Supporting Information

Synthesis of analogs of the radiation mitigator JP4-039 and visualization of BODIPY derivatives in mitochondria

Marie-Céline Frantz,^{*a*} Erin M. Skoda,^{*a*} Joshua R. Sacher,^{*a*} Michael W. Epperly,^{*b*} Julie Goff,^{*b*} Joel S. Greenberger,^{*b*} and Peter Wipf^{**a*,*c*}

^aDepartment of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA, ^bDepartment of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA, ^cDepartment of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA

Contents

General Information	S2
2-Benzyl-1,1,3,3-tetramethylisoindoline	S3
1,1,3,3-Tetramethylisoindoline.	S3
1,1,3,3-Tetramethylisoindolin-2-yloxyl (TMIO, 1).	S4
5-Amino-1,1,3,3-tetramethylisoindolin-2-yloxyl (5-amino-TMIO, 2).	S4
(S,E)-N-(1,1,3,3-Tetramethyl-2-oxo-isoindolin-5-yl)-5-(tert-butoxycarbonylamino)-7-methyloct-3-enamide (12)	S5
9-Benzyl-9-azabicyclo[3.3.1]nonan-3-one (13)	S6
9-Benzyl-9-azabicyclo[3.3.1]nonan-3-one oxime (14).	S6
tert-Butyl 9-benzyl-9-azabicyclo[3.3.1]nonan-3-ylcarbamate (15).	S7
3-(tert-Butoxycarbonylamino)-9-azabicyclo[3.3.1]nonane N-oxyl (3-Boc-amino-ABNO, 16).	S7
3-Amino-9-azabicyclo[3.3.1]nonane N-oxyl (3-amino-ABNO, 6).	S8
tert-Butyl (S,E)-8-(9-benzyl-9-azabicyclo[3.3.1]nonan-3-ylamino)-2-methyl-8-oxooct-5-en-4-ylcarbamate (18)	S8
(S,E)-N-(9-Azabicyclo[3.3.1]nonan-9-oxo-3-yl)-5-(tert-butoxycarbonylamino)-7-methyloct-3-enamide (17).	S9
2-Adamantanecarbonitrile.	S10
2-Adamantane carboxylic acid.	S10
5,7-Dibromo-2-adamantane carboxylic acid (19)	S10
(5,7-Dibromoadamantan-2-yl)-carbamic acid <i>tert</i> -butyl ester (20)	S11
(7-Methylenebicyclo[3.3.1]nonan-3-one-9-yl)-carbamic acid <i>tert</i> -butyl ester (21)	S11
(7-Methylenebicyclo[3.3.1]nonan-3-one oxime-9-yl)-carbamic acid <i>tert</i> -butyl ester (22).	S12
(1-Iodomethyl-2-azaadamantan-6-yl)-carbamic acid tert-butyl ester (23).	S13
(1-Methyl-2-azaadamantane-N-oxyl-6-yl)-carbamic acid tert-butyl ester (6-Boc-amino-1-Me-AZADO, 24).	S13
6-Amino-1-methyl-2-azaadamantane-N-oxyl (6-amino-1-Me-AZADO, 8)	S14
6-Amino-1-methyl-2-azaadamantane (26).	S14
(S,E)-N-(1-Methyl-2-azaadamant-2-oxo-6-yl)-5-(<i>tert</i> -butoxycarbonylamino)-7-methyloct-3-enamide (25)	S14
(S,E)-Methyl 5-((tert-butoxycarbonyl)amino)-7-methyloct-3-enoate (27).	S15
(S,E) - 5, 5 - difluoro - 3 - (3 - ((8 - methoxy - 2 - methyl - 8 - oxooct - 5 - en - 4 - yl) amino) - 3 - oxopropyl) - 7, 9 - dimethyl - 5H - dipyrrolo-2 - (1 - yl) - 2 - (1 - yl)	
[1,2- <i>c</i> :2',1'- <i>f</i>][1,3,2]diazaborinin-4-ium-5-uide (29).	S16
(S, E) - 5, 5 - Difluoro - 3 - ((8 - ((1 - 0x0 - 2, 2, 6, 6 - tetramethylpiperidin - 4 - yl)amino) - 2 - methyl - 8 - 0x0 - 2 - (1 - 0x0 - 2, 2, 6, 6 - tetramethylpiperidin - 4 - yl)amino) - 2 - methyl - 8 - 0x0 - 2 - (1 - 0x0 - 2, 2, 6, 6 - tetramethylpiperidin - 4 - yl)amino) - 2 - methyl - 8 - 0x0 - 2 - (1 - 0x0 - 2, 2, 6, 6 - tetramethylpiperidin - 4 - yl)amino) - 2 - methyl - 8 - 0x0 - 2 - (1 - 0x0 - 2, 2, 6, 6 - tetramethylpiperidin - 4 - yl)amino) - 2 - methyl - 8 - 0x0 - 2 - (1 - 0x0 - 2, 2, 6, 6 - tetramethylpiperidin - 4 - yl)amino) - 2 - methyl - 8 - 0x0 - 2 - (1 - 0x0 - 2, 2, 6, 6 - tetramethylpiperidin - 4 - yl)amino) - 2 - methyl - 8 - 0x0 - 2 - (1 - 0x0 - 2, 2, 6, 6 - tetramethylpiperidin - 4 - yl)amino) - 2 - methyl - 8 - 0x0 - 2 - (1 - 0x0 - 2, 2, 6, 6 - tetramethylpiperidin - 4 - yl)amino) - 2 - methyl - 8 - 0x0 - 2 - (1 - 0x0 - 2, 2, 6, 6 - tetramethylpiperidin - 4 - yl)amino) - 2 - methyl - 8 - 0x0 - 2 - (1 - 0x0 - 2, 2, 6, 6 - tetramethylpiperidin - 4 - yl)amino) - 2 - methyl - 8 - 0x0 - 2 - (1 - 0x0 - 2, 2, 6 - 0x0 - 2 - 0x0 -	3-
oxopropyl)-7,9-dimethyl-5 <i>H</i> -dipyrrolo[1,2- <i>c</i> :2',1'- <i>f</i>][1,3,2]diazaborinin-4-ium-5-uide (BODIPY-FL-JP4-039, 30). S16

(<i>S</i> , <i>E</i>)-5,5-Difluoro-3-(3-((8-((1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl)amino)-2-methyl-8-oxooct-5-en-4-y	'l)am-ino)-
3-oxopropyl)-7-phenyl-5 <i>H</i> -dipyrrolo[1,2- <i>c</i> :2',1'- <i>f</i>][1,3,2]diazaborinin-4-ium-5-uide	
(BODIPY®-R6G-JP4-039, 33)	S17
X-Ray crystallography data for 25.	S19
Irradiation survival curves for JP4-039, 30, 33, 12, 17, and 25 in 32Dcl3 cells	S29
Visualization of 33 in KM101 cells.	S31
NMR spectra for new compounds	S32

General Information. All moisture- and air-sensitive reactions were performed using syringe-septum cap techniques under an inert atmosphere (N₂ or argon) in glassware that was dried in an oven at 140 °C for at least 2 h prior to use. Reactions carried out at a temperature below 0 °C employed a brine/ice bath or a CO₂/acetone bath. All reagents and solvents were used as received unless otherwise specified. THF and Et₂O were distilled over sodium/benzophenone ketyl; MeOH was distilled over magnesium; benzene, acetonitrile and DME were distilled over CaH₂; DMF was distilled and stored over 4Å molecular sieves; pyridine and triethylamine were distilled over CaH₂ and stored over KOH; CH₂Cl₂ and toluene were purified using an alumina column filtration system. Analytical thin-layer chromatography (TLC) was performed on pre-coated SiO₂ 60 F₂₅₄ plates (250 µm layer thickness) available from Merck. Visualization was accomplished by UV irradiation at 254 nm and/or by staining with Vaughn's reagent (4.8 g (NH₄)₆Mo₇O₂₄•4H₂O and 0.2 g Ce(SO₄)₂•4H₂O in 100 mL of a 3.5 N H₂SO₄ solution), a KMnO₄ solution (1.5 g KMnO₄ and 1.5 g K₂CO₃ in 100 mL of a 0.1% NaOH solution), a ninhydrin solution (2 g ninhydrin in 100 mL EtOH), a PMA solution (5 g phosphomolybdic acid in 100 mL EtOH), or a *p*-anisaldehyde solution (2.5 mL *p*-anisaldehyde, 2 mL AcOH and 3.5 mL conc. aq. H₂SO₄ in 100 mL EtOH). Flash column chromatography was performed using SiO₂ 60 (particle size 0.040-0.055 mm, 230-400 mesh, or Silicycle SiliaFlash[®] P60, 40-63 µm). Melting points were determined on a Laboratory Devices Mel-Temp II capillary melting point apparatus fitted with a Fluke 51 II digital thermometer. Optical rotations were determined using a Perkin-Elmer 241 polarimeter. Infrared spectra were recorded on a Smiths IdentifyIR ATR spectrometer. ¹H NMR and ¹³C NMR spectra were obtained on a Bruker Avance 300 or 400 instrument at 300/75 MHz or 400/100 MHz, respectively. Chemical shifts were reported in parts per million (ppm) as referenced to residual solvent. ¹H NMR spectra are tabulated as follows: chemical shift, multiplicity (app = apparent, b = broad, s = singlet, d = doublet, t = triplet, q = quartet, quint = quintuplet, sext, = sextuplet, m = multiplet), number of protons, coupling constant(s). ¹³C NMR were obtained using a protondecoupled pulse sequence and are tabulated by observed peak. LC-MS analyses were performed on a Shimadzu UFLC instrument equiped with an Applied Biosystems MDS SCIEX API 2000 mass spectrometer (ESI), under the following conditions: column: Varian Polaris C18-A (100 x 4.6 mm, 5 µm) equilibrated at 40 °C; buffer A: 0.1% aqueous AcOH, buffer B: 0.1% AcOH in MeCN; 30 min gradient: 5% buffer B in buffer A for 1 min, then 5 to 95% buffer B in buffer A over 13 min, then 95% buffer B in buffer A for 4 min, then 95 to 5% buffer B in buffer A over 7 min, then 5% buffer B in buffer A for 5 min; flow rate: 0.2 mL/min; detection: TIC and/or UV $\lambda = 254/280$ nm. Mass spectra were obtained on a Waters Autospec double focusing mass spectrometer (EI) or a Waters Q-Tof mass spectrometer (ESI), at the University of Pittsburgh Mass Spectrometry facility. Experimental procedures and spectral details for compounds 11 and JP4-039 have previously been reported in Org. Lett. 2011, 13, 2318-2321.

2-Benzyl-1,1,3,3-tetramethylisoindoline.¹ An oven-dried 250 mL, three-necked, round-bottom flask was flushed with nitrogen, and magnesium turnings (3.84 g, 156 mmol) were introduced, that were covered with dry Et₂O (9 mL). A solution of MeI (9.45 mL, 150 mmol) in dry Et₂O (80 mL) was then added dropwise via a dropping funnel while stirring over a period of 50 min. The resulting reaction mixture was then stirred for an additional 30 min, and then concentrated by slow distillation of solvent until the internal temperature reached 80 °C. The residue was allowed to cool to 60 °C, and a solution of N-benzylphtalimide (6.00 g, 25.0 mmol) in dry toluene (76 mL) was added dropwise via a dropping funnel with stirring at a sufficient rate to maintain this temperature. When the addition was complete, solvent was distilled slowly from the mixture until the temperature reached 108-110 °C. The reaction mixture was refluxed at 110 °C for 4 h, then concentrated again by further solvent distillation. It was then cooled to rt and diluted with hexanes. The resulting purple slurry was filtered through Celite and washed with hexanes. The combined yellow filtrate turned dark red-purple after standing in air overnight. It was then concentrated in vacuo. The resulting purple residue was passed through a short column of basic alumina (grade I, 70-230 mesh), eluting with hexanes (~1 L), to afford 2.58 g (39%) of the title compound as a colorless oil which solidified to give a white solid. Representative experimental data are as follows: mp 61.0-61.4 °C (lit. 63-64 °C from MeOH or EtOH); IR (neat) 3081, 3062, 3047, 3019, 3006, 2978, 2965, 2958, 2918, 2890, 2849, 2820, 1485, 1446, 1379, 1372, 1355, 1319, 1299, 1284, 1265, 1237, 1211, 1195, 1176, 1161, 1140, 1120, 1103, 1073, 1045, 1025, 945, 932, 904, 874, 827, 790, 760, 751, 742, 701, 686 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.48 (app d, 2 H, J = 7.2 Hz), 7.34-7.19 (m, 5 H), 7.18-7.11 (m, 2 H), 4.00 (s, 2 H), 1.31 (s, 12 H); ¹³C NMR (75 MHz, CDCl₃) & 148.0, 143.6, 128.5, 128.1, 127.0, 126.5, 121.5, 65.4, 46.5, 28.6; EI-MS m/z 265 (M⁺, 25), 251 (100), 235 (53), 158 (69), 144 (86), 128 (60), 115 (67), 103 (67), 92 (86), 77 (65), 65 (84); HRMS (EI) *m/z* calcd for C₁₉H₂₃N 265.1830, found 265.1824.

1,1,3,3-Tetramethylisoindoline.¹ 2-Benzyl-1,1,3,3-tetramethylisoindoline (3 x 621 mg, 7.02 mmol) was dissolved in AcOH (3 x 11 mL) in 3 separated Parr flasks, then 10% Pd/C (3 x 56.5 mg) was added. The flasks were placed in 3 high pressure reactors. The reactors were charged with H₂ and purged for 5 cycles and was finally pressurized with H₂ at 4 bars (60 psi). After stirring at rt for 3 h, the combined reaction mixtures were filtered through Celite, and the solvent removed *in vacuo*. The resulting residue was dissolved in water (5 mL) and the solution neutralized with 2.5 N aq. NaOH (pH 11.5), and extracted with Et₂O (3 x 50 mL). The combined organic layers were dried (Na₂SO₄), filtered and concentrated *in vacuo* to yield 1.16 g (95%) of the crude title compound as slightly yellow crystals. Representative experimental data are as follows: mp 36.0-36.5 °C (lit. 36-38 °C from MeOH/H₂O); IR (neat) 3064, 3036, 3013, 2956, 2920, 2861, 1478, 1459, 1441, 1414, 1372, 1359, 1314, 1297, 1241, 1209, 1178, 1165, 1139, 1124, 1105, 1023, 1001, 993, 932, 883, 764, 734, 697 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.30-7.23 (m, 2 H), 7.18-7.11 (m, 2 H), 1.86 (bs, 1 H), 1.48 (s, 12 H); ¹³C NMR (75 MHz, CDCl₃) δ 148.9, 127.2, 121.6, 62.9, 32.1.

¹ Griffiths, P. G.; Moad, G.; Rizzardo, E.; Solomon, D. H. Aust. J. Chem. 1983, 36, 397.

1,1,3,3-Tetramethylisoindolin-2-yloxyl (TMIO, 1).¹ To a solution of 1,1,3,3-tetramethylisoindoline (1.46 g, 8.33 mmol) in a 14:1 mixture of MeOH/MeCN (16.6 mL) were added successively NaHCO₃ (560 mg, 6.67 mmol), Na₂WO₄•2H₂O (83.3 mg, 0.25 mmol) and 30% aq. H₂O₂ (3.12 mL, 27.50 mmol). The resulting suspension was stirred at rt. After 18 h, a bright yellow suspension formed and 30% aq. H₂O₂ (3.00 mL, 26.44 mmol) was added. The reaction mixture was stirred for 2 days, then diluted with water and extracted twice with hexanes. The combined organic layers were washed with 1 M aq. H₂SO₄ and brine, dried (Na₂SO₄), filtered and concentrated *in vacuo* to yield 1.55 g (98%) of crude **1** as a yellow crystalline powder, that was carried on without further purification. Representative experimental data are as follows: mp 122-125 °C (softening point: 108 °C) (lit. 128-129°C from petroleum ether); IR (neat) 2971, 2922, 2859, 1670, 1482, 1465, 1450, 1427, 1372, 1353, 1316, 1295, 1278, 1165, 1120, 1109, 1021, 760, 678 cm⁻¹; EI-MS *m/z* 268 (100), 252 (30), 239 (43), 191 (M⁺, 75), 155 (60); HRMS (EI) *m/z* calcd for C₁₂H₁₇NO 191.1310, found 191.1306.

5-Amino-1,1,3,3-tetramethylisoindolin-2-yloxyl (5-amino-TMIO, 2).² Conc. H₂SO₄ (13.5 mL) was added dropwise *via* syringe to TMIO (1.34 g, 7.07 mmol, crude) cooled in an ice-water bath, forming a dark-red solution which was then warmed to 60 °C for 15 min and then cooled to 0 °C. Conc. HNO₃ (0.90 mL, 19.1 mmol) was added dropwise *via* syringe. When the reaction appeared complete, the yellow-orange solution was heated at 100 °C for 10 min, the color turning to red-orange. After cooling to rt, the reaction mixture was neutralized by careful addition to ice-cooled 2.5 N aq. NaOH (30 mL, final pH > 12). This aqueous phase was extracted with Et₂O until it became colorless and the combined organic layers were dried (Na₂SO₄), filtered and concentrated *in vacuo* to yield 1.64 g (98%) of crude 5-nitro-1,1,3,3-tetramethylisoindolin-2-yloxyl³ as a yellow-orange powder, that was carried on without further purification.

A flask containing a solution of 5-nitro-1,1,3,3-tetramethylisoindolin-2-yloxyl (1.50 g, 6.38 mmol, crude) in MeOH (75 mL) was purged and filled with argon, then 10% Pd/C (150 mg) was added. The flask was purged and filled 3 times with H₂, and the resulting black suspension was stirred at rt under H₂ (1 atm) for 4 h. The reaction mixture was then filtered through Celite, the Celite washed with MeOH, and the solution concentrated *in vacuo* to yield 1.38 g of the crude hydroxylamine as a yellow solid that was carried on without further purification. Representative experimental data are as follows: ¹H NMR (300 MHz, CD₃OD) δ 6.89 (d, 1 H, *J* = 8.1 Hz), 6.62 (dd, 1 H, *J* = 8.1, 2.1 Hz), 6.54 (d, 1 H, *J* = 2.1 Hz), 3.35 (s, 2 H), 1.35 (s, 6 H), 1.33 (s, 6 H); ¹³C NMR (75 MHz, CD₃OD) δ 148.1, 147.4, 136.5, 123.3, 116.3, 110.0, 68.3, 68.0, 27.1, 26.8.

To a solution of the crude hydroxylamine (1.38 g, 6.38 mmol) in MeOH (75 mL) was added $Cu(OAc)_2 \cdot H_2O$ (26 mg, 0.128 mmol). The reaction mixture was stirred at rt under air for 1.5 h, the color turning to dark brown. The solvent was then removed *in vacuo*, the residue taken up in CHCl₃ and a small amount of MeOH to dissolve the insoluble material, and washed with water. The aqueous phase was extracted twice with CHCl₃, and the combined organic layers were washed with brine, dried (Na₂SO₄), filtered and concentrated *in vacuo*. Chromatography of the residue on SiO₂ (6:4 to 5:5, hexanes/EtOAc) afforded 1.13 g (86%, 2 steps) of **2** as a yellow powder. Representative experimental data are as follows:

² Giroud, A. M.; Rassat, A. Bull. Soc. Chim. Fr. 1979, II, 48.

³ Bolton, R.; Gillies, D. G.; Sutcliffe, L. H.; Wu, X. J. Chem. Soc., Perkin Trans. 2 1993, 2049.

mp 192-194 °C (softening point: 189 °C) (lit. 198 °C from 1:2, benzene/petroleum ether); IR (neat) 3463, 3429, 3368, 3353, 3239, 3049, 2969, 2924, 2857, 1640, 1619, 1588, 1580, 1508, 1495, 1452, 1424, 1372, 1357, 1334, 1314, 1297, 1280, 1247, 1161, 1120, 1068, 1042, 943, 924, 885, 867, 820, 680 cm⁻¹; EI-MS *m/z* 205 (M⁺, 75), 190 (90), 175 (58), 173 (68), 160 (100), 144 (65), 130 (63), 115 (43), 91 (35), 77 (36); HRMS (EI) *m/z* calcd for $C_{12}H_{17}N_2O$ 205.1341, found 205.1336.

(*S*,*E*)-*N*-(1,1,3,3-Tetramethyl-2-oxo-isoindolin-5-yl)-5-(*tert*-butoxycarbonylamino)-7-methyloct-3-enamide (12). To a solution of the alcohol 10 (187 mg, 0.728 mmol) in acetone (7 mL) at 0 °C was slowly added a solution of Jones reagent (2.5 M, 0.73 mL, 1.82 mmol). The resulting dark suspension was stirred at 0 °C for 1 h, then diluted with Et₂O and water. The aqueous phase was separated and extracted with twice Et₂O. The combined organic layers were washed with water (2x) and brine (1x), dried (Na₂SO₄), filtered and concentrated *in vacuo* to yield 190 mg (96%) of the crude acid 11 as a slightly yellow oil, that was carried on without further purification.

To a solution of acid **11** (187 mg, 0.691 mmol, crude) in dry CH₂Cl₂ (8 mL) at 0 °C were added successively **2** (213 mg, 1.04 mmol), DMAP (93.7 mg, 0.760 mmol), HOBt•H₂O (103 mg, 0.760 mmol) and EDCI (162 mg, 0.829 mmol). The resulting yellowish solution was stirred at rt for 16 h, and then washed with sat. aq. NH₄Cl. The aqueous phase was separated and extracted once with CH₂Cl₂, and the combined organic layers were washed with 1 N aq. HCl (2x) and sat. aq. NaHCO₃ (1x), dried (Na₂SO₄), filtered and concentrated *in vacuo*. Chromatography of the residue on SiO₂ (6:4, hexanes/EtOAc) afforded 221 mg (70%, 67% over 2 steps) of **12** as a pale orange foam: mp 78-79 °C (softening point: 70 °C); $[\alpha]_D^{22}$ +72.2 (*c* 0.5, CH₂Cl₂); IR (neat) 3310 (br), 2969, 2926, 2864, 1675, 1618, 1599, 1526, 1493, 1465, 1452, 1429, 1420, 1388, 1362, 1325, 1310, 1280, 1243, 1161, 1118, 1042, 1021, 969, 872, 826 cm⁻¹; EI-MS *m/z* 458 (M⁺, 72), 428 (50), 372 (30), 342 (37), 175 (49), 160 (31), 91 (44), 73 (61), 69 (100); HRMS (EI) *m/z* calcd for C₂₆H₄₀N₃O₄ 458.3019, found 458.3011.

A sample of this nitroxide (44.8 mg, 0.0977 mmol) was dissolved in dry MeOH (0.9 mL) and L-ascorbic acid (17.4 mg, 0.0977 mmol) was added. The orange solution turned slighly yellow within a few minutes. After stirring at rt for 50 min, an additional amount of L-ascorbic acid (8.7 mg, 0.0488 mmol) was added, but a complete discoloration of the solution could not be achieved and a residual amount of starting material was seen on TLC. After stirring for 1.5 h, the solvent was removed *in vacuo*. The resulting residue was dissolved in CH₂Cl₂ and washed with water. The aqueous phase was extracted twice with CH₂Cl₂, and the combined organic layers were dried (Na₂SO₄), filtered and concentrated *in vacuo* to yield 42.6 mg (95%) of the corresponding hydroxylamine (contaminated with nitroxide) as a pale yellow foam: ¹H NMR (300 MHz, CD₃OD, broad) δ 7.42 (s, 1 H), 7.36 (d, 1 H, *J* = 5.7 Hz), 7.09 (d, 1 H, *J* = 6.3 Hz), 6.65 (bs, 1 H), 5.75-5.68 (m, 1 H), 5.68-5.50 (m, 1 H), 4.08 (app bs, 1 H), 3.22-3.00 (m, 2 H), 1.65-1.56 (m, 1 H), 1.52-1.05 (m, 2 s at 1.41 and 1.38, 23 H), 0.91 (d, 6 H, *J* = 4.5 Hz); ¹³C NMR (75 MHz, CD₃OD) δ 172.3, 158.0, 158.0, 147.0, 142.3, 139.2, 137.1, 124.0, 123.1, 120.8, 115.0, 79.9, 68.5, 68.2, 51.8, 45.3, 41.7, 29.0, 28.9, 26.9, 26.8, 25.9, 23.3, 22.7.

9-Benzyl-9-azabicyclo[3.3.1]nonan-3-one (13).⁴ A mecanically stirred solution of acetonedicarboxylic acid (3.24 g, 21.5 mmol) and glutaraldehyde (24% in water, 12.7 mL, 32.3 mmol) in H₂O (30 mL) was treated at 0 °C with benzylamine (2.0 mL, 17.9 mmol). The resulting pale yellow paste was vigorously stirred at rt under argon for 12 h. The brownish reaction mixture was then adjusted to pH < 2 with conc. HCl and the resulting clear brown solution heated to 60 °C for 1 h to complete decarboxylation. After cooling, the mixture was extracted with CH₂Cl₂ (3 x 30 mL). It was then adjusted to pH > 12 with solid NaOH and extracted with CH₂Cl₂ (4 x 50 mL). These combined organic layers were dried (Na₂SO₄), filtered and concentrated *in vacuo*. Chromatography of the residue on SiO₂ (7:3, hexanes/EtOAc) afforded **13** (2.83 g, 69%) as a colorless crystalline solid. Representative experimental data are as follows: mp 70.3-70.5 °C (hexanes/EtOAc) (lit. 63-66 °C); IR (neat) 3062, 3025, 2934, 2921, 2874, 2846, 1689, 1493, 1456, 1441, 1415, 1403, 1362, 1338, 1329, 1320,1305, 1288, 1279, 1266, 1219, 1202, 1185, 1133, 1100, 1070, 1029, 1018, 984, 947, 911, 844, 766, 731, 699 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) & 7.48-7.20 (m, 5 H), 3.91 (s, 2 H), 3.32 (app s, 2 H), 2.74 (dd, 2 H, *J* = 16.2, 6.6 Hz), 2.26 (d, 2 H, *J* = 16.2 Hz), 2.08-1.85 (m, 2 H), 1.65-1.40 (m, 4 H); ¹³C NMR (CDCl₃, 75 MHz) & 211.9, 139.4, 128.6, 128.5, 127.3, 57.2, 53.7, 43.0, 29.5, 16.8; ESI-MS *m/z* 230 ([M+H]⁺, 100), 172 (42); HRMS (ESI) *m/z* calcd for C₁₅H₂₀NO (M+H) 230.1545, found 230.1550.

9-Benzyl-9-azabicyclo[3.3.1]nonan-3-one oxime (14). To a solution of ketone **13** (2.40 g, 10.5 mmol) in EtOH (28 mL) were added NH₂OH•HCl (1.48 g, 20.9 mmol) and then 3 N aq. NaOH (7.0 mL, 20.9 mmol). The reaction mixture was refluxed under argon for 14 h, then diluted with CH₂Cl₂ and water. The layers were separated and the aqueous phase extracted with CH₂Cl₂. The combined organic layers were washed with brine, dried (Na₂SO₄), filtered and concentrated *in vacuo*. The residue was taken up in CH₂Cl₂, and the insoluble material filtered and rinsed with CH₂Cl₂ to afford 1.42 g of a first crop of product as colorless crystals. Chromatography of the mother liquor on SiO₂ (8:2 to 4:6, hexanes/EtOAc) afforded 1.11 g of a second crop as a colorless crystalline solid. The total amount of **14** obtained was 2.53 g (99%): mp 135.4-135.7 °C (CH₂Cl₂); IR (neat) 3300-2500 (br), 3057, 3157, 2960, 2939, 2921, 2883, 2842, 1644, 1497, 1467, 1456, 1433, 1418, 1389, 1364, 1357, 1348, 1323, 1286, 1266, 1243, 1210, 1197, 1111, 1096, 1079, 1074, 1059, 1005, 980, 964, 952, 928, 900, 841, 760, 747, 723, 693 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 7.72 (bs, 1 H), 7.44-7.20 (m, 5 H), 3.88 (s, 2 H), 3.14-3.05 (m, 2 H), 3.03 (d, 1 H, *J* = 16.2 Hz), 2.73 (dd, 1 H, *J* = 15.4, 5.9 Hz), 2.38 (dd, 1 H, *J* = 16.3, 6.8 Hz), 2.25 (d, 1 H, *J* = 15.3 Hz), 2.05-1.73 (m, 3 H), 1.60-1.44 (m, 3 H); ¹³C NMR (CDCl₃, 100 MHz) δ 160.0, 139.7, 128.6, 128.5, 127.2, 57.0, 51.9, 51.2, 32.0, 29.8, 29.0, 25.9, 17.3; ESI-MS *m/z* 245 ([M+H]⁺, 100); HRMS (ESI) *m/z* calcd for C₁₅H₂₁N₂O (M+H) 245.1654, found 245.1642.

⁴ Mach, R. H.; Luedtke, R. R.; Unsworth, C. D.; Boundy, V. A.; Nowak, P. A.; Scripko, J. G.; Elder, S. T.; Jackson, J. R.; Hoffman, P. L.; Evora, P. H.; Rao, A. V.; Molinoff, P. B.; Childers, S. R.; Ehrenkaufer, R. L. *J. Med. Chem.* **1993**, *36*, 3707.

tert-Butyl 9-benzyl-9-azabicyclo[3.3.1]nonan-3-ylcarbamate (15). A suspension of oxime 14 (1.30 g, 5.34 mmol) and NiCl₂ (69.2 mg, 0.534 mmol) in MeOH (25 mL) was treated at -20 °C with NaBH₄ (2.13 g, 53.4 mmol) portionwise. The resulting dark mixture was vigorously stirred between -20 and -10 °C under argon. After 1.5 h, a solution of NaBH₄ (1.70 g, 42.7 mmol) in water (5 mL) was added. The reaction mixture was stirred at the same temperature for 1.5 h, then warmed to rt. After stirring for 1 h at rt, the mixture was quenched carefully with acetone, then filtered over Celite and the brown solid rinsed with MeOH. The solution was concentrated *in vacuo*, and the residue was taken up in water, acidified with 6 N aq. HCl (pH < 2), extracted twice with Et₂O, then basified with solid NaOH (pH > 9) and extracted twice with CHCl₃. An emulsion formed with a white precipitate that was filtered over Celite. The combined chloroformed layers were washed with brine, dried (K₂CO₃), filtered and concentrated *in vacuo* to afford 1.49 g of the crude amine as a pale yellow oil that was carried on to the next step without further purification.

To a solution of this amine in dry CH₂Cl₂ (100 mL) were added Et₃N (2.25 mL, 16.0 mmol) and then Boc₂O (1.29 g, 5.87 mmol) at 0 °C. The reaction mixture was stirred at rt under argon for 18 h, then quenched with sat. aq. NH₄Cl and the aqueous phase extracted with CH₂Cl₂. The combined organic layers were dried (Na₂SO₄), filtered and concentrated *in vacuo*. The residue was taken up in CH₂Cl₂, and the insoluble material filtered to afford 481 mg of a first crop of **15** as a white powder. Chromatography of the mother liquor on SiO₂ (9:1 to 5:5, hexanes/EtOAc) afforded 4 other fractions of different purity for a total amount of 964 mg. The total amount of **15** obtained was *ca*. 1.44 g (82%, 2 steps). A sample of **15** was recrystallized in EtOH (*ca*. 4 mL) to afford colorless crystals. ¹H NMR showed a 3:1 mixture of stereoisomers: mp 153.6-155.0 °C (EtOH); IR (neat) 3312 (br), 3023, 2988, 2971, 2943, 2911, 2861, 2846, 2826, 2809, 1672, 1532, 1493, 1472, 1450, 1387, 1364, 1316, 1303, 1290, 1282, 1254, 1228, 1185, 1169, 1133, 1068, 1046, 1029, 1018, 874, 837, 766, 736, 699, 671 cm⁻¹, ¹H NMR (CDCl₃, 300 MHz) δ 7.40-7.18 (m, 5 H), 4.40-4.24 (m, 1 H), 4.24-4.00 (m, 1 H), 3.82 (s, 2 H), 3.07 (bd, 2 H, *J* = 11.1 Hz), 2.38 (ddd, 2 H, *J* = 12.0, 12.0, 6.3 Hz), 1.93 (d, 2 H, *J* = 6.3 Hz), 1.60-1.50 (m, 2 H), 1.46 (s, 9 H), 1.15 (app td, 2 H, *J* = 11.0, 3.0 Hz), 0.99 (app bd, 2 H, *J* = 6.6 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 155.5, 140.7, 128.5, 128.4, 126.9, 79.2, 56.0, 49.4, 42.9, 34.2, 28.7, 24.8, 14.5; ESI-MS *m/z* 331 ([M+H]⁺, 100), 275 ([M-*t*-Bu+H]⁺, 93); HRMS (ESI) *m/z* calcd for C₂₀H₃₁N₂O₂ (M+H) 331.2386, found 331.2392.

3-(tert-Butoxycarbonylamino)-9-azabicyclo[3.3.1]nonane *N***-oxyl (3-Boc-amino-ABNO, 16).** A flask containing a suspension of the Bn-protected amine 15 (715 mg, 2.16 mmol) and AcOH (5 drops) in 10:1 EtOH/EtOAc (30 mL) was purged and filled 3 times with argon, then 10% Pd/C (143 mg) was added. The flask was purged and filled 3 times with H_2 , and the resulting black suspension was stirred at 40-50 °C under H_2 (1 atm) for 3 h. The reaction mixture was then filtered through a pad of Celite, the Celite washed with EtOAc and MeOH, and the solution concentrated *in vacuo* to afford 591 mg of the crude amine as a white powder, that was carried on to the next step without further purification.

To a suspension of this amine (755 mg, 3.14 mmol) in MeCN (3.1 mL) was added Na₂WO₄•2H₂O (523 mg, 1.57 mmol) and the mixture was stirred at rt for 30 min. After cooling to 0 °C, UHP (1.52 g, 15.7 mmol) was added and the reaction mixture was stirred at 0 °C for 1 h, then allowed to warm to rt. After stirring for 3.5 h at rt, water was added and the resulting mixture was extracted with CHCl₃ (3x). The combined organic layers were dried (K₂CO₃), filtered and concentrated *in vacuo*. The residue was taken up in EtOH, and the insoluble material filtered to afford 467 mg of a first

crop of **16** as a yellow powder. Chromatography of the mother liquor on SiO₂ (8:2 to 4:6, hexanes/EtOAc) afforded 120 mg of a second crop as a yellow powder. The total amount of **16** obtained was 587 mg (73%, 2 steps): mp 222.8 °C (sublimation); IR (neat) 3334 (br), 2969, 2947, 2870, 1677, 1525, 1389, 1366, 1351, 1307, 1292, 1273, 1252, 1232, 1225, 1167, 1131, 1116, 1068, 1046, 1036, 1019, 869, 846, 826, 779, 770, 753 cm⁻¹; ESI-MS *m/z* 298 ($[M_{red}+MeCN+H]^+$, 30), 278 ($[M+Na]^+$, 63), 275 (54), 263 (100), 257 ($[M_{red}+H]^+$, 20), 241 ($[M-O+H]^+$, 23), 222 (50), 212 (28); HRMS (ESI) *m/z* calcd for C₁₃H₂₃N₂O₃Na (M+Na) 278.1606, found 278.1593.

A sample of nitroxide **16** (20.0 mg, 0.0783 mmol) was suspended in MeOH (0.8 mL) and L-ascorbic acid (13.9 mg, 0.0783 mmol) was added. The slightly yellow suspension became white within a few seconds. After stirring at rt for 40 min under argon, the solvent was removed *in vacuo*. The resulting residue was taken up in EtOAc and sonicated. The insoluble material was filtered, rinsed with EtOAc and MeOH, and dried, to yield 15.0 mg (75%) of the corresponding hydroxylamine as a white solid. Representative experimental data are as follows: ¹H NMR (DMSO-*d*₆, 400 MHz, 2:1 mixture of isomers) δ 7.93 (s, 0.8 H), 7.43 (s, 0.4 H), 6.57 (d, 0.4 H, *J* = 8.0 Hz), 6.45 (d, 0.7 H, *J* = 8.8 Hz), 4.40-4.25 (m, 0.8 H), 3.85-3.70 (m, 0.4 H), 3.40-3.20 (m, 1 H), 3.20-3.10 (m, 1 H), 2.23-2.02 (m, 2 H), 2.02-1.80 (m, 2 H), 1.70-1.53 (m, 2 H), 1.37 (s, 9 H), 1.25-1.14 (m, 1 H), 1.08 (app bt, 2 H, *J* = 11.2 Hz), 0.82 (app bd, 1 H, *J* = 11.6 Hz); ¹³C NMR (DMSO-*d*₆, 100 MHz, mixture of isomers) δ 154.8, 77.3, 77.1, 55.2, 53.3, 40.4, 33.2, 32.2, 30.8, 28.3, 28.1, 23.4, 13.0, 12.3.

3-Amino-9-azabicyclo[3.3.1]nonane *N***-oxyl (3-amino-ABNO, 6).** A mixture of Boc-protected amine 3-Boc-amino-ABNO (16, 200 mg, 0.783 mmol) in a 4.0 N solution of HCl in 1,4-dioxane (3.3 mL, 13.2 mmol) was stirred at 0 °C for 1 h and at rt for an additional 2 h. The suspension was then filtered and the solid rinsed with cold dry Et_2O , to give 167 mg of an off-white powder. It was dissolved in a minimum of 2.5 N aq. NaOH, and extracted with warm CHCl₃ (7x). The combined organic layers were dried (K₂CO₃), filtered and concentrated *in vacuo* to afford 110 mg (90%) of a red oil. Upon high vacuum and/or storage at rt for not more than 1 h, the product started to loose the red color characteristic for a nitroxide and became pale yellow. Thus, the title compound is unstable.

tert-Butyl (*S,E*)-8-(9-benzyl-9-azabicyclo[3.3.1]nonan-3-ylamino)-2-methyl-8-oxooct-5-en-4-ylcarbamate (18). A suspension of oxime 14 (400 mg, 1.64 mmol) and NiCl₂ (21.2 mg, 0.164 mmol) in MeOH (8 mL) was treated at -15 °C with NaBH₄ (652 mg, 16.4 mmol) portionwise. The resulting dark mixture was vigorously stirred between -15 and 0 °C under argon. After 1.5 h, a solution of NaBH₄ (326 mg, 8.18 mmol) in water (1 mL) was added. The reaction mixture was stirred from 0 °C to rt. After 1 h, the reaction mixture was quenched carefully with acetone, then filtered over Celite and the brown solid rinsed with MeOH. The solution was concentrated *in vacuo*, and the residue was taken up in water, acidified with 6 N aq. HCl (pH < 2), extracted twice with Et₂O, then basified with solid NaOH (pH > 9) and extracted with CHCl₃ (3x). The combined chloroformed layers were dried (Na₂SO₄), filtered and concentrated *in vacuo* to afford 416 mg of the crude amine as a yellow oil that was carried on to the next step without further purification.

To a solution of acid **11** (424 mg, 1.52 mmol, crude) in dry CH_2Cl_2 (18 mL) at 0 °C were added successively HOBt•H₂O (246 mg, 1.82 mmol), DMAP (206 mg, 1.67 mmol), a solution of this amine (403 mg, 1.59 mmol, crude) in dry CH_2Cl_2 (2

mL), and EDCI (356 mg, 1.82 mmol). The resulting mixture was stirred at rt under argon for 14 h, then washed with 2.5 N aq. NaOH (3x). The organic layer was dried (Na₂SO₄), filtered and concentrated *in vacuo*. Chromatography on SiO₂ (8:2 to 4:6, hexanes/EtOAc) afforded 421 mg (57%, 3 steps) of **18** as a white powder: mp 115.0-115.4 °C; $[\alpha]_D^{23}$ +12.6 (*c* 1.0, CH₂Cl₂); IR (neat) 3338 (br), 3277 (br), 2924, 2867, 1681, 1635, 1519, 1495, 1467, 1452, 1435, 1389, 1364, 1349, 1327, 1307, 1277, 1252, 1163, 1137, 1081, 1060, 1044, 1025, 1010, 993, 964, 930, 874, 842, 760, 742, 703 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.39-7.34 (m, 2 H), 7.33-7.27 (m, 2 H), 7.25-7.19 (m, 1 H), 5.95-5.80 (m, 1 H), 5.66 (dt, 1 H, *J* = 15.2, 7.2 Hz), 5.46 (dd, 1 H, *J* = 15.4, 6.6 Hz), 4.55-4.45 (m, 1 H), 4.41 (ddddd, 1 H, *J* = 12.0, 12.0, 8.4, 6.0, 6.0 Hz), 4.04 (app p, 1 H, *J* = 7.2 Hz), 3.82 (s, 2 H), 3.08 (app bd, 2 H, *J* = 10.4 Hz), 2.98 (d, 2 H, *J* = 7.3, 1.4 Hz), 1.03-0.92 (m, 2 H), 0.93 (d, 3 H, *J* = 6.8 Hz), 0.93 (d, 3 H, *J* = 6.4 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 170.4, 155.6, 140.6, 137.2, 128.6, 128.4, 126.9, 123.6, 79.5, 56.0, 51.6, 49.3, 49.3, 44.2, 42.0, 40.4, 33.5, 33.4, 28.6, 24.8, 24.7, 22.7, 14.5; ESI-MS *m/z* 527 (80), 506 ([M+Na]⁺, 84), 484 ([M+H]⁺, 67); HRMS (ESI) *m/z* calcd for C₂₉H₄₅N₃O₃Na (M+Na) 506.3359, found 506.3336.

(S,E)-N-(9-Azabicyclo[3.3.1]nonan-9-oxo-3-yl)-5-(tert-butoxycarbonylamino)-7-methyloct-3-enamide (17). A solution of Bn-protected amine 18 (150 mg, 0.309 mmol) in 5:1 MeCN/H₂O (12 mL) was treated with CAN (339 mg, 0.618 mmol). The resulting red reaction mixture was stirred at rt under argon. After 3.5 h, more CAN (170 mg, 0.309 mmol) was added. After 19 h stirring, sat. aq. NaHCO₃ (12 mL) was added and stirring was continued for 15 min. The mixture was then extracted with CHCl₃ (3 x 50 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), filtered and concentrated *in vacuo* to yield 144 mg of the crude amine as a brownish residue, that was carried on to the next step without further purification.

To a suspension of this amine (140 mg, 0.301 mmol) in 1:1 MeCN/MeOH (1.2 mL) was added Na₂WO₄•2H₂O (50.2 mg, 0.151 mmol) and the mixture was stirred at rt for 30 min. After cooling to 0 °C, UHP (146 mg, 1.51 mmol) was added and the reaction mixture was stirred at 0 °C for 1 h, then allowed to warm to rt and stirred overnight. After 17 h, water was added and the resulting mixture was extracted twice with CHCl₃. The combined organic layers were dried (K₂CO₃), filtered and concentrated *in vacuo*. Chromatography on SiO₂ (5:5, hexanes/EtOAc to EtOAc) afforded 84.9 mg (69%, 2 steps) of **17** as orange microcrystals formed from an initial red oil. Representative experimental data are as follows: mp 140.2-141.0 °C (EtOAc); $[\alpha]_D^{23}$ +25.9 (*c* 1.0, CH₂Cl₂); IR (neat) 3292 (br), 2949, 2926, 2867, 1690, 1657, 1539, 1469, 1448, 1400, 1389, 1362, 1325, 1308, 1284, 1269, 1247, 1221, 1167, 1116, 1088, 1070, 1040, 1018, 977, 678 cm⁻¹; ESI-MS *m/z* 431 ([M+Na]⁺, 77); HRMS (ESI) *m/z* calcd for C₂₂H₃₈N₃O₄Na (M+Na) 431.2760, found 431.2736.

A sample of this nitroxide (10.0 mg, 0.0245 mmol) was dissolved in MeOH (0.3 mL) and L-ascorbic acid (4.4 mg, 0.0245 mmol) was added. The pale orange suspension became colorless within a few seconds. After stirring at rt for 30 min under argon, the solvent was removed *in vacuo*. The resulting residue was dissolved in CH₂Cl₂ with some MeOH and washed twice with water. The combined aqueous layers were extracted with warm CH₂Cl₂ (4x), and the combined organic layers were dried (Na₂SO₄), filtered and concentrated *in vacuo* to yield 9.4 mg (94%) of the corresponding hydroxylamine as a white powder: ¹H NMR (CDCl₃, 400 MHz, 3:1 mixture of isomers) δ 6.02-5.91 (m, 0.25 H), 5.82 (app bd, 0.75 H, *J* = 6.0 Hz), 5.71-5.58 (m, 1 H), 5.52-5.41 (m, 1 H), 4.84 (ddddd, 0.75 H, *J* = 11.6, 11.6, 6.8, 6.8, 6.8 Hz), 4.52 (app bs, 1 H), 4.23

(app o, 0.25 H, J = 6.2 Hz), 4.09-3.97 (m, 1 H), 3.57 (app bd, 1.5 H, J = 9.6 Hz), 3.42 (app bd, 0.5 H, J = 10.0 Hz), 3.00-2.91 (m, 2 H), 2.51-2.38 (m, 0.6 H), 2.38-2.19 (m, 2 H), 2.05-1.88 (m, 0.5 H), 1.80-1.57 (m, 3 H), 1.56-1.46 (m, 2 H), 1.44 (s, 9 H), 1.34 (app td, 2 H, J = 7.3, 1.8 Hz), 1.38-1.26 (m, 1 H), 1.14 (app bt, 2 H, J = 12.4 Hz), 0.93 (d, 3 H, J = 6.8 Hz), 0.92 (d, 3 H, J = 6.8 Hz); ¹³C NMR (CDCl₃, 100 MHz, mixture of isomers) δ 170.6, 170.4, 155.6, 137.4, 137.3, 123.6, 123.5, 79.4, 55.9, 55.9, 54.1, 51.6, 51.5, 44.2, 40.3, 40.3, 39.7, 33.8, 33.8, 32.5, 31.2, 31.1, 29.9, 28.6, 24.8, 23.6, 22.9, 22.7, 14.3, 13.5, 12.8.

2-Adamantanecarbonitrile.⁵ A 3-5 °C solution of 2-adamantanone (21.0 g, 137 mmol), TosMIC (35.5 g, 178 mmol) and EtOH (14 mL, 233 mmol) in DME (470 mL) was treated with portionwise addition of solid *t*-BuOK (39.2 g, 342 mmol), maintaining the internal temperature below 10 °C. After the addition, the resulting slurry reaction mixture was stirred at rt for 30 min and then at 35-40 °C for 30 min. The heterogeneous reaction mixture was filtered and the solid washed with DME. The filtrate was concentrated *in vacuo*, loaded to a short alumina column (activated, neutral, Brockmann I, 150 mesh, 7 cm thick x 15 cm height), and washed off with a 5:1 mixture of hexanes/CH₂Cl₂ (~1.5 L). The solution was concentrated *in vacuo* to afford 19.0 g (86%) of the title compound as a white powder: mp 170-174 °C (softening point: ~155 °C, sealed tube) (lit. 170-177 °C); IR (neat) 2903, 2851, 2229, 1468, 1450, 1355, 1342, 1239, 1111, 1098, 1073, 988, 976, 818, 807, 792 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 2.91 (app s, 1 H), 2.23-2.08 (m, 4 H), 2.00-1.80 (m, 4 H), 1.80-1.66 (m, 6 H); ¹³C NMR (75 MHz, CDCl₃) δ 122.5, 37.2, 36.9, 36.8, 33.3, 30.6, 27.1, 27.0.

2-Adamantane carboxylic acid. A mixture of 2-adamantanecarbonitrile (18.9 g, 117 mmol) in AcOH (56 mL) and 48% HBr (224 mL) was stirred at 120 °C overnight. The reaction mixture was cooled at 4 °C, let stand for 4 h, then filtered. The solid was washed with water and dried under vacuum over silica gel overnight, to yield 20.6 g (98%) of the title compound as colorless crystals: mp 145.5-145.8 °C (sealed tube) (lit.⁵ 143-144 °C); IR (neat) 3200-2400 (br), 2922, 2915, 2894, 2849, 2630, 2950, 1681, 1468, 1452, 1439, 1418, 1351, 1342, 1332, 1314, 1301, 1277, 1249, 1226, 1176, 1099, 1064, 1049, 984, 941, 926, 911, 831 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) δ 12.09 (s, 1 H), 2.55-2.47 (m, 1 H), 2.20 (app bs, 2 H), 1.87-1.64 (m, 10 H), 1.60-1.50 (m, 2 H).

5,7-Dibromo-2-adamantane carboxylic acid (19).⁶ A vigorously stirred 0 °C solution of AlBr₃ (18.9 g, 69.6 mmol), BBr₃ (2.40 g, 9.49 mmol) and Br₂ (40 mL) was treated portionwise with 2-adamantane carboxylic acid (5.70 g, 31.6 mmol). Upon completion of the addition, the reaction mixture was stirred at 70 °C for 48 h, then cooled in an ice bath, and quenched carefully with sat. aq. sodium bisulfite. Stirring was continued at rt overnight. The resultant pale brown suspension was filtered, the solid washed with water and dried overnight under vacuum at 60 °C to yield 10.95 g (quant.) of crude **19** as a beige powder. Representative experimental data are as follows: mp 230-232 °C (sealed tube); IR (neat)

⁵ Oldenziel, O. H.; Wildeman, J.; van Leusen, A. M. Org. Synth. 1977, 57, 8.

⁶ Rohde, J. J.; Pliushchev, M. A.; Sorensen, B. K.; Wodka, D.; Shuai, Q.; Wang, J.; Fung, S.; Monzon, K. M.; Chiou, W. J.; Pan, L.;

Deng, X.; Chovan, L. E.; Ramaiya, A.; Mullally, M.; Henry, R. F.; Stolarik, D. F.; Imade, H. M.; Marsh, K. C.; Beno, D. W. A.; Fey, T. A.; Droz, B. A.; Brune, M. E.; Camp, H. S.; Sham, H. L.; Frevert, E. U.; Jacobson, P. B.; Link, J. T. *J. Med. Chem.* **2007**, *50*, 149.

3200-2400 (br), 2956, 2933, 2909, 2861, 1692, 1444, 1431, 1418, 1331, 1319, 1301, 1291, 1284, 1269, 1249, 1217, 1204, 1189, 1150, 1032, 1017, 995, 973, 945, 939, 928, 818, 803, 753, 745, 703, 663 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 12.56 (bs, 1 H), 2.85 (app d, 2 H, *J* = 12.9 Hz), 2.75-2.55 (m, 2 H), 2.50-2.35 (m, 2 H), 2.35-2.10 (m, 7 H); LC-MS (ESI) *t*_R 20.4 min, *m/z* 337 ([M–H]⁻, 100).

(5,7-Dibromo-adamantan-2-yl)-carbamic acid tert-butyl ester (20).⁶ The reaction was performed in 3 separated batches. For each of them, a suspension of the acid 19 (7.80 g, 23.1 mmol) in dry toluene (117 mL) was treated successively with Et₃N (3.9 mL, 27.7 mmol) and DPPA (6.20 mL, 27.7 mmol). The resulting brown solution was stirred at 85 °C for 12 h. To a separated flask containing a solution of t-BuOK (5.28 g, 46.1 mmol) in dry THF (312 mL) at 0 °C was added the resulting isocvanate solution dropwise *via* a dropping funnel. The reaction mixture was allowed to warm to rt over 3 h, then quenched with water. The THF was removed *in vacuo*, and the resulting material was diluted with EtOAc. The organic layer was washed with 1 N aq. HCl, sat. aq. NaHCO₃ and brine, dried (Na₂SO₄), filtered and concentrated in vacuo. The crude residue was sonicated in a minimum of anhydrous Et₂O, filtered and washed with cold Et₂O to yield 20 as a white powder. The 3 mother liquors were then combined and 2 additional filtrations afforded another fraction of 20 as an off-white powder. Chromatography of the residual mother liquor on SiO_2 (9:1, hexanes/EtOAc) afforded a white powder contaminated with a yellow oil. This residue was taken up in hexanes, filtered, and the white powder washed with hexanes. This resulting white powder was only an impurity. The mother liquor was concentrated *in vacuo* and again taken up in a small amount of hexanes. The solvent was removed from the insoluble white powder with a Pasteur pipet, to separate the product from the yellow oil. The white powder was dried to yield an additional fraction of 20. The combined fractions afforded 21.6 g (77%) of **20** as a white powder. A sample of higher purity obtained after chromatography (recovered starting material from the next step) was used for analysis: mp 187.5-189.5 °C; IR (neat) 3250, 3146, 3125, 3000, 2974, 2959, 2932, 2876, 2862, 1681, 1476, 1457, 1388, 1366, 1345, 1332, 1292, 1275, 1256, 1250, 1230, 1157, 1079, 1042, 1021, 999, 842, 835, 820, 803, 775, 734, 725, 680 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 4,71 (bd, 1 H, J = 6.3Hz), 3.75 (app bs, 1 H), 2.86 (s, 2 H), 2.47-2.10 (m, 10 H), 1.45 (s, 9 H); ¹³C NMR (75 MHz, CDCl₃) δ 155.2, 80.2, 60.2, 59.7, 59.0, 51.2, 46.4, 41.5, 38.8, 28.6; EI-MS *m/z* 411 (M⁺, 9), 409 (M⁺, 15), 407 (M⁺, 8), 354 ([M-t-Bu]⁺, 67), 352 ([M-t-Bu]⁺, 37), 352 ([M-t-Bu] $t-Bu_{+}^{+}$, 56), 350 ([M- $t-Bu_{+}^{+}$, 15), 274 ([M- $t-Bu-Br_{+}^{+}$, 100), 272 ([M- $t-Bu-Br_{+}^{+}$, 98), 230 ([M- $Boc-Br_{+}^{+}$, 48), 228 ([M- $t-Bu-Br_{+}^{+}$, 100), 272 ([M- $t-Bu-Br_{+}^{+}$, 98), 230 ([M- $Boc-Br_{+}^{+}$, 48), 228 ([M- $t-Bu-Br_{+}^{+}$, 100), 272 ([M- $t-Bu-Br_{+}^{+}$, 98), 230 ([M- $Boc-Br_{+}^{+}$, 48), 228 ([M- $t-Bu-Br_{+}^{+}$, 100), 272 ([M- $t-Bu-Br_{+}^{+}$, 98), 230 ([M- $Boc-Br_{+}^{+}$, 48), 228 ([M- $t-Bu-Br_{+}^{+}$, 100), 272 ([M- $t-Bu-Br_{+}^{+}$, 98), 230 ([M- $Boc-Br_{+}^{+}$, 48), 228 ([M- $t-Bu-Br_{+}^{+}$, 100), 272 ([M- $t-Bu-Br_{+}^{+}$, 28), 272 ([M- $t-Bu-Br_{+}^{+}$, 28), 28) ([M- $t-Bu-Br_{+}^{+}$, 28) ([M- $t-Bu-Br_{+}^{+}$, 28), Boc-Br]⁺, 51), 213 ([M-NHBoc-Br]⁺, 40), 211 ([M-NHBoc-Br]⁺, 39), 148 ([M-Boc-2Br]⁺, 41), 132 (54), 131 (76), 117 (43), 105 (50), 93 (52), 91 (80), 79 (65), 77 (68), 65 (37), 59 (79), 56 (87); HRMS (EI) m/z calcd for C₁₅H₂₄Br₂NO₂ 408.0174, found 408.0154.

(7-Methylene-bicyclo[3.3.1]nonan-3-one-9-yl)-carbamic acid *tert*-butyl ester (21). The reaction was performed in 3 separated batches. A mixture of 20 (3 x 2.46 g, 18.0 mmol) and 2 N aq. NaOH (3 x 13.5 mL, 81.0 mmol, degassed) in dioxane (3 x 16.5 mL, degassed) was heated in a stainless steel Parr bomb at 160 °C (20 bar) under argon for 2 h. The crude mixtures were combined and the dioxane was removed *in vacuo*. The aqueous residue (pH > 12) was extracted with CH₂Cl₂ (3x). The combined organic layers were washed with brine, dried (Na₂SO₄), filtered and concentrated *in vacuo* to

afford 3.90 g of crude 9-amino-7-methylene-bicyclo[3.3.1]nonan-3-one⁹ as a yellow solid, that was carried on without further purification.

To a solution of this amine (2.98 g, 18.0 mmol, crude) in dry CH₂Cl₂ (270 mL) was added Et₃N (7.60 mL, 54.0 mmol) and then Boc₂O (4.37 g, 19.8 mmol) at 0 °C. The reaction mixture was stirred at rt under nitrogen for 20 h, then quenched with sat. aq. NH_4Cl . The aqueous phase was extracted twice with CH_2Cl_2 , and the combined organic layers were dried (Na₂SO₄), filtered and concentrated *in vacuo*. The crude was taken up in CH₂Cl₂ but was poorly soluble. A filtration afforded a white powder. The mother liquor was evaporated and taken up in a 7:3 hexanes/EtOAc mixture. After sonicaton, the white powder was filtered. This procedure was repeated one more time. Chromatography of the resulting mother liquor on SiO₂ (9:1 to 6:4, hexanes/EtOAc) afforded 964 mg of another fraction as a pale yellow powder. Since the 3 fractions from filtration were impure and still contained Et₃N, they were combined, dissolved in CHCl₃ (50 mL), washed with 5% aq. $CuSO_4$ (2 x 20 mL), dried (Na₂SO₄), filtered and concentrated *in vacuo*. Chromatography of the residue on SiO₂ (9:1 to 6:4, hexanes/EtOAc) afforded 1.624 g of the major isomer as a white powder, and 2.59 g (42%, 4 steps) of **21** were obtained, while 509 mg (~7%) of starting material 20 (45% yld b.r.s.m.) was recovered. Representative experimental data are as follows: mp 167.8-182.0 °C; IR (neat) 3271, 3131, 2971, 2930, 2849, 1685, 1478, 1452, 1437, 1407, 1385, 1364, 1351, 1316, 1250, 1239, 1215, 1161, 1142, 1109, 1073, 1064, 1044, 1017, 1008, 904, 857, 783, 773, 729, 710, 688, 682 cm^{-1} ; ¹H NMR (300 MHz, CDCl₃, 4:1 mixture of isomers) δ 4.93 (app bs, 0.2 H), 4.84 (s, 2 H), 4.74 (app bs, 0.8 H), 4.12 (app bs, 0.2 H), 3.96-3.87 (app m, 0.8 H), 2.65-2.12 (m, 10 H), 1.49 and 1.48 (2 s, 9 H); ¹³C NMR (75 MHz, CDCl₃, 4:1 mixture of isomers) & 209.2, 155.6, 139.7, 139.7, 116.5, 115.9, 80.2, 51.4, 50.5, 47.0, 42.3, 41.0, 35.9, 35.0, 34.4, 28.6; ESI-MS *m/z* 288 ([M+Na]⁺, 100); HRMS (ESI) *m/z* calcd for C₁₅H₂₃NO₃Na (M+Na) 288.1576, found 288.1567.

(7-Methylene-bicyclo[3.3.1]nonan-3-one oxime-9-yl)-carbamic acid *tert*-butyl ester (22). To a solution of ketone 21 (2.53 g, 9.53 mmol) in dry pyridine (18 mL) was added NH₂OH•HCl (2.02 g, 28.6 mmol). The reaction mixture was stirred at rt under argon for 12 h. The solvent was removed *in vacuo*, and the residue diluted with EtOAc and then water was added. The layers were separated and the aqueous phase extracted with EtOAc. The combined organic layers were washed with 5% aq. CuSO₄ (8x), brine (2x), dried (Na₂SO₄), filtered and concentrated *in vacuo*. Chromatography of the residue on SiO₂ (5:5, hexanes/EtOAc) followed by trituration in Et₂O afforded 2.41 g (90%) of **22** as a white powder: mp 60-86 °C; IR (neat) 3265 (br), 2971, 2924, 2833, 1690, 1515, 1508, 1498, 1450, 1437, 1388, 1364, 1249, 1161, 1077, 1062, 1040, 1012, 978, 965, 949, 921, 881, 777, 716 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 4:1 mixture of isomers) δ 8.01 (bs, 1 H), 4.93 (app bs, 0.35 H), 4.90-4.70 (m, 0.65 H), 4.79 (s, 1 H), 4.68 (d, 1 H, *J* = 1.5 Hz), 3.86 (app bs, 1 H), 3.25 (d, 0.2 H, *J* = 15.9 Hz), 3.09 (d, 0.8 H, *J* = 16.5 Hz), 2.58-2.19 (m, 8 H), 2.19-1.93 (m, 1 H), 1.47 (s, 9 H); ¹³C NMR (75 MHz, CDCl₃, 4:1 mixture of isomers) δ 155.5, 141.1, 141.1, 113.2, 112.7, 80.0, 52.2, 51.4, 41.3, 40.5, 37.6, 35.7, 35.1, 34.2, 34.0, 32.6, 32.5, 31.6, 28.6, 24.9; ESI-MS *m/z* 281 ([M+H]⁺, 65), 266 (50), 225 ([M–t-Bu]⁺, 100); HRMS (ESI) *m/z* calcd for C₁₅H₂₅N₂O₃ (M+H) 281.1865, found 281.1855.

(1-Iodomethyl-2-azaadamantan-6-yl)-carbamic acid *tert*-butyl ester (23). To a mixture of oxime 22 (2.35 g, 8.39 mmol) and MoO₃ (1.70 g, 11.8 mmol) in dry MeOH (84 mL) at 0 °C under argon was added NaBH₄ (3.24 g, 83.9 mmol) portionwise. The resulting dark brown reaction mixture was stirred at 0-10 °C for 4 h, then quenched with acetone and filtered through Celite. The Celite was rinsed with acetone, and the filtrate was concentrated *in vacuo*. The resulting residue was diluted with water (100 mL) and EtOAc (200 mL), and filtered through Celite to break the emulsion. The organic layer was separated, washed with a few brine, dried (K₂CO₃), filtered and concentrated *in vacuo* to afford ~2.5 g of crude *tert*-butyl-3-amino-7-methylenebicyclo[3.3.1]nonan-9-ylcarbamate as a pale brown oily foam, that was carried on without further purifcation.

To a suspension of this amine (2.23 g, 8.39 mmol, crude) in dry MeCN (42 mL) at 0 °C under argon was added I₂ (2.13 g, 8.39 mmol). The reaction mixture was stirred at rt for 3 h and then quenched with sat. aq. NaHCO₃ and sat. aq. Na₂S₂O₃ (pH 8). The resulting yellow mixture was extracted with CHCl₃ (3x), and the combined organic layers were dried (K₂CO₃), filtered and concentrated *in vacuo*. Chromatography of the residue on SiO₂ (EtOAc to 9:1, EtOAc/MeOH) afforded 1.55 g (47%, 2 steps) of **23** as a dark orange powder: mp 125-138 °C; IR (neat) 3278 (br), 3269, 2967, 2918, 2868, 2853, 1701, 1670, 1541, 1448, 1444, 1431, 1388, 1362, 1351, 1295, 1280, 1269, 1250, 1217, 1200, 1167, 1118, 1086, 1077, 1045, 1012, 995, 891, 771 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 3:1 mixture of isomers) δ 4.83 (app bs, 0.65 H), 4.75 (app bs, 0.35 H), 3.82-3.67 (m, 1 H), 3.24 (bs, 1 H), 3.19 (s, 1.5 H), 3.16 (s, 0.5 H), 2.20-2.07 (m, 1 H), 1.98-1.80 (m, 3 H), 1.80-1.60 (m, 6 H), 1.46 (s, 9 H); ¹³C NMR (75 MHz, CDCl₃, 3:1 mixture of isomers) δ 155.5, 79.7, 53.7, 49.0, 47.4, 47.2, 40.9, 36.1, 35.8, 32.4, 31.7, 30.8, 28.6, 23.7, 23.2; EI-MS *m/z* 392 (M⁺, 18), 265 ([M–I]⁺, 68), 209 ([M–I–*t*-Bu]⁺, 88), 148 (100), 94 (80); HRMS (ESI) *m/z* calcd for C₁₅H₂₅IN₂O₂ 392.0961, found 392.0958.

(1-Methyl-2-azaadamantane-*N*-oxyl-6-yl)-carbamic acid *tert*-butyl ester (6-Boc-amino-1-Me-AZADO, 24). The reaction was performed in 2 separated batches. A Parr flask was charged with the iodoalkane 23 (2 x 414 mg, 2.11 mmol), EtOH (2 x 10 mL) and 20% Pd(OH)₂/C (2 x 82 mg). The flask was placed in a high pressure reactor. The reactor was charged with H₂ and purged for 5 cycles and finally pressurized with H₂ at 4 bar (60 psi), then heated at 50 °C. After stirring at 50 °C for 26 h, the reaction mixtures were combined and filtered through Celite, the Celite washed with MeOH, and the solution concentrated *in vacuo* to yield a dark reddish powder. The crude was dissolved in CH₂Cl₂ and washed with sat. aq. Na₂CO₃, dried (K₂CO₃), filtered and concentrated *in vacuo* to afford 556 mg (99%) of crude (1-methyl-2-azaadamantan-6-yl)-carbamic acid *tert*-butyl ester as a yellow solid, that was carried on without further purification.

A mixture of this amine (554 mg, 2.08 mmol, crude) and Na₂WO₄•2H₂O (347 mg, 1.04 mmol) in MeOH (6 mL) was stirred at rt for 20 min then cooled to 0 °C and treated with 30% aq. H₂O₂ (2.36 mL, 20.8 mmol). The resulting reaction mixture was stirred at 0 °C for 30 min then allowed to warm to rt. After 4 h, the reaction mixture was cooled to 0 °C and treated again with H₂O₂ (0.70 mL, 6.24 mmol), then allowed to warm to rt. After an additional 6 h stirring at rt, the bright orange reaction mixture was quenched with sat. aq. NaHCO₃ and extracted with CH₂Cl₂ (3x). The combined organic layers were dried (Na₂SO₄), filtered and concentrated *in vacuo*. Chromatograpy of the residue on SiO₂ (7:3 to 5:5, hexanes/EtOAc) afforded 345 mg (59%, 58% over 2 steps) of **24** as a red solid. Representative experimental data are as follows: mp 140-150 °C (softening point: 131 °C); IR (neat) 3265, 3138, 2999, 2969, 2922, 1688, 1474, 1448, 1383, 1362, 1286, 1275, 1252, 1163, 1137, 1079, 1066, 1045, 1008, 984, 958, 777, 727, 708 cm⁻¹; ESI-MS *m/z* 284 (70), 282 ([M+H]⁺, 100); HRMS (ESI) *m/z* calcd for C₁₅H₂₆N₂O₃ (M+H) 282.1943, found 282.1941.

6-Amino-1-methyl-2-azaadamantane-*N***-oxyl (6-amino-1-Me-AZADO, 8).** A solution of 6-Boc-amino-1-Me-AZADO (335 mg, 1.19 mmol) in a 4.0 N solution of HCl in 1,4-dioxane (5.0 mL, 20.0 mmol) was stirred at 0 °C for 1 h and at rt for an additional 2 h. Dioxane was removed *in vacuo* and the yellow residue was dissolved in 2.5 N aq. NaOH and extracted with CH_2Cl_2 until the organic layer became colorless. The combined organic layers were dried (K₂CO₃), filtered and concentrated *in vacuo* to afford 230 mg (quant.) of crude **8** as a red oil: LC-MS (ESI) t_R 7.71 min, m/z 183 $([M_{red}+H]^+), 166 ([M-O+H]^+)$.

6-Amino-1-methyl-2-azaadamantane (26). The reaction was performed in 2 separate batches. A Parr flask was charged with the iodoalkane **23** (2 x 494 mg, 2.52 mmol), EtOH (2 x 12 mL) and 20% $Pd(OH)_2/C$ (2 x 99.0 mg). The flask was placed in a high pressure reactor. The reactor was charged with H₂ and purged for 5 cycles and finally pressurized with H₂ at 4 bar (60 psi), then heated at 50 °C. After stirring at 50 °C for 22 h, the reaction mixtures were combined and filtered through Celite, the Celite washed with MeOH and EtOAc, and the solution concentrated *in vacuo*. The crude was dissolved in CH₂Cl₂ and washed with sat. aq. Na₂CO₃, dried (K₂CO₃), filtered and concentrated *in vacuo* to afford 638 mg (95%) of crude (1-methyl-2-azaadamantan-6-yl)-carbamic acid *tert*-butyl ester as a dark grey foam, that was carried on without further purification.

A mixture of (1-methyl-2-azaadamantan-6-yl)-carbamic acid *tert*-butyl ester (180 mg, 0.676 mmol, crude) in a 4.0 N solution of HCl in 1,4-dioxane (2.85 mL, 11.4 mmol) was stirred at 0 °C for 1 h and at rt for an additional 2.5 h. Dioxane was removed *in vacuo* and the residue was dissolved in 2.5 N aq. NaOH and extracted with CHCl₃ (3x). The combined organic layers were dried (K_2CO_3), filtered and concentrated *in vacuo* to afford 113 mg (quant.) of crude **26** as a dark brown oil, that was carried on without further purification.

(*S,E*)-*N*-(1-Methyl-2-azaadamant-2-oxo-6-yl)-5-(*tert*-butoxycarbonylamino)-7-methyloct-3-enamide (25). To a solution of alcohol 10 (180 mg, 0.699 mmol) in acetone (8 mL) at 0 °C was slowly added a solution of Jones reagent (2.5 M, 0.70 mL, 1.75 mmol). The resulting dark suspension was stirred at 0 °C for 1 h, then diluted with Et_2O and water. The aqueous phase was separated and extracted with Et_2O (2x). The combined organic layers were washed with water (2x) and brine (1x), dried (Na₂SO₄), filtered and concentrated *in vacuo* to yield 189 mg (quant.) of the crude acid (11) as a colorless oil, that was carried on without further purification.

To a solution of this acid (58.7 mg, 0.216 mmol, crude) in dry CH_2Cl_2 (2.0 mL) at 0 °C were added successively HOBt•H₂O (35.1 mg, 0.260 mmol), DMAP (29.4 mg, 0.238 mmol), a solution of amine **26** (40.0 mg, 0.216 mmol) in dry CH_2Cl_2 (0.7 mL), and EDCI (50.0 mg, 0.260 mmol). The resulting mixture was stirred at rt under argon for 15 h, then the mixture was diluted with CH_2Cl_2 , washed twice with 1 N aq. NaOH, dried (K₂CO₃), filtered and concentrated *in vacuo*. Chromatography of the residue on deactivated SiO₂ (EtOAc then 9:1, EtOAc/MeOH + 1% NH₄OH) afforded 54.0 mg

(59%) of *tert*-butyl (*S*,*E*)-8-(1-methyl-2-azaadamant-6-ylamino)-2-methyl-8-oxooct-5-en-4-ylcarbamate as a pale yellow foam.

To a mixture of this amine (54.0 mg, 0.129 mmol) in 1:1 MeCN/MeOH (0.6 mL) was added Na₂WO₄•2H₂O (21.4 mg, 0.0643 mmol), and the resulting mixture was stirred at rt for 20 min. After cooling to 0 °C, UHP (100 mg, 1.03 mmol) was added and the reaction mixture was stirred under air at 0 °C for 1 h then at rt for 12 h. Water was then added, and the resulting aqueous mixture was extracted with CHCl₃ (2x). The combined organic layers were dried (K₂CO₃), filtered and concentrated *in vacuo*. Flash chromatography of the residue on SiO₂ (5:5, hexanes/EtOAc to EtOAc) afforded 35.4 mg (63%) of **25**, 8.6 mg as red crystals (suitable for X-ray) and 26.8 mg as a red-orange foam: mp 154-156 °C (EtOAc); $[\alpha]_D^{23}$ +6.2 (*c* 1.0, CH₂Cl₂); IR (neat) 3308 (br), 2948, 2928, 2868, 1677, 1663, 1651, 1646, 1523, 1450, 1387, 1362, 1336, 1325, 1312, 1284, 1245, 1167, 1133, 1116, 1066, 1042, 1023, 1003, 969, 951 cm⁻¹; ESI-MS *m/z* 457 ([M+Na]⁺, 63), 401 (51), 318 (33); HRMS (ESI) *m/z* calcd for C₂₃H₄₂N₃O₄Na (M+Na) 457.2917, found 457.2884.

A sample of this nitroxide (4.0 mg, 0.00920 mmol) was dissolved in dry MeOH (0.2 mL) and L-ascorbic acid (1.6 mg, 0.00920 mmol) was added. Complete discoloration of the solution occured immediately. After stirring at rt for 15 min, the solvent was removed *in vacuo*. The resulting residue was dissolved in CHCl₃ and washed with water. The aqueous phase was extracted once with CHCl₃, and the combined organic layers were dried (Na₂SO₄), filtered and concentrated *in vacuo* to yield 5.2 mg (>100%) of the corresponding hydroxylamine as a colorless solidified oil: ¹H NMR (400 MHz, CDCl₃) δ 6.14 (bs, 1 H), 5.69 (dt, 1 H, *J* = 14.9, 7.3 Hz), 5.53 (dd, 1 H, *J* = 15.6, 5.6 Hz), 4.46 (app bs, 1 H), 4.14-4.03 (m, 1 H), 4.03-3.96 (m, 1 H), 3.27 (app bs, 1 H), 3.02 (d, 2 H, *J* = 7.2 Hz), 2.36-2.20 (m, 2 H), 2.07-1.70 (m, 8 H), 1.70-1.55 (m, 1 H), 1.43 (2 s, 9 H), 1.40-1.20 (m, 2 H), 1.11 (s, 3 H), 0.93 (app d, 6 H, *J* = 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 155.4, 137.8, 122.8, 79.5, 57.0, 56.3, 52.4, 51.1, 44.4, 42.9, 42.8, 40.4, 35.1, 35.0, 32.1, 31.2, 31.1, 30.7, 30.5, 30.5, 29.9, 29.8, 29.5, 28.6, 29.6, 26.4, 24.9, 23.3, 23.3, 22.9, 22.8, 22.6, 14.3.

(*S,E*)-Methyl 5-((*tert*-butoxycarbonyl)amino)-7-methyloct-3-enoate (27). To a solution of the acid 11, (142 mg, 0.523 mmol, crude) in acetonitrile (8.7 mL, 0.06 M) was added K₂CO₃ (362 mg, 5.23 mmol), followed by MeI (326 μ L, 5.233 mmol). The resulting reaction mixture was stirred at rt under N₂ in the dark for 11 h, then quenched with H₂O (5 mL) and extracted with CH₂Cl₂ (3 x 20 mL). The combined organic portion was washed with brine (5 mL), dried (Na₂SO₄), filtered, and concentrated. Chromatography on SiO₂ (ISCO, 12 g column, liquid load in CH₂Cl₂, 0-100% EtOAc/hexanes gradient, eluted at 50% EtOAc/hexanes) afforded **27** as a colorless oil (159 mg, quant.): $[\alpha]_D^{20}$ –13.0 (*c* 1.0, CH₂Cl₂); IR (CH₂Cl₂) 3351 (br), 2952, 2932, 2867, 1737, 1692, 1512, 1452, 1435, 1389, 1364, 1327, 1245, 1159, 1118, 1081, 1042, 1016, 967 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.69 (dtd, 1 H, *J* = 15.5, 6.9, 1.2 Hz), 5.49 (dd, 1 H, *J* = 15.2, 4.9 Hz), 4.39 (bs, 1 H), 4.23-4.00 (m, 1 H), 3.68 (s, 3 H), 3.07 (d, 2 H, *J* = 6.9 Hz), 1.72-1.59 (m, 1 H), 1.44 (s, 9 H), 1.39-1.25 (m, 2 H), 0.92 (d, 3 H, *J* = 6.6 Hz), 0.91 (d, 3 H, *J* = 6.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 155.5, 135.6, 122.0, 79.5, 52.0, 50.4, 44.8, 37.7, 28.6, 24.9, 22.9, 22.6; HRMS (ESI) *m/z* calcd for C₁₈H₂₇N₃O₄Na (M+Na)⁺ 308.1838, found 308.1860.

(S,E)-5,5-Difluoro-3-(3-((8-methoxy-2-methyl-8-oxooct-5-en-4-yl)amino)-3-oxopropyl)-7,9-dimethyl-5H-

dipyrrolo[1,2-*c*:2',1'-*f*][1,3,2]**diazaborinin-4-ium-5-uide (29).** To a solution of ester 27 (150 mg, 0.526 mmol) in CH_2Cl_2 (8 mL) at 0 °C was added TFA (0.4 mL, 5.26 mmol). The resulting colorless solution was stirred at rt. TLC analysis showed that the starting material had been consumed after 4 h. The reaction mixture was concentrated, and the residue was taken up CH_2Cl_2 and washed with 5% aq. Na_2CO_3 (pH 9). The aqueous layer was extracted once with CH_2Cl_2 , and the combined organic portion was dried (K_2CO_3), filtered, and concentrated to afford 92.2 mg (95%, crude) of amine as a pale brownish oil, that was carried on without further purification.

A solution of activated ester **28** (BODIPY-FL-NHS, 224 mg, 0.576 mmol) and DIEPA (0.26 mL, 1.49 mmol) in dry CH₂Cl₂ (15 mL) was treated with a solution of amine (89.0 mg, 0.480 mmol, crude) in dry CH₂Cl₂ (5 mL). The resulting red solution was stirred at rt under N₂ for 9 h, then washed with water. The aqueous phase was extracted with CH₂Cl₂ until it became almost colorless. The combined organic portion was dried (Na₂SO₄), filtered, and concentrated. Chromatography on SiO₂ (75:25 to 6:4 to 5:5, hexanes/EtOAc) afforded 180 mg (82%) of **29** as a red, viscous oil that solidified to give a red crystalline solid: ¹H NMR (400 MHz, CDCl₃) δ 7.09 (s, 1 H), 6.88 (d, 1 H, *J* = 4.0 Hz), 6.30 (d, 1 H, *J* = 4.0 Hz), 6.13 (s, 1 H), 5.58-5.62 (m, 2 H), 5.42 (dd, 1 H, *J* = 15, 6.0 Hz), 4.48 (dt, 1 H, *J* = 15, 7.3, 7.3 Hz), 3.67 (s, 3 H), 3.28 (t, 2 H, *J* = 7.3 Hz), 3.01 (d, 2 H, *J* = 6.9 Hz), 2.66 (t, 2 H, *J* = 7.3 Hz), 2.57 (s, 3 H), 2.26 (s, 3 H), 1.44 (m, 1H), 1.31 (ddd, 1 H, *J* = 7.2, 6.4, 2.4 Hz), 1.26 (ddd, 1 H, *J* = 7.2, 6.4, 1.6 Hz), 0.85 (dd, 6 H, *J* = 7.8, 6.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 171.0, 160.4, 157.6, 144.1, 135.3, 135.0, 133.6, 128.5, 124.0, 122.1, 120.6, 117.9, 52.0, 48.8, 44.2, 37.8, 36.3, 25.1, 24.8, 23.0, 22.4, 15.1, 11.5; HRMS (APCI) *m/z* calcd for C₂₄H₃₂N₃O₃F₂BNa (M+Na)⁺ 482.2402, found 482.2446.

(*S*,*E*)-5,5-Difluoro-3-(3-((8-((1-oxo-2,2,6,6-tetramethylpiperidin-4-yl)amino)-2-methyl-8-oxooct-5-en-4-yl)amino)-3-oxopropyl)-7,9-dimethyl-5*H*-dipyrrolo[1,2-*c*:2',1'-*f*][1,3,2]diazaborinin-4-ium-5-uide (30). To a vigorously stirred mixture of ester 29 (34.5 mg, 0.0751 mmol) and pig liver esterase (PLE, 17 U/mg, 7 mg) in acetone (1.5 mL) was added phosphate buffer (0.05 M, pH 7.0, 2.75 mL). The resulting heterogenous reaction mixture was vigorously stirred at rt overnight. TLC analysis (1:1 EtOAc:hexanes, KMnO₄) after 13 h showed only starting material. More PLE (7 mg) was added. The reaction mixture was allowed to stir for 10 d, and additional PLE was added after 3, 4, 5, and 7 d. After 10 d, TLC analysis showed completed consumption of starting material, and the reaction mixture was concentrated. Citric acid (~pH 3) was added and the reaction mixture was extracted with CH₂Cl₂ (3 x 10 mL). The combined organic portion was

dried (Na_2SO_4), filtered, and concentrated to give the crude, red solid (34.6 mg, quant). This solid was carried on to the next reaction without purification.

To the resulting acid (34.6 mg, 0.0777 mmol) in CH₂Cl₂ (1 mL) at 0 °C in the dark was added 4-amino TEMPO (20.0 mg, 0.117 mmol) in CH₂Cl₂ (1 mL) followed by DMAP (10.4 mg, 0.0855 mmol), HOBt-H₂O (13.1 mg, 0.0855 mmol), and EDCI (17.9 mg, 0.0932 mmol). The reaction mixture was allowed to warm to rt as it stirred overnight. The reaction mixture was washed with H₂O (3 mL) and sat. NH₄Cl (3 mL), and the aqueous portion was extracted with CH₂Cl₂ (2 x 15 mL). The combined organic portion was dried (Na₂SO₄), filtered, and concentrated to give a crude, red oil (63 mg). The crude material was purified by chromatography on SiO₂ (ISCO, 4 g column, liquid load in CH₂Cl₂, 0-20% MeOH/CH₂Cl₂ gradient, eluted at 5% MeOH/CH₂Cl₂) to give a crude, impure orange oil (41 mg). The oil was then purified by chromatography on SiO₂ (ISCO, 4 g column, liquid load in CH₂Cl₂); IR (ATR) 3288, 2954, 2926, 1642, 1605, 1528, 1249, 1133, 1084, 999 cm⁻¹; ¹³C NMR (100 MHz, CDCl₃, δ) 169.6, 168.5, 158.8, 154.3, 142.2, 134.8, 133.2, 131.2, 126.2, 121.9, 121.7, 118.8, 115.5, 48.8, 41.2, 34.5, 31.6, 27.5, 23.3, 22.4, 20.5, 2.3, 13.9, 9.5; HRMS (ESI) *m/z* calcd for C₃₂H₄₇BN₅O₃F₂Na (M+Na)⁺ 621.3638, found 621.3589.

A sample of this nitroxide (14.4 mg, 0.0241 mmol) in MeOH (1 mL) was added L-(+)-ascorbic acid (6.4 mg, 0.036 mmol). After stirring at rt for 2 h, the reaction mixture was concentrated. The resulting residue was dissolved in CH_2Cl_2 and washed once with water. The aqueous layers was extracted once with CH_2Cl_2 , and the combined organic portion was washed with brine, dried (Na₂SO₄), filtered, and concentrated in vacuo to yield the corresponding hydroxylamine as a red oil (12.2 mg, 85%): ¹H NMR (400 MHz, CDCl₃) δ 7.10 (s, 1H), 6.87 (d, 1 H, *J* = 3.9 Hz), 6.64 (d, 1 H *J* = 7.2 Hz), 6.32 (d, 1 H, *J* = 3.9 Hz), 6.13 (s, 1 H), 6.03 (d, 1 H, *J* = 6.3 Hz), 5.54 (dt, 1 H, *J* = 15, 7.5, 7.5 Hz), 5.35 (dd, 1 H, *J* = 15, 6.6 Hz), 4.28 (m, 2 H), 3.25 (t, 2 H, 7.4 Hz), 2.89 (dd, 1 H, *J* = 7.2, 2.1 Hz), 2.69 (t, 1 H, *J* = 7.4 Hz), 2.55 (s, 3 H), 2.26 (s, 3 H), 2.04 (br s, 1 H), 1.50 (d, 4 H, *J* = 4.8 Hz), 1.28-1.30 (m, 3 H), 1.25 (s, 12 H), 0.84 (t, 6 H, *J* = 5.8 Hz).

(*S,E*)-5,5-Difluoro-3-(3-((8-((1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl)amino)-2-methyl-8-oxooct-5-en-4-yl)amino)-3-oxopropyl)-7-phenyl-5*H*-dipyrrolo[1,2-*c*:2',1'-*f*][1,3,2]diazaborinin-4-ium-5-uide (BODIPY®-R6G-JP4-039, 33). To a solution of JP4-039 (125 mg, 0.294 mmol) in MeOH (3 mL) was added ascorbic acid (65 mg, 0.37 mmol). The orange solution became homogenous in less than 1 min. Stirring was continued 30 min, and the reaction mixture was concentrated. To the residue was added ethyl acetate (10 mL), water (5 mL), and 5% Na₂CO₃ (5 mL)). The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic portion was dried (MgSO₄) and evaporated, and the crude hydroxylamine was carried on to the next reaction.

To a solution of the crude hydroxylamine in CH_2Cl_2 (3 mL) at 0 °C was added trifluoroacetic acid (440 μ L, 5.89 mmol). The solution was warmed to rt and stirred 4 h. The solvent and excess acid were evaporated, and the residue was dissolved in EtOAc (25 mL). The organic portion was washed with saturated Na2CO3 (2 x 5 mL) and brine (5 mL), dried over MgSO₄, and cocentrated to give the free amine as a white solid, which was carried on to the next reaction.

To BODIPY®-R6G-NHS (**31**) (50.0 mg, 0.114 mmol) was added a solution of the crude amine in CH₂Cl₂ (2 mL), followed by diisopropylethylamine (36 μ L, 0.21 mmol). The resulting red solution was stirred at rt for 18 h, and the reaction mixture was concentrated. The residue was dissolved in MeOH (2 mL), and catalytic copper (II) acetate hydrate was added. The mixture was stirred open to air for 30 min, then poured into water (10 mL). The aqueous mixture was extracted with EtOAc, and the combined organics were dried over MgSO₄ and evaporated. The resulting residue was purified by chromatography on SiO₂ (1-5% MeOH/CH₂Cl₂) to provide BODIPY-R6G JP4-039 (**33**) (46 mg, 62%) as a red semisolid: IR (ATR) 3303, 2958, 2926, 2855, 1653, 1616, 1540, 1463, 1245, 1137, 1085 cm⁻¹; HRMS (ESI) [M+H]⁺ calcd for C₃₆H₄₈BF₂N₅O₃ 647.3813, found 647.3802. NMR spectra are severely broadened and not useful, so the compound was characterized as the hydroxylamine after reduction with ascorbic acid in methanol.

Analytical data for hydroxylamine **32**: ¹H NMR (600 MHz, CDCl₃ layered with 5% ascorbic acid in D₂O) δ 7.89 (dd, 2 H, *J* = 7.2, 1.2 Hz), 7.47 (m, 3 H), 7.25 (s, 1 H), 7.13 (d, 1 H, *J* = 4.2 Hz), 7.03 (d, 1 H, *J* = 4.2 Hz), 6.65 (d, 1 H, *J* = 4.2 Hz), 6.41 (d, 1 H, *J* = 3.6 Hz), 5.53 (m, 1H), 5.31 (dd, 1 H, *J* = 15.3, 6.9 Hz), 4.20 (m, 2 H), 3.27 (dd, 2 H, *J* = 6.9, 5.1 Hz), 2.90 (m, 2 H), 2.64 (q, 2 H, *J* = 6.8 Hz), 1.89 (m, 2 H), 1.47 (m, 1 H), 1.32–1.22 (m, 17 H), 0.83 (dd, 6 H, *J* = 8.4, 3.6 Hz,); ¹³C NMR (150 MHz, CDCl₃ layered with 5% ascorbic acid in D₂O) δ 171.7, 170.5, 161.4, 136.7, 135.1, 132.5, 130.9, 130.0, 129.4, 128.5, 123.8, 12.6, 120.2, 101.3, 56.1, 50.6, 43.3, 40.2, 40.0, 35.9, 29.8, 35.2, 24.6, 22.6, 22.4, 20.4; HRMS (ESI) [M+H]⁺ calcd for C₃₆H₄₉BF₂N₅O₃ 648.3891, found 648.3896.

X-Ray Crystallography Data for Compound 25.

Table S1. Crystal data and structure refinement for 25.

Identification code	mf29229s	
Empirical formula	Empirical formula C24 H40 N3 O4	
Formula weight 434.59		
Temperature	Temperature223(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 6.8433(18) Å	α= 90°.
	b = 18.424(5) Å	β= 90°.
	c = 20.221(5) Å	$\gamma = 90^{\circ}$.
Volume	2549.5(12) Å ³	
Ζ	4	
Density (calculated)	1.132 Mg/m ³	
Absorption coefficient	0.077 mm ⁻¹	
F(000)	948	
Crystal size	0.27 x 0.25 x 0.18 mm ³	
Theta range for data collection	2.21 to 24.99°	
Index ranges	-8<=h<=8, -21<=k<=21, -24<=l<=24	
Reflections collected	20281	
Independent reflections	2581 [R(int) = 0.0592]	
Completeness to theta = 24.99°	99.9 %	
Absorption correction	Semi-empirical from equivalen	ts
Max. and min. transmission	0.9863 and 0.9796	
Refinement method	Full-matrix least-squares on F	2
Data / restraints / parameters	2581 / 0 / 288	
Goodness-of-fit on F ²	1.100	
Final R indices [I>2sigma(I)]	R1 = 0.0484, WR2 = 0.1258	
R indices (all data)	ndices (all data) $R1 = 0.0707, wR2 = 0.1371$	
Absolute structure parameter ?		
Largest diff. peak and hole 0.183 and -0.147 e.Å ⁻³		

Table S2. Atomic co	ordinates (x 10 ⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10 ³)	
for MCF292-29 (25).	U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.	

	Х	у	Z	U(eq)
O(1)	9677(4)	7238(1)	840(1)	61(1)
N(1)	7414(5)	6362(2)	920(2)	70(1)
C(1)	14877(9)	6353(3)	-2903(2)	110(2)
N(2)	3320(5)	5820(2)	2602(2)	72(1)
O(2)	1622(4)	5793(2)	2844(1)	84(1)
C(2)	16937(7)	6357(3)	-1884(2)	91(2)
O(3)	15174(4)	4187(1)	-520(1)	62(1)
N(3)	14139(4)	5171(2)	-1022(1)	54(1)
C(3)	15166(6)	6026(2)	-2215(2)	69(1)
O(4)	15157(4)	5257(1)	40(1)	62(1)
C(4)	13312(6)	6131(2)	-1813(2)	57(1)
C(5)	13401(5)	5912(2)	-1085(2)	49(1)
C(6)	11417(5)	5982(2)	-783(2)	52(1)
C(7)	10828(5)	6512(2)	-393(2)	50(1)
C(8)	8781(5)	6604(2)	-149(2)	54(1)
C(9)	8693(5)	6765(2)	582(2)	49(1)
C(10)	6973(6)	6477(3)	1624(2)	72(1)
C(11)	4995(10)	6830(2)	1712(2)	87(2)
C(12)	4680(11)	7011(2)	2443(2)	103(2)
C(13)	4778(6)	6333(2)	2856(2)	64(1)
C(14)	7051(6)	5790(3)	2022(2)	79(1)
C(15)	6743(7)	5968(4)	2753(2)	94(2)
C(16)	5536(9)	5285(2)	1808(2)	91(2)
C(17)	3594(7)	5605(3)	1908(2)	86(2)
C(18)	3405(7)	6296(4)	1504(2)	109(2)
C(19)	4341(8)	6473(3)	3587(2)	101(2)
C(20)	14845(5)	4906(2)	-456(2)	50(1)
C(21)	15660(6)	3735(2)	43(2)	62(1)
C(22)	17630(7)	3947(3)	320(2)	91(2)
C(23)	14055(9)	3773(2)	560(2)	99(2)
C(24)	15751(8)	2982(2)	-266(2)	84(1)

O(1)-C(9)	1.219(4)
N(1)-C(9)	1.336(4)
N(1)-C(10)	1.471(4)
N(1)-H(1N)	0.93(4)
C(1)-C(3)	1.528(5)
C(1)-H(1A)	0.9700
C(1)-H(1B)	0.9700
C(1)-H(1C)	0.9700
N(2)-O(2)	1.262(4)
N(2)-C(13)	1.466(5)
N(2)-C(17)	1.471(5)
C(2)-C(3)	1.512(7)
C(2)-H(2A)	0.9700
C(2)-H(2B)	0.9700
C(2)-H(2C)	0.9700
O(3)-C(20)	1.349(4)
O(3)-C(21)	1.451(4)
N(3)-C(20)	1.334(4)
N(3)-C(5)	1.462(4)
N(3)-H(3N)	0.91(3)
C(3)-C(4)	1.520(6)
C(3)-H(3A)	0.9900
O(4)-C(20)	1.214(4)
C(4)-C(5)	1.526(5)
C(4)-H(4A)	0.9800
C(4)-H(4B)	0.9800
C(5)-C(6)	1.495(5)
C(5)-H(5A)	0.9900
C(6)-C(7)	1.318(4)
C(6)-H(6A)	0.9400
C(7)-C(8)	1.495(5)
C(7)-H(7A)	0.9400
C(8)-C(9)	1.507(5)
C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800
C(10)-C(14)	1.501(6)

 Table S3.
 Bond lengths [Å] and angles [°] for MCF292-29 (25).

C(10)-C(11)	1.512(7)
C(10)-H(10A)	0.9900
C(11)-C(18)	1.526(7)
C(11)-C(12)	1.531(6)
C(11)-H(11A)	0.9900
C(12)-C(13)	1.504(6)
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(13)-C(15)	1.517(7)
C(13)-C(19)	1.529(5)
C(14)-C(16)	1.458(7)
C(14)-C(15)	1.529(6)
C(14)-H(14A)	0.9900
C(15)-H(15A)	0.9800
C(15)-H(15B)	0.9800
C(16)-C(17)	1.468(7)
C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800
C(17)-C(18)	1.517(7)
C(17)-H(17A)	0.9900
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
С(19)-Н(19А)	0.9700
C(19)-H(19B)	0.9700
С(19)-Н(19С)	0.9700
C(21)-C(22)	1.511(6)
C(21)-C(24)	1.522(5)
C(21)-C(23)	1.517(6)
C(22)-H(22A)	0.9700
C(22)-H(22B)	0.9700
C(22)-H(22C)	0.9700
C(23)-H(23A)	0.9700
C(23)-H(23B)	0.9700
C(23)-H(23C)	0.9700
C(24)-H(24A)	0.9700
C(24)-H(24B)	0.9700
C(24)-H(24C)	0.9700

C(9)-N(1)-C(10)	123.3(3)
C(9)-N(1)-H(1N)	121(2)
C(10)-N(1)-H(1N)	116(2)
C(3)-C(1)-H(1A)	109.5
C(3)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
C(3)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
O(2)-N(2)-C(13)	121.1(3)
O(2)-N(2)-C(17)	118.5(3)
C(13)-N(2)-C(17)	114.9(3)
C(3)-C(2)-H(2A)	109.5
C(3)-C(2)-H(2B)	109.5
H(2A)-C(2)-H(2B)	109.5
C(3)-C(2)-H(2C)	109.5
H(2A)-C(2)-H(2C)	109.5
H(2B)-C(2)-H(2C)	109.5
C(20)-O(3)-C(21)	121.8(2)
C(20)-N(3)-C(5)	122.8(3)
C(20)-N(3)-H(3N)	116.1(19)
C(5)-N(3)-H(3N)	119.4(19)
C(2)-C(3)-C(4)	112.4(3)
C(2)-C(3)-C(1)	110.4(4)
C(4)-C(3)-C(1)	109.2(4)
C(2)-C(3)-H(3A)	108.3
C(4)-C(3)-H(3A)	108.3
C(1)-C(3)-H(3A)	108.3
C(3)-C(4)-C(5)	116.7(3)
C(3)-C(4)-H(4A)	108.1
C(5)-C(4)-H(4A)	108.1
C(3)-C(4)-H(4B)	108.1
C(5)-C(4)-H(4B)	108.1
H(4A)-C(4)-H(4B)	107.3
N(3)-C(5)-C(6)	111.0(3)
N(3)-C(5)-C(4)	110.2(3)
C(6)-C(5)-C(4)	109.6(3)
N(3)-C(5)-H(5A)	108.7

C(6)-C(5)-H(5A)	108.7
C(4)-C(5)-H(5A)	108.7
C(7)-C(6)-C(5)	125.9(3)
C(7)-C(6)-H(6A)	117.0
C(5)-C(6)-H(6A)	117.0
C(6)-C(7)-C(8)	124.6(3)
C(6)-C(7)-H(7A)	117.7
C(8)-C(7)-H(7A)	117.7
C(7)-C(8)-C(9)	112.6(3)
C(7)-C(8)-H(8A)	109.1
C(9)-C(8)-H(8A)	109.1
C(7)-C(8)-H(8B)	109.1
C(9)-C(8)-H(8B)	109.1
H(8A)-C(8)-H(8B)	107.8
O(1)-C(9)-N(1)	122.7(3)
O(1)-C(9)-C(8)	122.6(3)
N(1)-C(9)-C(8)	114.7(3)
N(1)-C(10)-C(14)	112.9(4)
N(1)-C(10)-C(11)	111.1(4)
C(14)-C(10)-C(11)	109.3(3)
N(1)-C(10)-H(10A)	107.8
С(14)-С(10)-Н(10А)	107.8
С(11)-С(10)-Н(10А)	107.8
C(10)-C(11)-C(18)	109.2(3)
C(10)-C(11)-C(12)	109.5(5)
C(18)-C(11)-C(12)	107.8(4)
С(10)-С(11)-Н(11А)	110.1
С(18)-С(11)-Н(11А)	110.1
С(12)-С(11)-Н(11А)	110.1
C(13)-C(12)-C(11)	110.5(3)
C(13)-C(12)-H(12A)	109.6
С(11)-С(12)-Н(12А)	109.6
С(13)-С(12)-Н(12В)	109.6
С(11)-С(12)-Н(12В)	109.6
H(12A)-C(12)-H(12B)	108.1
N(2)-C(13)-C(12)	108.1(4)
N(2)-C(13)-C(15)	105.7(4)
C(12)-C(13)-C(15)	109.3(4)

N(2)-C(13)-C(19)	108.3(3)
C(12)-C(13)-C(19)	112.8(4)
C(15)-C(13)-C(19)	112.4(4)
C(16)-C(14)-C(10)	110.7(4)
C(16)-C(14)-C(15)	109.0(4)
C(10)-C(14)-C(15)	109.4(4)
C(16)-C(14)-H(14A)	109.2
C(10)-C(14)-H(14A)	109.2
C(15)-C(14)-H(14A)	109.2
C(13)-C(15)-C(14)	110.5(3)
С(13)-С(15)-Н(15А)	109.5
С(14)-С(15)-Н(15А)	109.5
С(13)-С(15)-Н(15В)	109.5
С(14)-С(15)-Н(15В)	109.5
H(15A)-C(15)-H(15B)	108.1
C(14)-C(16)-C(17)	110.3(4)
С(14)-С(16)-Н(16А)	109.6
С(17)-С(16)-Н(16А)	109.6
С(14)-С(16)-Н(16В)	109.6
С(17)-С(16)-Н(16В)	109.6
H(16A)-C(16)-H(16B)	108.1
N(2)-C(17)-C(16)	110.8(4)
N(2)-C(17)-C(18)	106.1(4)
C(16)-C(17)-C(18)	109.9(4)
N(2)-C(17)-H(17A)	110.0
С(16)-С(17)-Н(17А)	110.0
С(18)-С(17)-Н(17А)	110.0
C(11)-C(18)-C(17)	109.4(3)
С(11)-С(18)-Н(18А)	109.8
С(17)-С(18)-Н(18А)	109.8
С(11)-С(18)-Н(18В)	109.8
С(17)-С(18)-Н(18В)	109.8
H(18A)-C(18)-H(18B)	108.3
С(13)-С(19)-Н(19А)	109.5
С(13)-С(19)-Н(19В)	109.5
H(19A)-C(19)-H(19B)	109.5
С(13)-С(19)-Н(19С)	109.5
H(19A)-C(19)-H(19C)	109.5

H(19B)-C(19)-H(19C)	109.5
O(4)-C(20)-N(3)	125.3(3)
O(4)-C(20)-O(3)	125.0(3)
N(3)-C(20)-O(3)	109.7(3)
O(3)-C(21)-C(22)	110.2(3)
O(3)-C(21)-C(24)	102.1(3)
C(22)-C(21)-C(24)	110.6(4)
O(3)-C(21)-C(23)	110.4(3)
C(22)-C(21)-C(23)	112.3(4)
C(24)-C(21)-C(23)	110.8(4)
C(21)-C(22)-H(22A)	109.5
C(21)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
C(21)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
С(21)-С(23)-Н(23А)	109.5
С(21)-С(23)-Н(23В)	109.5
H(23A)-C(23)-H(23B)	109.5
С(21)-С(23)-Н(23С)	109.5
H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5
C(21)-C(24)-H(24A)	109.5
C(21)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24B)	109.5
C(21)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table S4. Anisotropic displacement parameters (Å²x 10³) for MCF292-29 (**25**). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	57(2)	68(1)	57(1)	0(1)	4(1)	-8(1)
N(1)	76(2)	87(2)	46(2)	-15(2)	18(2)	-31(2)
C(1)	111(4)	164(5)	54(2)	20(3)	13(3)	6(4)
N(2)	61(2)	104(3)	51(2)	0(2)	11(2)	-21(2)
O(2)	57(2)	131(2)	63(2)	28(2)	12(1)	-14(2)
C(2)	73(3)	120(4)	79(3)	0(3)	26(3)	-8(3)
O(3)	85(2)	51(1)	51(1)	-3(1)	-15(1)	6(1)
N(3)	66(2)	53(2)	42(2)	-9(1)	-6(1)	7(1)
C(3)	74(3)	83(3)	49(2)	2(2)	13(2)	3(2)
O(4)	79(2)	61(1)	45(1)	-7(1)	-9(1)	-6(1)
C(4)	58(2)	63(2)	50(2)	1(2)	2(2)	8(2)
C(5)	49(2)	53(2)	45(2)	-3(1)	1(2)	-1(2)
C(6)	50(2)	56(2)	50(2)	-3(2)	2(2)	-4(2)
C(7)	54(2)	54(2)	44(2)	1(2)	6(2)	-2(2)
C(8)	51(2)	64(2)	47(2)	4(2)	9(2)	2(2)
C(9)	41(2)	57(2)	49(2)	4(2)	5(2)	3(2)
C(10)	72(3)	97(3)	49(2)	-21(2)	19(2)	-34(2)
C(11)	138(5)	61(2)	61(2)	16(2)	31(3)	24(3)
C(12)	166(6)	73(3)	71(3)	-3(2)	56(3)	14(3)
C(13)	61(2)	88(3)	41(2)	-4(2)	5(2)	-12(2)
C(14)	59(3)	120(4)	57(2)	7(3)	5(2)	27(3)
C(15)	67(3)	168(5)	47(2)	3(3)	-7(2)	10(3)
C(16)	143(5)	67(3)	64(3)	8(2)	29(3)	6(3)
C(17)	82(3)	120(4)	57(2)	-7(3)	0(2)	-46(3)
C(18)	59(3)	221(7)	49(2)	-2(3)	-5(2)	53(4)
C(19)	106(4)	147(4)	50(2)	-18(3)	22(2)	-33(4)
C(20)	49(2)	57(2)	42(2)	-4(2)	-4(2)	-4(2)
C(21)	71(3)	60(2)	55(2)	5(2)	-6(2)	6(2)
C(22)	84(3)	111(4)	79(3)	-7(3)	-25(2)	22(3)
C(23)	127(4)	71(3)	99(3)	2(2)	45(3)	-8(3)

Table S5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for MCF292-29 (**25**).

	Х	У	Z	U(eq)
H(1N)	6740(60)	5990(20)	714(19)	72(12)
H(1A)	16055	6285	-3162	164
H(1B)	14602	6868	-2862	164
H(1C)	13790	6114	-3120	164
H(2A)	17116	6138	-1452	137
H(2B)	16744	6875	-1834	137
H(2C)	18086	6268	-2153	137
H(3N)	13850(50)	4837(16)	-1341(16)	48(9)
H(3A)	15397	5499	-2266	83
H(4A)	12264	5852	-2024	69
H(4B)	12944	6644	-1836	69
H(5A)	14306	6244	-852	59
H(6A)	10507	5615	-879	62
H(7A)	11761	6856	-259	60
H(8A)	8042	6159	-239	65
H(8B)	8158	7002	-392	65
H(10A)	7970	6813	1804	87
H(11A)	4912	7277	1442	104
H(12A)	5686	7353	2590	124
H(12B)	3402	7242	2501	124
H(14A)	8347	5560	1964	95
H(15A)	6802	5521	3014	113
H(15B)	7787	6291	2906	113
H(16A)	5640	4833	2061	109
H(16B)	5717	5169	1339	109
H(17A)	2570	5255	1776	104
H(18A)	3537	6183	1032	131
H(18B)	2114	6512	1576	131
H(19A)	3074	6705	3628	151
H(19B)	5340	6787	3771	151
H(19C)	4330	6016	3824	151
H(22A)	18607	3919	-27	137

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

H(22B)	17979	3620	676	137
H(22C)	17569	4440	487	137
H(23A)	14020	4257	750	149
H(23B)	14312	3421	906	149
H(23C)	12806	3667	355	149
H(24A)	16775	2971	-597	126
H(24B)	14506	2871	-472	126
H(24C)	16029	2626	75	126

Irradiation survival curves in 32Dcl3 cells.

Procedure: Murine 32D cl 3 cells were suspended at 1×10^5 cells and irradiated to doses of irradiation ranging from 0 to 8 Gy using a J. L. Shepherd Mark I cesium irradiator at a dose rate of 72 cGy per min. In some groups, nitroxides were added at a concentration of 10 μ M either 1 h before irradiation or 10 min after irradiation. The cells were resuspended in methycellulose containing 10% serum and 15% WEHI-3 conditioned medium as a source of IL3, and incubated at 37 °C for 7 d, at which colonies of >50 cells were counted. The data was analyzed using linear quadratic and single-hit, multi-target models.

	Before Irradiation		After Irradiation		
Compound	D ₀	ñ	D ₀	ñ	
Control	1.4	1.0	1.7	1.0	
	1.3	1.0	1.8	1.0	
	1.3	1.1	1.7	1.2	
	1.2	1.1	1.3	2.1	
TEMPO	1.3	1.0	1.6	1.0	
	1.3	1.0	1.3	1.7	
JP4-039	2.8	1.0	1.3	3.7	
	2.3	1.0	1.2	3.2	
	1.7	0.9	1.0	3.6	
	1.7	1.2	1.3	4.5	
BODOPY®-FL-JP4-	2.8	1.4	1.4	3.4	
039	3.2	1.2	1.2	5.6	
			1.3	4.2	
BODOPY®-R6G-			1.5	4.0	
JP4-039			1.6	2.2	
ΤΜΙΟ	2.1	0.9	1.4	2.0	
	1.6	1.0	1.2	2.9	
	1.8	1.0	1.2	2.5	
ABNO	4.3	1.0	1.5	1.8	
	2.7	1.1	1.4	2.4	
	2.3	1.0	1.2	2.1	
1-Me-AZADO	3.5	1.0	1.5	2.6	
	2.3	1.1	1.2	4.0	
	2.1	0.9	1.3	1.5	

Data used to calculate D_0 and \tilde{n} for Organic and Biomolecular Chemistry manuscript.

Visualization of **33** in KM101 cells. Panel A: Untreated KM101 cells. Panel B: KM101 cells incubated with BODIPY®-R6G-JP4-039 (**33**, red). Panel C: KM101 cells incubated with BODIPY®-R6G-JP4-039 (**33**, red) + MitoTracker Deep Red FM (grey). Panel D: GFP⁺ KM101 cells. Panel E: GFP⁺ KM101 cells incubated with BODIPY®-R6G-JP4-039 (**33**, red). Panel F: GFP⁺ KM101 cells incubated with BODIPY®-R6G-JP4-039 (**33**, red). Panel F: GFP⁺ KM101 cells incubated with BODIPY®-R6G-JP4-039 (**33**, red). Panel F: GFP⁺ KM101 cells incubated with BODIPY®-R6G-JP4-039 (**33**, red). Panel F: GFP⁺ KM101 cells incubated with BODIPY®-R6G-JP4-039 (**33**, red). Panel F: GFP⁺ KM101 cells incubated with BODIPY®-R6G-JP4-039 (**33**, red). Panel F: GFP⁺ KM101 cells incubated with BODIPY®-R6G-JP4-039 (**33**, red). Panel F: GFP⁺ KM101 cells incubated with BODIPY®-R6G-JP4-039 (**33**, red). Panel F: GFP⁺ KM101 cells incubated with BODIPY®-R6G-JP4-039 (**33**, red). Panel F: GFP⁺ KM101 cells incubated with BODIPY®-R6G-JP4-039 (**33**, red). Panel F: GFP⁺ KM101 cells incubated with BODIPY®-R6G-JP4-039 (**33**, red). Panel F: GFP⁺ KM101 cells incubated with BODIPY®-R6G-JP4-039 (**33**, red). Panel F: GFP⁺ KM101 cells incubated with BODIPY®-R6G-JP4-039 (**33**, red). Panel F: GFP⁺ KM101 cells incubated with BODIPY®-R6G-JP4-039 (**33**, red). Panel F: GFP⁺ KM101 cells incubated with BODIPY®-R6G-JP4-039 (**33**, red). Panel F: GFP⁺ KM101 cells incubated with BODIPY®-R6G-JP4-039 (**34**, red). Panel F: GFP⁺ KM101 cells incubated with BODIPY®-R6G-JP4-039 (**35**, red). Panel F: GFP⁺ KM101 cells incubated with BODIPY®-R6G-JP4-039 (**35**, red). Panel F: GFP⁺ KM101 cells incubated with BODIPY®-R6G-JP4-039 (**36**, red). Panel F: GFP⁺ KM101 cells incubated with BODIPY®-R6G-JP4-039 (**36**, red). Panel F: GFP⁺ KM101 cells incubated with BODIPY®-R6G-JP4-039 (**36**, red). Panel F: GFP⁺ KM101 cells incubated with BODIPY®-R6G-JP4-039 (**36**, red). Panel F: GFP⁺ KM101 cells incubated KM101 cells incubated KM101 cells incubated KM101 cells incubated

In Panels C and F, pink colors indicate co-localization of MitoTracker Deep Red FM and BODIPY®-R6G-JP4-039.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

NMR Spectra

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013

0.88

