷谱 IR-P-ACED CDCL3 31P BRUKER DRX500

0 f1 (ppm) 50 30 20 10 -60 -70 90 80 70 60 40 -10 -20 -30 40 -50 -80 -90

f1 (ppm)

-0.90

120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 f1 (ppm)

PDF file of copies ¹H NMR, ¹³C NMR and ³¹P NMR spectra for new

compounds form P-H insertion.

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 fl (ppm)

O PhO-P-OPh OMe Br 4e

140 130 120 110 100 90 80 70 80 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130

jhl-2012-20 1 31PMMR ERUKER DRX500

-10.00

140 130 120 110 100 90 80 70 80 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130

-20 -30 130 120 ò -10

jhl-2012-20 1 31PNMR BRUKER DRX500

-13.03

Carpenciq Tuses 2012 - 10-12-000 - 2012 - 10-12-000 - 2012

190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160

190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160