Supporting Information

Synthesis of analogs of the radiation mitigator JP4-039 and visualization of BODIPY derivatives in mitochondria

\author{
Marie-Céline Frantz, ${ }^{a}$ Erin M. Skoda, ${ }^{a}$ Joshua R. Sacher, ${ }^{a}$ Michael W. Epperly, ${ }^{b}$ Julie Goff, ${ }^{b}$ Joel S. Greenberger, ${ }^{b}$ and Peter Wipf ${ }^{* a, c}$
 [^0]}

Contents

General Information S2
2-Benzyl-1,1,3,3-tetramethylisoindoline. S3
1,1,3,3-Tetramethylisoindoline. S3
1,1,3,3-Tetramethylisoindolin-2-yloxyl (TMIO, 1). S4
5-Amino-1,1,3,3-tetramethylisoindolin-2-yloxyl (5-amino-TMIO, 2). S4
(S, E)- N-(1,1,3,3-Tetramethyl-2-oxo-isoindolin-5-yl)-5-(tert-butoxycarbonylamino)-7-methyloct-3-enamide (12). S5
9-Benzyl-9-azabicyclo[3.3.1]nonan-3-one (13). S6
9-Benzyl-9-azabicyclo[3.3.1]nonan-3-one oxime (14) S6
tert-Butyl 9-benzyl-9-azabicyclo[3.3.1]nonan-3-ylcarbamate (15) S7
3-(tert-Butoxycarbonylamino)-9-azabicyclo[3.3.1]nonane N-oxyl (3-Boc-amino-ABNO, 16). S7
3-Amino-9-azabicyclo[3.3.1]nonane N-oxyl (3-amino-ABNO, 6). S8
tert-Butyl (S,E)-8-(9-benzyl-9-azabicyclo[3.3.1]nonan-3-ylamino)-2-methyl-8-oxooct-5-en-4-ylcarbamate (18). S8
(S,E)-N-(9-Azabicyclo[3.3.1]nonan-9-oxo-3-yl)-5-(tert-butoxycarbonylamino)-7-methyloct-3-enamide (17). S9
2-Adamantanecarbonitrile. S10
2-Adamantane carboxylic acid. S10
5,7-Dibromo-2-adamantane carboxylic acid (19). S10
(5,7-Dibromoadamantan-2-yl)-carbamic acid tert-butyl ester (20). S11
(7-Methylenebicyclo[3.3.1]nonan-3-one-9-yl)-carbamic acid tert-butyl ester (21). S11
(7-Methylenebicyclo[3.3.1]nonan-3-one oxime-9-yl)-carbamic acid tert-butyl ester (22). S12
(1-Iodomethyl-2-azaadamantan-6-yl)-carbamic acid tert-butyl ester (23). S13
(1-Methyl-2-azaadamantane- N-oxyl-6-yl)-carbamic acid tert-butyl ester (6-Boc-amino-1-Me-AZADO, 24). S13
6-Amino-1-methyl-2-azaadamantane- N-oxyl (6-amino-1-Me-AZADO, 8) S14
6-Amino-1-methyl-2-azaadamantane (26). S14
(S,E)-N-(1-Methyl-2-azaadamant-2-oxo-6-yl)-5-(tert-butoxycarbonylamino)-7-methyloct-3-enamide (25) S14
(S,E)-Methyl 5-((tert-butoxycarbonyl)amino)-7-methyloct-3-enoate (27) S15
(S, E)-5,5-difluoro-3-(3-((8-methoxy-2-methyl-8-oxooct-5-en-4-yl)amino)-3-oxopropyl)-7,9-dimethyl-5 H -dipyrrolo- [1,2-c:2', 1 '-f][1,3,2]diazaborinin-4-ium-5-uide (29). S16
(S,E)-5,5-Difluoro-3-(3-((8-((1-oxo-2,2,6,6-tetramethylpiperidin-4-yl)amino)-2-methyl-8-oxooct-5-en-4-yl)amino)-3-oxopropyl)-7,9-dimethyl-5H-dipyrrolo[1,2-c:2', $\left.1^{\prime}-f\right][1,3,2]$ diazaborinin-4-ium-5-uide (BODIPY-FL-JP4-039, 30). S16
(S, E)-5,5-Difluoro-3-(3-((8-((1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl)amino)-2-methyl-8-oxooct-5-en-4-yl)am-ino)-
3-oxopropyl)-7-phenyl-5H-dipyrrolo[1,2-c:2', 1 '-f][1,3,2]diazaborinin-4-ium-5-uide
(BODIPY®-R6G-JP4-039, 33). S17
X-Ray crystallography data for 25. S19
Irradiation survival curves for JP4-039, 30, 33, 12, 17, and 25 in 32Dcl3 cells. S29
Visualization of $\mathbf{3 3}$ in KM101 cells. S31
NMR spectra for new compounds S32

General Information. All moisture- and air-sensitive reactions were performed using syringe-septum cap techniques under an inert atmosphere (N_{2} or argon) in glassware that was dried in an oven at $140{ }^{\circ} \mathrm{C}$ for at least 2 h prior to use. Reactions carried out at a temperature below $0{ }^{\circ} \mathrm{C}$ employed a brine/ice bath or a $\mathrm{CO}_{2} /$ acetone bath. All reagents and solvents were used as received unless otherwise specified. THF and $\mathrm{Et}_{2} \mathrm{O}$ were distilled over sodium/benzophenone ketyl; MeOH was distilled over magnesium; benzene, acetonitrile and DME were distilled over CaH_{2}; DMF was distilled and stored over $4 \AA$ molecular sieves; pyridine and triethylamine were distilled over CaH_{2} and stored over $\mathrm{KOH} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and toluene were purified using an alumina column filtration system. Analytical thin-layer chromatography (TLC) was performed on pre-coated $\mathrm{SiO}_{2} 60 \mathrm{~F}_{254}$ plates ($250 \mu \mathrm{~m}$ layer thickness) available from Merck. Visualization was accomplished by UV irradiation at 254 nm and/or by staining with Vaughn's reagent $\left(4.8 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right.$ and 0.2 g $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ in 100 mL of a $3.5 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution), a KMnO_{4} solution ($1.5 \mathrm{~g} \mathrm{KMnO}_{4}$ and $1.5 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$ in 100 mL of a $0.1 \% \mathrm{NaOH}$ solution), a ninhydrin solution (2 g ninhydrin in 100 mL EtOH), a PMA solution (5 g phosphomolybdic acid in 100 mL EtOH), or a p-anisaldehyde solution ($2.5 \mathrm{~mL} p$-anisaldehyde, 2 mL AcOH and 3.5 mL conc. aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 100 mL EtOH). Flash column chromatography was performed using $\mathrm{SiO}_{2} 60$ (particle size $0.040-0.055 \mathrm{~mm}, 230-400 \mathrm{mesh}$, or Silicycle SiliaFlash ${ }^{\circledR}$ P60, 40-63 $\mu \mathrm{m}$). Melting points were determined on a Laboratory Devices Mel-Temp II capillary melting point apparatus fitted with a Fluke 51 II digital thermometer. Optical rotations were determined using a PerkinElmer 241 polarimeter. Infrared spectra were recorded on a Smiths IdentifyIR ATR spectrometer. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a Bruker Avance 300 or 400 instrument at $300 / 75 \mathrm{MHz}$ or $400 / 100 \mathrm{MHz}$, respectively. Chemical shifts were reported in parts per million (ppm) as referenced to residual solvent. ${ }^{1} \mathrm{H}$ NMR spectra are tabulated as follows: chemical shift, multiplicity (app = apparent, $\mathrm{b}=$ broad, $\mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintuplet, sext, $=$ sextuplet, $\mathrm{m}=$ multiplet , number of protons, coupling constant(s$).{ }^{13} \mathrm{C}$ NMR were obtained using a protondecoupled pulse sequence and are tabulated by observed peak. LC-MS analyses were performed on a Shimadzu UFLC instrument equiped with an Applied Biosystems MDS SCIEX API 2000 mass spectrometer (ESI), under the following conditions: column: Varian Polaris C18-A ($100 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$) equilibrated at $40{ }^{\circ} \mathrm{C}$; buffer $\mathrm{A}: ~ 0.1 \%$ aqueous AcOH , buffer B: $0.1 \% \mathrm{AcOH}$ in $\mathrm{MeCN} ; 30 \mathrm{~min}$ gradient: 5% buffer B in buffer A for 1 min , then 5 to 95% buffer B in buffer A over 13 min , then 95% buffer B in buffer A for 4 min , then 95 to 5% buffer B in buffer A over 7 min , then 5% buffer B in buffer A for 5 min ; flow rate: $0.2 \mathrm{~mL} / \mathrm{min}$; detection: TIC and/or UV $\lambda=254 / 280 \mathrm{~nm}$. Mass spectra were obtained on a Waters Autospec double focusing mass spectrometer (EI) or a Waters Q-Tof mass spectrometer (ESI), at the University of Pittsburgh Mass Spectrometry facility. Experimental procedures and spectral details for compounds 11 and JP4-039 have previously been reported in Org. Lett. 2011, 13, 2318-2321.

2-Benzyl-1,1,3,3-tetramethylisoindoline. ${ }^{1}$ An oven-dried 250 mL , three-necked, round-bottom flask was flushed with nitrogen, and magnesium turnings ($3.84 \mathrm{~g}, 156 \mathrm{mmol}$) were introduced, that were covered with dry $\mathrm{Et}_{2} \mathrm{O}(9 \mathrm{~mL})$. A solution of MeI $(9.45 \mathrm{~mL}, 150 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{~mL})$ was then added dropwise via a dropping funnel while stirring over a period of 50 min . The resulting reaction mixture was then stirred for an additional 30 min , and then concentrated by slow distillation of solvent until the internal temperature reached $80^{\circ} \mathrm{C}$. The residue was allowed to cool to $60^{\circ} \mathrm{C}$, and a solution of N-benzylphtalimide ($6.00 \mathrm{~g}, 25.0 \mathrm{mmol}$) in dry toluene (76 mL) was added dropwise via a dropping funnel with stirring at a sufficient rate to maintain this temperature. When the addition was complete, solvent was distilled slowly from the mixture until the temperature reached $108-110{ }^{\circ} \mathrm{C}$. The reaction mixture was refluxed at $110{ }^{\circ} \mathrm{C}$ for 4 h , then concentrated again by further solvent distillation. It was then cooled to rt and diluted with hexanes. The resulting purple slurry was filtered through Celite and washed with hexanes. The combined yellow filtrate turned dark red-purple after standing in air overnight. It was then concentrated in vacuo. The resulting purple residue was passed through a short column of basic alumina (grade I, 70-230 mesh), eluting with hexanes ($\sim 1 \mathrm{~L}$), to afford $2.58 \mathrm{~g}(39 \%)$ of the title compound as a colorless oil which solidified to give a white solid. Representative experimental data are as follows: mp 61.0-61.4 ${ }^{\circ} \mathrm{C}$ (lit. $63-64{ }^{\circ} \mathrm{C}$ from MeOH or EtOH); IR (neat) 3081, 3062, 3047, 3019, 3006, 2978, 2965, 2958, 2918, 2890, 2849, 2820, $1485,1446,1379,1372,1355,1319,1299,1284,1265,1237,1211,1195,1176,1161,1140,1120,1103,1073,1045$, $1025,945,932,904,874,827,790,760,751,742,701,686 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{app} \mathrm{d}, 2 \mathrm{H}, J=7.2$ Hz), 7.34-7.19 (m, 5 H), 7.18-7.11 (m, 2 H), $4.00(\mathrm{~s}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.0$, 143.6, 128.5, 128.1, 127.0, 126.5, 121.5, 65.4, 46.5, 28.6; EI-MS $m / z 265\left(\mathrm{M}^{+}, 25\right), 251$ (100), 235 (53), 158 (69), 144 (86), 128 (60), 115 (67), 103 (67), 92 (86), 77 (65), 65 (84); HRMS (EI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N} 265.1830$, found 265.1824.

1,1,3,3-Tetramethylisoindoline. ${ }^{1} \quad$ 2-Benzyl-1,1,3,3-tetramethylisoindoline ($3 \times 621 \mathrm{mg}, 7.02 \mathrm{mmol}$) was dissolved in $\mathrm{AcOH}(3 \times 11 \mathrm{~mL})$ in 3 separated Parr flasks, then $10 \% \mathrm{Pd} / \mathrm{C}(3 \times 56.5 \mathrm{mg})$ was added. The flasks were placed in 3 high pressure reactors. The reactors were charged with H_{2} and purged for 5 cycles and was finally pressurized with H_{2} at 4 bars (60 psi). After stirring at rt for 3 h , the combined reaction mixtures were filtered through Celite, and the solvent removed in vacuo. The resulting residue was dissolved in water $(5 \mathrm{~mL})$ and the solution neutralized with 2.5 N aq. $\mathrm{NaOH}(\mathrm{pH}$ 11.5), and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to yield $1.16 \mathrm{~g}(95 \%)$ of the crude title compound as slightly yellow crystals. Representative experimental data are as follows: $\mathrm{mp} 36.0-36.5^{\circ} \mathrm{C}$ (lit. $36-38^{\circ} \mathrm{C}$ from $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$); IR (neat) $3064,3036,3013,2956,2920,2861,1478$, $1459,1441,1414,1372,1359,1314,1297,1241,1209,1178,1165,1139,1124,1105,1023,1001,993,932,883,764$, $734,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{bs}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.9,127.2,121.6,62.9,32.1$.

[^1]
$\mathbf{1 , 1 , 3 , 3 - T e t r a m e t h y l i s o i n d o l i n - 2 - y l o x y l}(T M I O, 1) .{ }^{1}$ To a solution of 1,1,3,3-tetramethylisoindoline ($1.46 \mathrm{~g}, 8.33 \mathrm{mmol}$) in a $14: 1$ mixture of $\mathrm{MeOH} / \mathrm{MeCN}(16.6 \mathrm{~mL})$ were added successively $\mathrm{NaHCO}_{3}(560 \mathrm{mg}, 6.67 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{WO}_{4} \bullet 2 \mathrm{H}_{2} \mathrm{O}$ ($83.3 \mathrm{mg}, 0.25 \mathrm{mmol}$) and 30% aq. $\mathrm{H}_{2} \mathrm{O}_{2}(3.12 \mathrm{~mL}, 27.50 \mathrm{mmol})$. The resulting suspension was stirred at rt. After 18 h , a bright yellow suspension formed and 30% aq. $\mathrm{H}_{2} \mathrm{O}_{2}(3.00 \mathrm{~mL}, 26.44 \mathrm{mmol})$ was added. The reaction mixture was stirred for 2 days, then diluted with water and extracted twice with hexanes. The combined organic layers were washed with 1 M aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to yield $1.55 \mathrm{~g}(98 \%)$ of crude 1 as a yellow crystalline powder, that was carried on without further purification. Representative experimental data are as follows: mp $122-125^{\circ} \mathrm{C}$ (softening point: $108{ }^{\circ} \mathrm{C}$) (lit. $128-129^{\circ} \mathrm{C}$ from petroleum ether); IR (neat) $2971,2922,2859,1670,1482$, $1465,1450,1427,1372,1353,1316,1295,1278,1165,1120,1109,1021,760,678 \mathrm{~cm}^{-1}$; EI-MS m/z 268 (100), 252 (30), 239 (43), $191\left(\mathrm{M}^{+}, 75\right), 155(60)$; HRMS (EI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}$ 191.1310, found 191.1306.

5-Amino-1,1,3,3-tetramethylisoindolin-2-yloxyl (5-amino-TMIO, 2). ${ }^{2}$ Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(13.5 \mathrm{~mL})$ was added dropwise via syringe to TMIO ($1.34 \mathrm{~g}, 7.07 \mathrm{mmol}$, crude) cooled in an ice-water bath, forming a dark-red solution which was then warmed to $60^{\circ} \mathrm{C}$ for 15 min and then cooled to $0^{\circ} \mathrm{C}$. Conc. $\mathrm{HNO}_{3}(0.90 \mathrm{~mL}, 19.1 \mathrm{mmol})$ was added dropwise via syringe. When the reaction appeared complete, the yellow-orange solution was heated at $100{ }^{\circ} \mathrm{C}$ for 10 min , the color turning to red-orange. After cooling to rt, the reaction mixture was neutralized by careful addition to ice-cooled $2.5 \mathrm{~N} \mathrm{aq} . \mathrm{NaOH}(30$ mL , final $\mathrm{pH}>12$). This aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ until it became colorless and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to yield $1.64 \mathrm{~g}(98 \%)$ of crude 5-nitro-1,1,3,3-tetramethylisoindolin-2-yloxyl ${ }^{3}$ as a yellow-orange powder, that was carried on without further purification.

A flask containing a solution of 5-nitro-1,1,3,3-tetramethylisoindolin-2-yloxyl ($1.50 \mathrm{~g}, 6.38 \mathrm{mmol}$, crude) in MeOH (75 $\mathrm{mL})$ was purged and filled with argon, then $10 \% \mathrm{Pd} / \mathrm{C}(150 \mathrm{mg})$ was added. The flask was purged and filled 3 times with H_{2}, and the resulting black suspension was stirred at rt under $\mathrm{H}_{2}(1 \mathrm{~atm})$ for 4 h . The reaction mixture was then filtered through Celite, the Celite washed with MeOH , and the solution concentrated in vacuo to yield 1.38 g of the crude hydroxylamine as a yellow solid that was carried on without further purification. Representative experimental data are as follows: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.89(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 6.62(\mathrm{dd}, 1 \mathrm{H}, J=8.1,2.1 \mathrm{~Hz}), 6.54(\mathrm{~d}, 1 \mathrm{H}, J=2.1$ Hz), 3.35 (s, 2 H), 1.35 ($\mathrm{s}, 6 \mathrm{H}$), 1.33 (s, 6 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 148.1$, 147.4, 136.5, 123.3, 116.3, 110.0, 68.3, 68.0, 27.1, 26.8.

To a solution of the crude hydroxylamine $(1.38 \mathrm{~g}, 6.38 \mathrm{mmol})$ in $\mathrm{MeOH}(75 \mathrm{~mL})$ was added $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(26 \mathrm{mg}, 0.128$ $\mathrm{mmol})$. The reaction mixture was stirred at rt under air for 1.5 h , the color turning to dark brown. The solvent was then removed in vacuo, the residue taken up in CHCl_{3} and a small amount of MeOH to dissolve the insoluble material, and washed with water. The aqueous phase was extracted twice with CHCl_{3}, and the combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. Chromatography of the residue on SiO_{2} (6:4 to 5:5, hexanes $/ \mathrm{EtOAc}$) afforded $1.13 \mathrm{~g}(86 \%, 2$ steps $)$ of $\mathbf{2}$ as a yellow powder. Representative experimental data are as follows:

[^2]mp 192-194 ${ }^{\circ} \mathrm{C}$ (softening point: $189{ }^{\circ} \mathrm{C}$) (lit. $198^{\circ} \mathrm{C}$ from 1:2, benzene/petroleum ether); IR (neat) 3463, 3429, 3368, $3353,3239,3049,2969,2924,2857,1640,1619,1588,1580,1508,1495,1452,1424,1372,1357,1334,1314,1297$, 1280, 1247, 1161, 1120, 1068, 1042, 943, 924, 885, 867, 820, $680 \mathrm{~cm}^{-1}$; EI-MS $m / z 205\left(\mathrm{M}^{+}, 75\right), 190(90), 175(58), 173$ (68), 160 (100), 144 (65), 130 (63), 115 (43), 91 (35), 77 (36); HRMS (EI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O} 205.1341$, found 205.1336 .

(S,E)-N-(1,1,3,3-Tetramethyl-2-oxo-isoindolin-5-yl)-5-(tert-butoxycarbonylamino)-7-methyloct-3-enamide (12). To a solution of the alcohol $\mathbf{1 0}(187 \mathrm{mg}, 0.728 \mathrm{mmol})$ in acetone $(7 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was slowly added a solution of Jones reagent $(2.5 \mathrm{M}, 0.73 \mathrm{~mL}, 1.82 \mathrm{mmol})$. The resulting dark suspension was stirred at $0^{\circ} \mathrm{C}$ for 1 h , then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and water. The aqueous phase was separated and extracted with twice $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with water (2 x) and brine (1 x), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to yield $190 \mathrm{mg}(96 \%)$ of the crude acid $\mathbf{1 1}$ as a slightly yellow oil, that was carried on without further purification.

To a solution of acid $\mathbf{1 1}\left(187 \mathrm{mg}, 0.691 \mathrm{mmol}\right.$, crude) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added successively $2(213 \mathrm{mg}$, 1.04 mmol), DMAP ($93.7 \mathrm{mg}, 0.760 \mathrm{mmol}$), $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(103 \mathrm{mg}, 0.760 \mathrm{mmol})$ and EDCI ($162 \mathrm{mg}, 0.829 \mathrm{mmol}$). The resulting yellowish solution was stirred at rt for 16 h , and then washed with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was separated and extracted once with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were washed with $1 \mathrm{~N} \mathrm{aq} . \mathrm{HCl}(2 \mathrm{x})$ and sat. aq. $\mathrm{NaHCO}_{3}(1 \mathrm{x})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. Chromatography of the residue on $\mathrm{SiO}_{2}(6: 4$, hexanes/EtOAc) afforded $221 \mathrm{mg}\left(70 \%, 67 \%\right.$ over 2 steps) of $\mathbf{1 2}$ as a pale orange foam: mp $78-79{ }^{\circ} \mathrm{C}$ (softening point: 70 $\left.{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{22}+72.2\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat) $3310(\mathrm{br}), 2969,2926,2864,1675,1618,1599,1526,1493,1465,1452,1429$, $1420,1388,1362,1325,1310,1280,1243,1161,1118,1042,1021,969,872,826 \mathrm{~cm}^{-1} ;$ EI-MS m/z $458\left(\mathrm{M}^{+}, 72\right), 428$ (50), 372 (30), 342 (37), 175 (49), 160 (31), 91 (44), 73 (61), 69 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{4} 458.3019$, found 458.3011.
A sample of this nitroxide ($44.8 \mathrm{mg}, 0.0977 \mathrm{mmol}$) was dissolved in dry $\mathrm{MeOH}(0.9 \mathrm{~mL})$ and L-ascorbic acid (17.4 mg , 0.0977 mmol) was added. The orange solution turned slighly yellow within a few minutes. After stirring at rt for 50 min , an additional amount of L-ascorbic acid $(8.7 \mathrm{mg}, 0.0488 \mathrm{mmol})$ was added, but a complete discoloration of the solution could not be achieved and a residual amount of starting material was seen on TLC. After stirring for 1.5 h , the solvent was removed in vacuo. The resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with water. The aqueous phase was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to yield $42.6 \mathrm{mg}(95 \%)$ of the corresponding hydroxylamine (contaminated with nitroxide) as a pale yellow foam: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, broad) $\delta 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}), 7.09(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 6.65(\mathrm{bs}, 1 \mathrm{H}), 5.75-5.68$ $(\mathrm{m}, 1 \mathrm{H}), 5.68-5.50(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{app} \mathrm{bs}, 1 \mathrm{H}), 3.22-3.00(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.05(\mathrm{~m}, 2 \mathrm{~s}$ at 1.41 and $1.38,23 \mathrm{H}), 0.91(\mathrm{~d}, 6 \mathrm{H}, J=4.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 172.3,158.0,158.0,147.0,142.3,139.2$, 137.1, $124.0,123.1,120.8,115.0,79.9,68.5,68.2,51.8,45.3,41.7,29.0,28.9,26.9,26.8,25.9,23.3,22.7$.

9-Benzyl-9-azabicyclo[3.3.1]nonan-3-one (13). ${ }^{4}$ A mecanically stirred solution of acetonedicarboxylic acid (3.24 g, 21.5 $\mathrm{mmol})$ and glutaraldehyde (24% in water, $12.7 \mathrm{~mL}, 32.3 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ was treated at $0{ }^{\circ} \mathrm{C}$ with benzylamine (2.0 $\mathrm{mL}, 17.9 \mathrm{mmol}$). The resulting pale yellow paste was vigorously stirred at rt under argon for 12 h . The brownish reaction mixture was then adjusted to $\mathrm{pH}<2$ with conc. HCl and the resulting clear brown solution heated to $60{ }^{\circ} \mathrm{C}$ for 1 h to complete decarboxylation. After cooling, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. It was then adjusted to $\mathrm{pH}>$ 12 with solid NaOH and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 50 \mathrm{~mL})$. These combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. Chromatography of the residue on $\mathrm{SiO}_{2}(7: 3$, hexanes/EtOAc) afforded $\mathbf{1 3}$ ($2.83 \mathrm{~g}, 69 \%$) as a colorless crystalline solid. Representative experimental data are as follows: mp 70.3-70.5 ${ }^{\circ} \mathrm{C}$ (hexanes/EtOAc) (lit. 63-66 ${ }^{\circ} \mathrm{C}$); IR (neat) $3062,3025,2934,2921,2874,2846,1689,1493,1456,1441,1415,1403,1362,1338,1329,1320,1305$, $1288,1279,1266,1219,1202,1185,1133,1100,1070,1029,1018,984,947,911,844,766,731,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.48-7.20(\mathrm{~m}, 5 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}), 3.32(\mathrm{app} \mathrm{s}, 2 \mathrm{H}), 2.74(\mathrm{dd}, 2 \mathrm{H}, J=16.2,6.6 \mathrm{~Hz}), 2.26(\mathrm{~d}, 2 \mathrm{H}, J=$ $16.2 \mathrm{~Hz}), 2.08-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.40(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 211.9,139.4,128.6,128.5,127.3,57.2$, 53.7, 43.0, 29.5, 16.8; ESI-MS $m / z 230\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 172$ (42); HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}(\mathrm{M}+\mathrm{H}) 230.1545$, found 230.1550 .

9-Benzyl-9-azabicyclo[3.3.1]nonan-3-one oxime (14). To a solution of ketone $\mathbf{1 3}$ ($2.40 \mathrm{~g}, 10.5 \mathrm{mmol}$) in EtOH (28 mL) were added $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(1.48 \mathrm{~g}, 20.9 \mathrm{mmol})$ and then 3 N aq. $\mathrm{NaOH}(7.0 \mathrm{~mL}, 20.9 \mathrm{mmol})$. The reaction mixture was refluxed under argon for 14 h , then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The layers were separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the insoluble material filtered and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford 1.42 g of a first crop of product as colorless crystals. Chromatography of the mother liquor on SiO_{2} ($8: 2$ to $4: 6$, hexanes/EtOAc) afforded 1.11 g of a second crop as a colorless crystalline solid. The total amount of $\mathbf{1 4}$ obtained was 2.53 g (99%): mp $135.4-135.7^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat) 3300-2500 (br), 3057, 3157, 2960, 2939, 2921, 2883, 2842, 1644, 1497, 1467, 1456, $1433,1418,1389,1364,1357,1348,1323,1286,1266,1243,1210,1197,1111,1096,1079,1074,1059,1005,980,964$, 952, $928,900,841,760,747,723,693 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.72(\mathrm{bs}, 1 \mathrm{H}), 7.44-7.20(\mathrm{~m}, 5 \mathrm{H}), 3.88(\mathrm{~s}, 2$ H), $3.14-3.05(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}), 2.73(\mathrm{dd}, 1 \mathrm{H}, J=15.4,5.9 \mathrm{~Hz}), 2.38(\mathrm{dd}, 1 \mathrm{H}, J=16.3,6.8 \mathrm{~Hz}), 2.25$ $(\mathrm{d}, 1 \mathrm{H}, J=15.3 \mathrm{~Hz}), 2.05-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.60-1.44(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 160.0,139.7,128.6,128.5$, 127.2, 57.0, 51.9, 51.2, 32.0, 29.8, 29.0, 25.9, 17.3; ESI-MS $m / z 245\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H}) 245.1654$, found 245.1642 .

[^3]
tert-Butyl 9-benzyl-9-azabicyclo[3.3.1]nonan-3-ylcarbamate (15). A suspension of oxime 14 ($1.30 \mathrm{~g}, 5.34 \mathrm{mmol}$) and $\mathrm{NiCl}_{2}(69.2 \mathrm{mg}, 0.534 \mathrm{mmol})$ in $\mathrm{MeOH}(25 \mathrm{~mL})$ was treated at $-20^{\circ} \mathrm{C}$ with $\mathrm{NaBH}_{4}(2.13 \mathrm{~g}, 53.4 \mathrm{mmol})$ portionwise. The resulting dark mixture was vigorously stirred between -20 and $-10^{\circ} \mathrm{C}$ under argon. After 1.5 h , a solution of $\mathrm{NaBH}_{4}(1.70$ $\mathrm{g}, 42.7 \mathrm{mmol}$) in water (5 mL) was added. The reaction mixture was stirred at the same temperature for 1.5 h , then warmed to rt . After stirring for 1 h at rt , the mixture was quenched carefully with acetone, then filtered over Celite and the brown solid rinsed with MeOH . The solution was concentrated in vacuo, and the residue was taken up in water, acidified with 6 N aq. $\mathrm{HCl}(\mathrm{pH}<2)$, extracted twice with $\mathrm{Et}_{2} \mathrm{O}$, then basified with solid $\mathrm{NaOH}(\mathrm{pH}>9)$ and extracted twice with CHCl_{3}. An emulsion formed with a white precipitate that was filtered over Celite. The combined chloroformed layers were washed with brine, dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, filtered and concentrated in vacuo to afford 1.49 g of the crude amine as a pale yellow oil that was carried on to the next step without further purification.

To a solution of this amine in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(2.25 \mathrm{~mL}, 16.0 \mathrm{mmol})$ and then $\mathrm{Boc}_{2} \mathrm{O}(1.29 \mathrm{~g}, 5.87$ mmol) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at rt under argon for 18 h , then quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the insoluble material filtered to afford 481 mg of a first crop of $\mathbf{1 5}$ as a white powder. Chromatography of the mother liquor on SiO_{2} (9:1 to 5:5, hexanes/EtOAc) afforded 4 other fractions of different purity for a total amount of 964 mg . The total amount of $\mathbf{1 5}$ obtained was $c a .1 .44 \mathrm{~g}(82 \%, 2$ steps $)$. A sample of 15 was recrystallized in $\mathrm{EtOH}(c a .4 \mathrm{~mL})$ to afford colorless crystals. ${ }^{1} \mathrm{H}$ NMR showed a $3: 1$ mixture of stereoisomers: mp $153.6-155.0^{\circ} \mathrm{C}(\mathrm{EtOH})$; IR (neat) 3312 (br), 3023, 2988, 2971, 2943, 2911, 2861, 2846, 2826, 2809, 1672, 1532, 1493, $1472,1450,1387,1364,1316,1303,1290,1282,1254,1228,1185,1169,1133,1068,1046,1029,1018,874,837,766$, $736,699,671 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.40-7.18(\mathrm{~m}, 5 \mathrm{H}), 4.40-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 2$ H), 3.07 (bd, $2 \mathrm{H}, J=11.1 \mathrm{~Hz}$), $2.38(\mathrm{ddd}, 2 \mathrm{H}, J=12.0,12.0,6.3 \mathrm{~Hz}), 1.93(\mathrm{~d}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}), 1.60-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.46$ $(\mathrm{s}, 9 \mathrm{H}), 1.15(\mathrm{app} \mathrm{td}, 2 \mathrm{H}, J=11.0,3.0 \mathrm{~Hz}), 0.99(\mathrm{app} \mathrm{bd}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}){ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 155.5,140.7$, $128.5,128.4,126.9,79.2,56.0,49.4,42.9,34.2,28.7,24.8,14.5$; ESI-MS $m / z 331\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 275\left([\mathrm{M}-t-\mathrm{Bu}+\mathrm{H}]^{+}, 93\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})$ 331.2386, found 331.2392.

3-(tert-Butoxycarbonylamino)-9-azabicyclo[3.3.1]nonane \boldsymbol{N}-oxyl (3-Boc-amino-ABNO, 16). A flask containing a suspension of the Bn-protected amine $\mathbf{1 5}(715 \mathrm{mg}, 2.16 \mathrm{mmol})$ and $\mathrm{AcOH}(5 \mathrm{drops})$ in $10: 1 \mathrm{EtOH} / \mathrm{EtOAc}(30 \mathrm{~mL})$ was purged and filled 3 times with argon, then $10 \% \mathrm{Pd} / \mathrm{C}(143 \mathrm{mg})$ was added. The flask was purged and filled 3 times with H_{2}, and the resulting black suspension was stirred at $40-50{ }^{\circ} \mathrm{C}$ under $\mathrm{H}_{2}(1 \mathrm{~atm})$ for 3 h . The reaction mixture was then filtered through a pad of Celite, the Celite washed with EtOAc and MeOH , and the solution concentrated in vacuo to afford 591 mg of the crude amine as a white powder, that was carried on to the next step without further purification.
To a suspension of this amine ($755 \mathrm{mg}, 3.14 \mathrm{mmol}$) in $\mathrm{MeCN}(3.1 \mathrm{~mL})$ was added $\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(523 \mathrm{mg}, 1.57 \mathrm{mmol})$ and the mixture was stirred at rt for 30 min . After cooling to $0^{\circ} \mathrm{C}$, UHP $(1.52 \mathrm{~g}, 15.7 \mathrm{mmol})$ was added and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , then allowed to warm to rt . After stirring for 3.5 h at rt , water was added and the resulting mixture was extracted with $\mathrm{CHCl}_{3}(3 \mathrm{x})$. The combined organic layers were dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, filtered and concentrated in vacuo. The residue was taken up in EtOH , and the insoluble material filtered to afford 467 mg of a first
crop of 16 as a yellow powder. Chromatography of the mother liquor on SiO_{2} ($8: 2$ to $4: 6$, hexanes/EtOAc) afforded 120 mg of a second crop as a yellow powder. The total amount of $\mathbf{1 6}$ obtained was $587 \mathrm{mg}(73 \%, 2$ steps $): \mathrm{mp} 222.8^{\circ} \mathrm{C}$ (sublimation); IR (neat) 3334 (br), 2969, 2947, 2870, 1677, 1525, 1389, 1366, 1351, 1307, 1292, 1273, 1252, 1232, 1225, $1167,1131,1116,1068,1046,1036,1019,869,846,826,779,770,753 \mathrm{~cm}^{-1}$; ESI-MS $m / z 298\left(\left[\mathrm{M}_{\mathrm{red}}+\mathrm{MeCN}+\mathrm{H}\right]^{+}, 30\right)$, $278\left([\mathrm{M}+\mathrm{Na}]^{+}, 63\right), 275(54), 263(100), 257\left(\left[\mathrm{M}_{\mathrm{red}}+\mathrm{H}\right]^{+}, 20\right), 241\left([\mathrm{M}-\mathrm{O}+\mathrm{H}]^{+}, 23\right), 222(50), 212$ (28); HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 278.1606, found 278.1593.
A sample of nitroxide $16(20.0 \mathrm{mg}, 0.0783 \mathrm{mmol})$ was suspended in $\mathrm{MeOH}(0.8 \mathrm{~mL})$ and L-ascorbic acid (13.9 mg, 0.0783 mmol) was added. The slightly yellow suspension became white within a few seconds. After stirring at rt for 40 min under argon, the solvent was removed in vacuo. The resulting residue was taken up in EtOAc and sonicated. The insoluble material was filtered, rinsed with EtOAc and MeOH , and dried, to yield $15.0 \mathrm{mg}(75 \%)$ of the corresponding hydroxylamine as a white solid. Representative experimental data are as follows: ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}, 2: 1$ mixture of isomers) $\delta 7.93(\mathrm{~s}, 0.8 \mathrm{H}), 7.43(\mathrm{~s}, 0.4 \mathrm{H}), 6.57(\mathrm{~d}, 0.4 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.45(\mathrm{~d}, 0.7 \mathrm{H}, J=8.8 \mathrm{~Hz}), 4.40-4.25(\mathrm{~m}$, $0.8 \mathrm{H}), 3.85-3.70(\mathrm{~m}, 0.4 \mathrm{H}), 3.40-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.53(\mathrm{~m}$, 2 H), 1.37 (s, 9 H), 1.25-1.14 (m, 1 H), 1.08 (app bt, $2 \mathrm{H}, J=11.2 \mathrm{~Hz}$), 0.82 (app bd, $1 \mathrm{H}, J=11.6 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 100 \mathrm{MHz}$, mixture of isomers) $\delta 154.8,77.3,77.1,55.2,53.3,40.4,33.2,32.2,30.8,28.3,28.1,23.4,13.0$, 12.3.

3-Amino-9-azabicyclo[3.3.1]nonane N-oxyl (3-amino-ABNO, 6). A mixture of Boc-protected amine 3-Boc-aminoABNO (16, $200 \mathrm{mg}, 0.783 \mathrm{mmol}$) in a 4.0 N solution of HCl in 1,4 -dioxane $(3.3 \mathrm{~mL}, 13.2 \mathrm{mmol})$ was stirred at $0^{\circ} \mathrm{C}$ for 1 h and at rt for an additional 2 h . The suspension was then filtered and the solid rinsed with cold dry $\mathrm{Et}_{2} \mathrm{O}$, to give 167 mg of an off-white powder. It was dissolved in a minimum of 2.5 N aq. NaOH , and extracted with warm CHCl_{3} (7 x). The combined organic layers were dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, filtered and concentrated in vacuo to afford $110 \mathrm{mg}(90 \%)$ of a red oil. Upon high vacuum and/or storage at rt for not more than 1 h , the product started to loose the red color characteristic for a nitroxide and became pale yellow. Thus, the title compound is unstable.

tert-Butyl ($\boldsymbol{S}, \boldsymbol{E}$)-8-(9-benzyl-9-azabicyclo[3.3.1]nonan-3-ylamino)-2-methyl-8-oxooct-5-en-4-ylcarbamate (18). A suspension of oxime $14(400 \mathrm{mg}, 1.64 \mathrm{mmol})$ and $\mathrm{NiCl}_{2}(21.2 \mathrm{mg}, 0.164 \mathrm{mmol})$ in $\mathrm{MeOH}(8 \mathrm{~mL})$ was treated at $-15^{\circ} \mathrm{C}$ with $\mathrm{NaBH}_{4}(652 \mathrm{mg}, 16.4 \mathrm{mmol})$ portionwise. The resulting dark mixture was vigorously stirred between -15 and $0{ }^{\circ} \mathrm{C}$ under argon. After 1.5 h , a solution of $\mathrm{NaBH}_{4}(326 \mathrm{mg}, 8.18 \mathrm{mmol})$ in water $(1 \mathrm{~mL})$ was added. The reaction mixture was stirred from $0{ }^{\circ} \mathrm{C}$ to rt . After 1 h , the reaction mixture was quenched carefully with acetone, then filtered over Celite and the brown solid rinsed with MeOH . The solution was concentrated in vacuo, and the residue was taken up in water, acidified with 6 N aq. $\mathrm{HCl}(\mathrm{pH}<2)$, extracted twice with $\mathrm{Et}_{2} \mathrm{O}$, then basified with solid $\mathrm{NaOH}(\mathrm{pH}>9)$ and extracted with $\mathrm{CHCl}_{3}(3 \mathrm{x})$. The combined chloroformed layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to afford 416 mg of the crude amine as a yellow oil that was carried on to the next step without further purification.
To a solution of acid $\mathbf{1 1}\left(424 \mathrm{mg}, 1.52 \mathrm{mmol}\right.$, crude) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added successively $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}$ ($246 \mathrm{mg}, 1.82 \mathrm{mmol}$), DMAP ($206 \mathrm{mg}, 1.67 \mathrm{mmol}$), a solution of this amine ($403 \mathrm{mg}, 1.59 \mathrm{mmol}$, crude) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2$
mL), and EDCI ($356 \mathrm{mg}, 1.82 \mathrm{mmol}$). The resulting mixture was stirred at rt under argon for 14 h , then washed with 2.5 N aq. $\mathrm{NaOH}(3 \mathrm{x})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. Chromatography on $\mathrm{SiO}_{2}(8: 2$ to $4: 6$, hexanes $/ \mathrm{EtOAc}$) afforded $421 \mathrm{mg}(57 \%, 3$ steps $)$ of 18 as a white powder: $\mathrm{mp} 115.0-115.4{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}+12.6(c 1.0$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat) 3338 (br), 3277 (br), 2924, 2867, 1681, 1635, 1519, 1495, 1467, 1452, 1435, 1389, 1364, 1349, 1327, 1307, 1277, 1252, 1163, 1137, 1081, 1060, 1044, 1025, 1010, 993, 964, 930, 874, 842, 760, 742, $703 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.39-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 5.95-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.66(\mathrm{dt}, 1 \mathrm{H}, J=$ $15.2,7.2 \mathrm{~Hz}$), $5.46(\mathrm{dd}, 1 \mathrm{H}, J=15.4,6.6 \mathrm{~Hz}), 4.55-4.45(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{ddddd}, 1 \mathrm{H}, J=12.0,12.0,8.4,6.0,6.0 \mathrm{~Hz}), 4.04$ (app p, $1 \mathrm{H}, J=7.2 \mathrm{~Hz}$), $3.82(\mathrm{~s}, 2 \mathrm{H}$), 3.08 (app bd, $2 \mathrm{H}, J=10.4 \mathrm{~Hz}$), $2.98(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}$), 2.40-2.26 (m, 2 H), 2.06$1.87(\mathrm{~m}, 3 \mathrm{H}), 1.73-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.58-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{app} \mathrm{td}, 2 \mathrm{H}, J=7.3,1.4 \mathrm{~Hz}), 1.03-0.92(\mathrm{~m}, 2 \mathrm{H})$, $0.93(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.93(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 170.4,155.6,140.6,137.2$, 128.6, $128.4,126.9,123.6,79.5,56.0,51.6,49.3,49.3,44.2,42.0,40.4,33.5,33.4,28.6,24.8,24.7,22.7,14.5$; ESI-MS $m / z 527$ (80), $506\left([\mathrm{M}+\mathrm{Na}]^{+}, 84\right), 484\left([\mathrm{M}+\mathrm{H}]^{+}, 67\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 506.3359$, found 506.3336 .

(S,E)-N-(9-Azabicyclo[3.3.1]nonan-9-oxo-3-yl)-5-(tert-butoxycarbonylamino)-7-methyloct-3-enamide (17). A solution of Bn-protected amine $18(150 \mathrm{mg}, 0.309 \mathrm{mmol})$ in $5: 1 \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL})$ was treated with CAN $(339 \mathrm{mg}$, 0.618 mmol). The resulting red reaction mixture was stirred at rt under argon. After 3.5 h , more CAN ($170 \mathrm{mg}, 0.309$ mmol) was added. After 19 h stirring, sat. aq. $\mathrm{NaHCO}_{3}(12 \mathrm{~mL})$ was added and stirring was continued for 15 min. The mixture was then extracted with $\mathrm{CHCl}_{3}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to yield 144 mg of the crude amine as a brownish residue, that was carried on to the next step without further purification.
To a suspension of this amine ($140 \mathrm{mg}, 0.301 \mathrm{mmol}$) in $1: 1 \mathrm{MeCN} / \mathrm{MeOH}(1.2 \mathrm{~mL})$ was added $\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(50.2 \mathrm{mg}$, $0.151 \mathrm{mmol})$ and the mixture was stirred at rt for 30 min . After cooling to $0^{\circ} \mathrm{C}$, UHP ($146 \mathrm{mg}, 1.51 \mathrm{mmol}$) was added and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , then allowed to warm to rt and stirred overnight. After 17 h , water was added and the resulting mixture was extracted twice with CHCl_{3}. The combined organic layers were dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, filtered and concentrated in vacuo. Chromatography on SiO_{2} (5:5, hexanes/EtOAc to EtOAc) afforded 84.9 mg (69\%, 2 steps) of $\mathbf{1 7}$ as orange microcrystals formed from an initial red oil. Representative experimental data are as follows: mp $140.2-141.0^{\circ} \mathrm{C}(\mathrm{EtOAc}) ;[\alpha]_{\mathrm{D}}{ }^{23}+25.9\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat) 3292 (br), 2949, 2926, 2867, 1690, 1657, 1539, 1469, $1448,1400,1389,1362,1325,1308,1284,1269,1247,1221,1167,1116,1088,1070,1040,1018,977,678 \mathrm{~cm}^{-1}$; ESIMS $m / z 431\left([\mathrm{M}+\mathrm{Na}]^{+}, 77\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 431.2760$, found 431.2736 .
A sample of this nitroxide ($10.0 \mathrm{mg}, 0.0245 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(0.3 \mathrm{~mL})$ and L-ascorbic acid ($4.4 \mathrm{mg}, 0.0245$ mmol) was added. The pale orange suspension became colorless within a few seconds. After stirring at rt for 30 min under argon, the solvent was removed in vacuo. The resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with some MeOH and washed twice with water. The combined aqueous layers were extracted with warm $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{x})$, and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to yield $9.4 \mathrm{mg}(94 \%)$ of the corresponding hydroxylamine as a white powder: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 3: 1\right.$ mixture of isomers) $\delta 6.02-5.91(\mathrm{~m}, 0.25 \mathrm{H}), 5.82(\mathrm{app} \mathrm{bd}, 0.75 \mathrm{H}, J=6.0$ $\mathrm{Hz}), 5.71-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.52-5.41(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{ddddd}, 0.75 \mathrm{H}, J=11.6,11.6,6.8,6.8,6.8 \mathrm{~Hz}), 4.52(\mathrm{app} \mathrm{bs}, 1 \mathrm{H}), 4.23$
(app o, $0.25 \mathrm{H}, J=6.2 \mathrm{~Hz}$), 4.09-3.97 (m, 1 H), 3.57 (app bd, $1.5 \mathrm{H}, J=9.6 \mathrm{~Hz}$), 3.42 (app bd, $0.5 \mathrm{H}, J=10.0 \mathrm{~Hz}$), $3.00-$ $2.91(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.38(\mathrm{~m}, 0.6 \mathrm{H}), 2.38-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.88(\mathrm{~m}, 0.5 \mathrm{H}), 1.80-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.44$ $(\mathrm{s}, 9 \mathrm{H}), 1.34(\operatorname{app} \mathrm{td}, 2 \mathrm{H}, J=7.3,1.8 \mathrm{~Hz}), 1.38-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{app} \mathrm{bt}, 2 \mathrm{H}, J=12.4 \mathrm{~Hz}), 0.93(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$, $0.92(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right.$, mixture of isomers) $\delta 170.6,170.4,155.6,137.4,137.3$, 123.6, $123.5,79.4,55.9,55.9,54.1,51.6,51.5,44.2,40.3,40.3,39.7,33.8,33.8,32.5,31.2,31.1,29.9,28.6,24.8,23.6,22.9$, $22.7,14.3,13.5,12.8$.

2-Adamantanecarbonitrile..5 A 3-5 ${ }^{\circ} \mathrm{C}$ solution of 2-adamantanone ($21.0 \mathrm{~g}, 137 \mathrm{mmol}$), TosMIC ($35.5 \mathrm{~g}, 178 \mathrm{mmol}$) and EtOH ($14 \mathrm{~mL}, 233 \mathrm{mmol}$) in DME (470 mL) was treated with portionwise addition of solid t-BuOK ($39.2 \mathrm{~g}, 342 \mathrm{mmol}$), maintaining the internal temperature below $10{ }^{\circ} \mathrm{C}$. After the addition, the resulting slurry reaction mixture was stirred at rt for 30 min and then at $35-40^{\circ} \mathrm{C}$ for 30 min . The heterogeneous reaction mixture was filtered and the solid washed with DME. The filtrate was concentrated in vacuo, loaded to a short alumina column (activated, neutral, Brockmann I, 150 mesh, 7 cm thick x 15 cm height), and washed off with a $5: 1$ mixture of hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 1.5 \mathrm{~L})$. The solution was concentrated in vacuo to afford $19.0 \mathrm{~g}(86 \%)$ of the title compound as a white powder: mp $170-174{ }^{\circ} \mathrm{C}$ (softening point: $\sim 155^{\circ} \mathrm{C}$, sealed tube) (lit. $170-177^{\circ} \mathrm{C}$); IR (neat) $2903,2851,2229,1468,1450,1355,1342,1239,1111,1098,1073,988$, 976, 818, 807, $792 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.91$ (app s, 1 H), 2.23-2.08 (m, 4 H), 2.00-1.80 (m, 4 H), 1.80$1.66(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 122.5,37.2,36.9,36.8,33.3,30.6,27.1,27.0$.

2-Adamantane carboxylic acid. A mixture of 2-adamantanecarbonitrile ($18.9 \mathrm{~g}, 117 \mathrm{mmol}$) in $\mathrm{AcOH}(56 \mathrm{~mL})$ and 48% $\mathrm{HBr}(224 \mathrm{~mL})$ was stirred at $120^{\circ} \mathrm{C}$ overnight. The reaction mixture was cooled at $4^{\circ} \mathrm{C}$, let stand for 4 h , then filtered. The solid was washed with water and dried under vacuum over silica gel overnight, to yield $20.6 \mathrm{~g}(98 \%)$ of the title compound as colorless crystals: mp $145.5-145.8^{\circ} \mathrm{C}$ (sealed tube) (lit. ${ }^{5} 143-144{ }^{\circ} \mathrm{C}$); IR (neat) 3200-2400 (br), 2922, 2915, 2894, 2849, 2630, 2950, 1681, 1468, 1452, 1439, 1418, 1351, 1342, 1332, 1314, 1301, 1277, 1249, 1226, 1176, 1099, $1064,1049,984,941,926,911,831 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.09(\mathrm{~s}, 1 \mathrm{H}), 2.55-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{app}$ bs, 2 H$), 1.87-1.64(\mathrm{~m}, 10 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 2 \mathrm{H})$.

5,7-Dibromo-2-adamantane carboxylic acid (19). ${ }^{6}$ A vigorously stirred $0{ }^{\circ} \mathrm{C}$ solution of $\mathrm{AlBr}_{3}(18.9 \mathrm{~g}, 69.6 \mathrm{mmol})$, $\mathrm{BBr}_{3}(2.40 \mathrm{~g}, 9.49 \mathrm{mmol})$ and $\mathrm{Br}_{2}(40 \mathrm{~mL})$ was treated portionwise with 2-adamantane carboxylic acid (5.70 $\mathrm{g}, 31.6$ mmol). Upon completion of the addition, the reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 48 h , then cooled in an ice bath, and quenched carefully with sat. aq. sodium bisulfite. Stirring was continued at rt overnight. The resultant pale brown suspension was filtered, the solid washed with water and dried overnight under vacuum at $60^{\circ} \mathrm{C}$ to yield 10.95 g (quant.) of crude 19 as a beige powder. Representative experimental data are as follows: mp 230-232 ${ }^{\circ} \mathrm{C}$ (sealed tube); IR (neat)

[^4]3200-2400 (br), 2956, 2933, 2909, 2861, 1692, 1444, 1431, 1418, 1331, 1319, 1301, 1291, 1284, 1269, 1249, 1217, 1204, $1189,1150,1032,1017,995,973,945,939,928,818,803,753,745,703,663 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 12.56 (bs, 1 H), 2.85 (app d, $2 \mathrm{H}, J=12.9 \mathrm{~Hz}$), $2.75-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.10(\mathrm{~m}, 7 \mathrm{H})$; LC-MS (ESI) $t_{\mathrm{R}} 20.4 \mathrm{~min}, m / z 337$ ([M-H] ${ }^{-}$, 100).

(5,7-Dibromo-adamantan-2-yl)-carbamic acid tert-butyl ester (20). ${ }^{6}$ The reaction was performed in 3 separated batches. For each of them, a suspension of the acid $19(7.80 \mathrm{~g}, 23.1 \mathrm{mmol})$ in dry toluene (117 mL) was treated successively with $\mathrm{Et}_{3} \mathrm{~N}(3.9 \mathrm{~mL}, 27.7 \mathrm{mmol})$ and DPPA ($6.20 \mathrm{~mL}, 27.7 \mathrm{mmol}$). The resulting brown solution was stirred at $85{ }^{\circ} \mathrm{C}$ for 12 h . To a separated flask containing a solution of t-BuOK ($5.28 \mathrm{~g}, 46.1 \mathrm{mmol}$) in dry THF (312 mL) at $0{ }^{\circ} \mathrm{C}$ was added the resulting isocyanate solution dropwise via a dropping funnel. The reaction mixture was allowed to warm to rt over 3 h , then quenched with water. The THF was removed in vacuo, and the resulting material was diluted with EtOAc. The organic layer was washed with 1 N aq. HCl , sat. aq. NaHCO_{3} and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude residue was sonicated in a minimum of anhydrous $\mathrm{Et}_{2} \mathrm{O}$, filtered and washed with cold $\mathrm{Et}_{2} \mathrm{O}$ to yield 20 as a white powder. The 3 mother liquors were then combined and 2 additional filtrations afforded another fraction of $\mathbf{2 0}$ as an off-white powder. Chromatography of the residual mother liquor on $\mathrm{SiO}_{2}(9: 1$, hexanes/EtOAc) afforded a white powder contaminated with a yellow oil. This residue was taken up in hexanes, filtered, and the white powder washed with hexanes. This resulting white powder was only an impurity. The mother liquor was concentrated in vacuo and again taken up in a small amount of hexanes. The solvent was removed from the insoluble white powder with a Pasteur pipet, to separate the product from the yellow oil. The white powder was dried to yield an additional fraction of $\mathbf{2 0}$. The combined fractions afforded $21.6 \mathrm{~g}(77 \%)$ of $\mathbf{2 0}$ as a white powder. A sample of higher purity obtained after chromatography (recovered starting material from the next step) was used for analysis: mp 187.5-189.5 ${ }^{\circ} \mathrm{C}$; IR (neat) $3250,3146,3125$, 3000, 2974, 2959, 2932, 2876, 2862, 1681, 1476, 1457, 1388, 1366, 1345, 1332, 1292, 1275, 1256, 1250, 1230, 1157, $1079,1042,1021,999,842,835,820,803,775,734,725,680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.71$ (bd, $1 \mathrm{H}, J=6.3$ Hz), 3.75 (app bs, 1 H), $2.86(\mathrm{~s}, 2 \mathrm{H}), 2.47-2.10(\mathrm{~m}, 10 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.2,80.2,60.2$, 59.7, 59.0, 51.2, 46.4, 41.5, 38.8, 28.6; EI-MS m/z $411\left(\mathrm{M}^{+}, 9\right), 409\left(\mathrm{M}^{+}, 15\right), 407\left(\mathrm{M}^{+}, 8\right), 354\left([\mathrm{M}-t-\mathrm{Bu}]^{+}, 67\right), 352$ ([M-$\left.t-\mathrm{Bu}]^{+}, 56\right), 350\left([\mathrm{M}-t-\mathrm{Bu}]^{+}, 15\right), 274\left([\mathrm{M}-t-\mathrm{Bu}-\mathrm{Br}]^{+}, 100\right), 272\left([\mathrm{M}-t-\mathrm{Bu}-\mathrm{Br}]^{+}, 98\right), 230\left([\mathrm{M}-\mathrm{Boc}-\mathrm{Br}]^{+}, 48\right), 228([\mathrm{M}-$ Boc- -Br$]^{+}, 51$), 213 ($\left.[\mathrm{M}-\mathrm{NHBoc}-\mathrm{Br}]^{+}, 40\right), 211\left([\mathrm{M}-\mathrm{NHBoc}-\mathrm{Br}]^{+}, 39\right), 148$ ($[\mathrm{M}-\mathrm{Boc}-2 \mathrm{Br}]^{+}, 41$), 132 (54), 131 (76), 117 (43), 105 (50), 93 (52), 91 (80), 79 (65), 77 (68), 65 (37), 59 (79), 56 (87); HRMS (EI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{Br}_{2} \mathrm{NO}_{2}$ 408.0174 , found 408.0154 .

(7-Methylene-bicyclo[3.3.1]nonan-3-one-9-yl)-carbamic acid tert-butyl ester (21). The reaction was performed in 3 separated batches. A mixture of $20(3 \times 2.46 \mathrm{~g}, 18.0 \mathrm{mmol})$ and 2 N aq. $\mathrm{NaOH}(3 \times 13.5 \mathrm{~mL}, 81.0 \mathrm{mmol}$, degassed) in dioxane ($3 \times 16.5 \mathrm{~mL}$, degassed) was heated in a stainless steel Parr bomb at $160{ }^{\circ} \mathrm{C}$ (20 bar) under argon for 2 h . The crude mixtures were combined and the dioxane was removed in vacuo. The aqueous residue ($\mathrm{pH}>12$) was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to
afford 3.90 g of crude 9 -amino-7-methylene-bicyclo[3.3.1]nonan-3-one ${ }^{9}$ as a yellow solid, that was carried on without further purification.
To a solution of this amine ($2.98 \mathrm{~g}, 18.0 \mathrm{mmol}$, crude) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(270 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(7.60 \mathrm{~mL}, 54.0 \mathrm{mmol})$ and then $\mathrm{Boc}_{2} \mathrm{O}(4.37 \mathrm{~g}, 19.8 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at rt under nitrogen for 20 h , then quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ but was poorly soluble. A filtration afforded a white powder. The mother liquor was evaporated and taken up in a 7:3 hexanes/EtOAc mixture. After sonicaton, the white powder was filtered. This procedure was repeated one more time. Chromatography of the resulting mother liquor on SiO_{2} ($9: 1$ to $6: 4$, hexanes/EtOAc) afforded 964 mg of another fraction as a pale yellow powder. Since the 3 fractions from filtration were impure and still contained $\mathrm{Et}_{3} \mathrm{~N}$, they were combined, dissolved in $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$, washed with 5% aq. $\mathrm{CuSO}_{4}(2 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. Chromatography of the residue on SiO_{2} (9:1 to 6:4, hexanes/EtOAc) afforded 1.624 g of the major isomer as a white powder, and $2.59 \mathrm{~g}(42 \%, 4$ steps $)$ of 21 were obtained, while 509 mg ($\sim 7 \%$) of starting material 20 (45% yld b.r.s.m.) was recovered. Representative experimental data are as follows: mp 167.8-182.0 ${ }^{\circ} \mathrm{C}$; IR (neat) $3271,3131,2971,2930,2849,1685,1478,1452,1437,1407,1385$, $1364,1351,1316,1250,1239,1215,1161,1142,1109,1073,1064,1044,1017,1008,904,857,783,773,729,710,688$, $682 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 4: 1 \mathrm{mixture}$ of isomers) $\delta 4.93$ (app bs, 0.2 H), $4.84(\mathrm{~s}, 2 \mathrm{H}), 4.74(\mathrm{app} \mathrm{bs}, 0.8 \mathrm{H})$, 4.12 (app bs, 0.2 H), 3.96-3.87 (app m, 0.8 H), 2.65-2.12 (m, 10 H), 1.49 and $1.48(2 \mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 4:1 mixture of isomers) $\delta 209.2,155.6,139.7,139.7,116.5,115.9,80.2,51.4,50.5,47.0,42.3,41.0,35.9,35.0,34.4,28.6 ;$ ESI-MS $m / z 288\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 288.1576, found 288.1567.

(7-Methylene-bicyclo[3.3.1]nonan-3-one oxime-9-yl)-carbamic acid tert-butyl ester (22). To a solution of ketone 21 $(2.53 \mathrm{~g}, 9.53 \mathrm{mmol})$ in dry pyridine $(18 \mathrm{~mL})$ was added $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(2.02 \mathrm{~g}, 28.6 \mathrm{mmol})$. The reaction mixture was stirred at rt under argon for 12 h . The solvent was removed in vacuo, and the residue diluted with EtOAc and then water was added. The layers were separated and the aqueous phase extracted with EtOAc. The combined organic layers were washed with 5% aq. $\mathrm{CuSO}_{4}(8 \mathrm{x})$, brine (2 x), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. Chromatography of the residue on SiO_{2} (5:5, hexanes/EtOAc) followed by trituration in $\mathrm{Et}_{2} \mathrm{O}$ afforded $2.41 \mathrm{~g}(90 \%)$ of $\mathbf{2 2}$ as a white powder: mp $60-86^{\circ} \mathrm{C}$; IR (neat) 3265 (br), 2971, 2924, 2833, 1690, 1515, 1508, 1498, 1450, 1437, 1388, 1364, 1249, 1161, 1077, $1062,1040,1012,978,965,949,921,881,777,716 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 4: 1$ mixture of isomers) $\delta 8.01$ (bs, $1 \mathrm{H}), 4.93$ (app bs, 0.35 H), 4.90-4.70 (m, 0.65 H$), 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 3.86(\mathrm{app} \mathrm{bs}, 1 \mathrm{H}), 3.25(\mathrm{~d}, 0.2$ $\mathrm{H}, J=15.9 \mathrm{~Hz}), 3.09(\mathrm{~d}, 0.8 \mathrm{H}, J=16.5 \mathrm{~Hz}), 2.58-2.19(\mathrm{~m}, 8 \mathrm{H}), 2.19-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\mathrm{CDCl}_{3}, 4.1$ mixture of isomers) $\delta 155.5,141.1,141.1,113.2,112.7,80.0,52.2,51.4,41.3,40.5,37.6,35.7,35.1,34.2$, 34.0, 32.6, 32.5, 31.6, 28.6, 24.9; ESI-MS $m / z 281\left([\mathrm{M}+\mathrm{H}]^{+}, 65\right), 266(50), 225\left([\mathrm{M}-t-\mathrm{Bu}]^{+}, 100\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})$ 281.1865, found 281.1855 .

(1-Iodomethyl-2-azaadamantan-6-yl)-carbamic acid tert-butyl ester (23). To a mixture of oxime 22 (2.35 $\mathrm{g}, 8.39$ $\mathrm{mmol})$ and $\mathrm{MoO}_{3}(1.70 \mathrm{~g}, 11.8 \mathrm{mmol})$ in dry $\mathrm{MeOH}(84 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon was added $\mathrm{NaBH}_{4}(3.24 \mathrm{~g}, 83.9 \mathrm{mmol})$ portionwise. The resulting dark brown reaction mixture was stirred at $0-10{ }^{\circ} \mathrm{C}$ for 4 h , then quenched with acetone and filtered through Celite. The Celite was rinsed with acetone, and the filtrate was concentrated in vacuo. The resulting residue was diluted with water (100 mL) and $\operatorname{EtOAc}(200 \mathrm{~mL})$, and filtered through Celite to break the emulsion. The organic layer was separated, washed with a few brine, dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, filtered and concentrated in vacuo to afford $\sim 2.5 \mathrm{~g}$ of crude tert-butyl-3-amino-7-methylenebicyclo[3.3.1]nonan-9-ylcarbamate as a pale brown oily foam, that was carried on without further purifcation.

To a suspension of this amine ($2.23 \mathrm{~g}, 8.39 \mathrm{mmol}$, crude) in dry $\mathrm{MeCN}(42 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{I}_{2}(2.13 \mathrm{~g}$, $8.39 \mathrm{mmol})$. The reaction mixture was stirred at rt for 3 h and then quenched with sat. aq. NaHCO_{3} and sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (pH 8). The resulting yellow mixture was extracted with CHCl_{3} (3 x), and the combined organic layers were dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, filtered and concentrated in vacuo. Chromatography of the residue on $\mathrm{SiO}_{2}(\mathrm{EtOAc}$ to 9:1, $\mathrm{EtOAc} / \mathrm{MeOH})$ afforded $1.55 \mathrm{~g}(47 \%, 2$ steps $)$ of $\mathbf{2 3}$ as a dark orange powder: mp $125-138^{\circ} \mathrm{C}$; IR (neat) 3278 (br), 3269, 2967, 2918, $2868,2853,1701,1670,1541,1448,1444,1431,1388,1362,1351,1295,1280,1269,1250,1217,1200,1167,1118$, $1086,1077,1045,1012,995,891,771 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 3: 1$ mixture of isomers) $\delta 4.83$ (app bs, 0.65 H), 4.75 (app bs, 0.35 H), 3.82-3.67 (m, 1 H), $3.24(\mathrm{bs}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 1.5 \mathrm{H}), 3.16(\mathrm{~s}, 0.5 \mathrm{H}), 2.20-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.80(\mathrm{~m}$, $3 \mathrm{H}), 1.80-1.60(\mathrm{~m}, 6 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 3: 1$ mixture of isomers) $\delta 155.5,79.7,53.7,49.0,47.4$, $47.2,40.9,36.1,35.8,32.4,31.7,30.8,28.6,23.7,23.2$; EI-MS $m / z 392\left(\mathrm{M}^{+}, 18\right), 265\left([\mathrm{M}-\mathrm{I}]^{+}, 68\right), 209\left([\mathrm{M}-\mathrm{I}-t-\mathrm{Bu}]^{+}, 88\right)$, 148 (100), 94 (80); HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{IN}_{2} \mathrm{O}_{2} 392.0961$, found 392.0958.

(1-Methyl-2-azaadamantane- \boldsymbol{N}-oxyl-6-yl)-carbamic acid tert-butyl ester (6-Boc-amino-1-Me-AZADO, 24). The reaction was performed in 2 separated batches. A Parr flask was charged with the iodoalkane $23(2 \times 414 \mathrm{mg}, 2.11 \mathrm{mmol})$, EtOH ($2 \times 10 \mathrm{~mL}$) and $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(2 \times 82 \mathrm{mg})$. The flask was placed in a high pressure reactor. The reactor was charged with H_{2} and purged for 5 cycles and finally pressurized with H_{2} at 4 bar (60 psi), then heated at $50{ }^{\circ} \mathrm{C}$. After stirring at $50^{\circ} \mathrm{C}$ for 26 h , the reaction mixtures were combined and filtered through Celite, the Celite washed with MeOH , and the solution concentrated in vacuo to yield a dark reddish powder. The crude was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$, dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, filtered and concentrated in vacuo to afford 556 mg (99\%) of crude (1-methyl-2-azaadamantan-6-yl)-carbamic acid tert-butyl ester as a yellow solid, that was carried on without further purification.
A mixture of this amine ($554 \mathrm{mg}, 2.08 \mathrm{mmol}$, crude) and $\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(347 \mathrm{mg}, 1.04 \mathrm{mmol})$ in $\mathrm{MeOH}(6 \mathrm{~mL})$ was stirred at rt for 20 min then cooled to $0^{\circ} \mathrm{C}$ and treated with $30 \% \mathrm{aq} . \mathrm{H}_{2} \mathrm{O}_{2}(2.36 \mathrm{~mL}, 20.8 \mathrm{mmol})$. The resulting reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min then allowed to warm to rt . After 4 h , the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and treated again with $\mathrm{H}_{2} \mathrm{O}_{2}(0.70 \mathrm{~mL}, 6.24 \mathrm{mmol})$, then allowed to warm to rt . After an additional 6 h stirring at rt, the bright orange reaction mixture was quenched with sat. aq. NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. Chromatograpy of the residue on SiO_{2} (7:3 to 5:5, hexanes/EtOAc) afforded $345 \mathrm{mg}(59 \%, 58 \%$ over 2 steps $)$ of 24 as a red solid. Representative experimental data are as follows: mp 140-150 ${ }^{\circ} \mathrm{C}$ (softening point: $131^{\circ} \mathrm{C}$); IR (neat) $3265,3138,2999,2969,2922,1688,1474,1448,1383,1362$, $1286,1275,1252,1163,1137,1079,1066,1045,1008,984,958,777,727,708 \mathrm{~cm}^{-1} ;$ ESI-MS m/z $284(70), 282\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 100); HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})$ 282.1943, found 282.1941 .

6-Amino-1-methyl-2-azaadamantane- \boldsymbol{N}-oxyl (6-amino-1-Me-AZADO, 8). A solution of 6-Boc-amino-1-Me-AZADO ($335 \mathrm{mg}, 1.19 \mathrm{mmol}$) in a 4.0 N solution of HCl in 1,4-dioxane ($5.0 \mathrm{~mL}, 20.0 \mathrm{mmol}$) was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and at rt for an additional 2 h . Dioxane was removed in vacuo and the yellow residue was dissolved in 2.5 N aq. NaOH and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ until the organic layer became colorless. The combined organic layers were dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, filtered and concentrated in vacuo to afford 230 mg (quant.) of crude 8 as a red oil: LC-MS (ESI) $t_{\mathrm{R}} 7.71 \mathrm{~min}, \mathrm{~m} / \mathrm{z} 183$ $\left(\left[\mathrm{M}_{\mathrm{red}}+\mathrm{H}\right]^{+}\right), 166\left([\mathrm{M}-\mathrm{O}+\mathrm{H}]^{+}\right)$.

6-Amino-1-methyl-2-azaadamantane (26). The reaction was performed in 2 separate batches. A Parr flask was charged with the iodoalkane $23(2 \times 494 \mathrm{mg}, 2.52 \mathrm{mmol})$, $\mathrm{EtOH}(2 \mathrm{x} 12 \mathrm{~mL})$ and $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(2 \times 99.0 \mathrm{mg})$. The flask was placed in a high pressure reactor. The reactor was charged with H_{2} and purged for 5 cycles and finally pressurized with H_{2} at 4 bar (60 psi), then heated at $50^{\circ} \mathrm{C}$. After stirring at $50^{\circ} \mathrm{C}$ for 22 h , the reaction mixtures were combined and filtered through Celite, the Celite washed with MeOH and EtOAc , and the solution concentrated in vacuo. The crude was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$, dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, filtered and concentrated in vacuo to afford 638 mg (95\%) of crude (1-methyl-2-azaadamantan-6-yl)-carbamic acid tert-butyl ester as a dark grey foam, that was carried on without further purification.

A mixture of (1-methyl-2-azaadamantan-6-yl)-carbamic acid tert-butyl ester ($180 \mathrm{mg}, 0.676 \mathrm{mmol}$, crude) in a 4.0 N solution of HCl in 1,4-dioxane ($2.85 \mathrm{~mL}, 11.4 \mathrm{mmol}$) was stirred at $0^{\circ} \mathrm{C}$ for 1 h and at rt for an additional 2.5 h . Dioxane was removed in vacuo and the residue was dissolved in 2.5 N aq. NaOH and extracted with CHCl_{3} (3x). The combined organic layers were dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, filtered and concentrated in vacuo to afford 113 mg (quant.) of crude 26 as a dark brown oil, that was carried on without further purification.

(S,E)-N-(1-Methyl-2-azaadamant-2-oxo-6-yl)-5-(tert-butoxycarbonylamino)-7-methyloct-3-enamide (25). To a solution of alcohol $\mathbf{1 0}(180 \mathrm{mg}, 0.699 \mathrm{mmol})$ in acetone $(8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was slowly added a solution of Jones reagent $(2.5$ $\mathrm{M}, 0.70 \mathrm{~mL}, 1.75 \mathrm{mmol}$). The resulting dark suspension was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and water. The aqueous phase was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{x})$. The combined organic layers were washed with water (2x) and brine (1x), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to yield 189 mg (quant.) of the crude acid (11) as a colorless oil, that was carried on without further purification.
To a solution of this acid ($58.7 \mathrm{mg}, 0.216 \mathrm{mmol}$, crude) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added successively $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(35.1 \mathrm{mg}, 0.260 \mathrm{mmol})$, DMAP ($29.4 \mathrm{mg}, 0.238 \mathrm{mmol}$), a solution of amine $26(40.0 \mathrm{mg}, 0.216 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$, and EDCI $(50.0 \mathrm{mg}, 0.260 \mathrm{mmol})$. The resulting mixture was stirred at rt under argon for 15 h , then the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed twice with 1 N aq. NaOH , dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, filtered and concentrated in vacuo. Chromatography of the residue on deactivated $\mathrm{SiO}_{2}\left(\mathrm{EtOAc}\right.$ then $\left.9: 1, \mathrm{EtOAc} / \mathrm{MeOH}+1 \% \mathrm{NH}_{4} \mathrm{OH}\right)$ afforded 54.0 mg
(59\%) of tert-butyl (S,E)-8-(1-methyl-2-azaadamant-6-ylamino)-2-methyl-8-oxooct-5-en-4-ylcarbamate as a pale yellow foam.

To a mixture of this amine ($54.0 \mathrm{mg}, 0.129 \mathrm{mmol}$) in $1: 1 \mathrm{MeCN} / \mathrm{MeOH}(0.6 \mathrm{~mL})$ was added $\mathrm{Na}_{2} \mathrm{WO}_{4} \bullet 2 \mathrm{H}_{2} \mathrm{O}(21.4 \mathrm{mg}$, $0.0643 \mathrm{mmol})$, and the resulting mixture was stirred at rt for 20 min . After cooling to $0{ }^{\circ} \mathrm{C}, \mathrm{UHP}(100 \mathrm{mg}, 1.03 \mathrm{mmol})$ was added and the reaction mixture was stirred under air at $0{ }^{\circ} \mathrm{C}$ for 1 h then at rt for 12 h . Water was then added, and the resulting aqueous mixture was extracted with $\mathrm{CHCl}_{3}(2 \mathrm{x})$. The combined organic layers were dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, filtered and concentrated in vacuo. Flash chromatography of the residue on SiO_{2} (5:5, hexanes/EtOAc to EtOAc) afforded 35.4 mg (63%) of $\mathbf{2 5}, 8.6 \mathrm{mg}$ as red crystals (suitable for X-ray) and 26.8 mg as a red-orange foam: mp $154-156{ }^{\circ} \mathrm{C}(\mathrm{EtOAc})$; $[\alpha]_{\mathrm{D}}{ }^{23}$ +6.2 (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat) 3308 (br), 2948, 2928, 2868, 1677, 1663, 1651, 1646, 1523, 1450, 1387, 1362, 1336, 1325, $1312,1284,1245,1167,1133,1116,1066,1042,1023,1003,969,951 \mathrm{~cm}^{-1}$; ESI-MS $m / z 457\left([\mathrm{M}+\mathrm{Na}]^{+}, 63\right), 401(51)$, 318 (33); HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 457.2917$, found 457.2884.

A sample of this nitroxide $(4.0 \mathrm{mg}, 0.00920 \mathrm{mmol})$ was dissolved in dry $\mathrm{MeOH}(0.2 \mathrm{~mL})$ and L-ascorbic acid (1.6 mg , 0.00920 mmol) was added. Complete discoloration of the solution occured immediately. After stirring at rt for 15 min , the solvent was removed in vacuo. The resulting residue was dissolved in CHCl_{3} and washed with water. The aqueous phase was extracted once with CHCl_{3}, and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to yield $5.2 \mathrm{mg}(>100 \%)$ of the corresponding hydroxylamine as a colorless solidified oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $6.14(\mathrm{bs}, 1 \mathrm{H}), 5.69(\mathrm{dt}, 1 \mathrm{H}, J=14.9,7.3 \mathrm{~Hz}), 5.53(\mathrm{dd}, 1 \mathrm{H}, J=15.6,5.6 \mathrm{~Hz}), 4.46(\mathrm{app} \mathrm{bs}, 1 \mathrm{H}), 4.14-4.03(\mathrm{~m}, 1 \mathrm{H})$, 4.03-3.96 (m, 1 H), $3.27(\mathrm{app} \mathrm{bs}, 1 \mathrm{H}), 3.02(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}$), 2.36-2.20 (m, 2 H), 2.07-1.70 (m, 8 H), 1.70-1.55 (m, 1 H), $1.43(2 \mathrm{~s}, 9 \mathrm{H}), 1.40-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 0.93(\operatorname{app~d}, 6 \mathrm{H}, J=6.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.5$, $155.4,137.8,122.8,79.5,57.0,56.3,52.4,51.1,44.4,42.9,42.8,40.4,35.1,35.0,32.1,31.2,31.1,30.7,30.5,30.5,29.9$, $29.8,29.5,28.6,29.6,26.4,24.9,23.3,23.3,22.9,22.8,22.6,14.3$.

(S,E)-Methyl 5-((tert-butoxycarbonyl)amino)-7-methyloct-3-enoate (27). To a solution of the acid 11, (142 $\mathbf{m g}, 0.523$ mmol, crude) in acetonitrile ($8.7 \mathrm{~mL}, 0.06 \mathrm{M}$) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(362 \mathrm{mg}, 5.23 \mathrm{mmol})$, followed by MeI ($326 \mu \mathrm{~L}, 5.233$ $\mathrm{mmol})$. The resulting reaction mixture was stirred at rt under N_{2} in the dark for 11 h , then quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic portion was washed with brine (5 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Chromatography on SiO_{2} ($\mathrm{ISCO}, 12 \mathrm{~g}$ column, liquid load in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-100 \% \mathrm{EtOAc} /$ hexanes gradient, eluted at $50 \% \mathrm{EtOAc} /$ hexanes) afforded 27 as a colorless oil (159 mg , quant.): $[\alpha]_{\mathrm{D}}{ }^{20}-13.0\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3351$ (br), 2952, 2932, 2867, 1737, 1692, 1512, 1452, 1435, 1389, 1364, 1327, 1245, 1159, 1118, 1081, 1042, $1016,967 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.69(\mathrm{dtd}, 1 \mathrm{H}, J=15.5,6.9,1.2 \mathrm{~Hz}$), 5.49 (dd, $1 \mathrm{H}, J=15.2,4.9 \mathrm{~Hz}$), 4.39 (bs, 1 H), 4.23-4.00 (m, 1 H), $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~d}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.72-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.39-1.25(\mathrm{~m}, 2 \mathrm{H})$, $0.92(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.91(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,155.5,135.6,122.0,79.5,52.0$, 50.4, 44.8, 37.7, 28.6, 24.9, 22.9, 22.6; HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 308.1838$, found 308.1860.

(S,E)-5,5-Difluoro-3-(3-((8-methoxy-2-methyl-8-oxooct-5-en-4-yl)amino)-3-oxopropyl)-7,9-dimethyl-5H-

 dipyrrolo [1,2-c:2', $\left.\mathbf{1}^{\prime}-f\right][1,3,2]$ diazaborinin-4-ium-5-uide (29). To a solution of ester $27(150 \mathrm{mg}, 0.526 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added TFA $(0.4 \mathrm{~mL}, 5.26 \mathrm{mmol})$. The resulting colorless solution was stirred at rt. TLC analysis showed that the starting material had been consumed after 4 h . The reaction mixture was concentrated, and the residue was taken up $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with 5% aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{pH} 9)$. The aqueous layer was extracted once with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic portion was dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, filtered, and concentrated to afford $92.2 \mathrm{mg}(95 \%$, crude $)$ of amine as a pale brownish oil, that was carried on without further purification.A solution of activated ester 28 (BODIPY-FL-NHS, $224 \mathrm{mg}, 0.576 \mathrm{mmol}$) and DIEPA ($0.26 \mathrm{~mL}, 1.49 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was treated with a solution of amine ($89.0 \mathrm{mg}, 0.480 \mathrm{mmol}$, crude) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The resulting red solution was stirred at rt under N_{2} for 9 h , then washed with water. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ until it became almost colorless. The combined organic portion was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Chromatography on SiO_{2} (75:25 to 6:4 to 5:5, hexanes/EtOAc) afforded $180 \mathrm{mg}(82 \%)$ of 29 as a red, viscous oil that solidified to give a red crystalline solid: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}), 6.30(\mathrm{~d}, 1$ $\mathrm{H}, J=4.0 \mathrm{~Hz}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 5.58-5.62(\mathrm{~m}, 2 \mathrm{H}), 5.42(\mathrm{dd}, 1 \mathrm{H}, J=15,6.0 \mathrm{~Hz}), 4.48(\mathrm{dt}, 1 \mathrm{H}, J=15,7.3,7.3 \mathrm{~Hz}), 3.67(\mathrm{~s}$, $3 \mathrm{H}), 3.28(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 3.01(\mathrm{~d}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.66(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~m}$, $1 \mathrm{H}), 1.31$ (ddd, $1 \mathrm{H}, J=7.2,6.4,2.4 \mathrm{~Hz}$), 1.26 (ddd, $1 \mathrm{H}, J=7.2,6.4,1.6 \mathrm{~Hz}), 0.85(\mathrm{dd}, 6 \mathrm{H}, J=7.8,6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.2,171.0,160.4,157.6,144.1,135.3,135.0,133.6,128.5,124.0,122.1,120.6,117.9,52.0,48.8$, 44.2, 37.8, 36.3, 25.1, 24.8, 23.0, 22.4, 15.1, 11.5; HRMS (APCI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~F}_{2} \mathrm{BNa}(\mathrm{M}+\mathrm{Na})^{+} 482.2402$, found 482.2446.

($\boldsymbol{S}, \boldsymbol{E}$)-5,5-Difluoro-3-(3-((8-((1-ox0-2,2,6,6-tetramethylpiperidin-4-yl)amino)-2-methyl-8-oxooct-5-en-4-yl)amino)-3-oxopropyl)-7,9-dimethyl-5H-dipyrrolo [1,2-c:2', $\mathbf{1}^{\prime}-f[$ [1,3,2]diazaborinin-4-ium-5-uide (30). To a vigorously stirred mixture of ester $29(34.5 \mathrm{mg}, 0.0751 \mathrm{mmol})$ and pig liver esterase (PLE, $17 \mathrm{U} / \mathrm{mg}, 7 \mathrm{mg}$) in acetone (1.5 mL) was added phosphate buffer ($0.05 \mathrm{M}, \mathrm{pH} 7.0,2.75 \mathrm{~mL}$). The resulting heterogenous reaction mixture was vigorously stirred at rt overnight. TLC analysis ($1: 1$ EtOAc:hexanes, KMnO_{4}) after 13 h showed only starting material. More PLE (7 mg) was added. The reaction mixture was allowed to stir for 10 d , and additional PLE was added after 3, 4, 5, and 7 d . After 10 d , TLC analysis showed completed consumption of starting material, and the reaction mixture was concentrated. Citric acid ($\sim \mathrm{pH} 3$) was added and the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 10 \mathrm{~mL})$. The combined organic portion was
dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated to give the crude, red solid (34.6 mg , quant). This solid was carried on to the next reaction without purification.
To the resulting acid ($34.6 \mathrm{mg}, 0.0777 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ in the dark was added 4 -amino TEMPO (20.0 mg , 0.117 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ followed by DMAP ($10.4 \mathrm{mg}, 0.0855 \mathrm{mmol}$), HOBt- $\mathrm{H}_{2} \mathrm{O}$ ($13.1 \mathrm{mg}, 0.0855 \mathrm{mmol}$), and EDCI ($17.9 \mathrm{mg}, 0.0932 \mathrm{mmol}$). The reaction mixture was allowed to warm to rt as it stirred overnight. The reaction mixture was washed with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and sat. $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$, and the aqueous portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15$ $\mathrm{mL})$. The combined organic portion was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated to give a crude, red oil (63 mg). The crude material was purified by chromatography on SiO_{2} (ISCO, 4 g column, liquid load in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient, eluted at $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give a crude, impure orange oil (41 mg). The oil was then purified by chromatography on SiO_{2} (ISCO, 4 g column, liquid load in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10-100 \% \mathrm{EtOAc} /$ hexanes gradient, eluted at 100% EtOAc) to provide 30 as a reddish orange oil ($26 \mathrm{mg}, 56 \%$): $\mathrm{R}_{f}=0.41\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (ATR) 3288, 2954, 2926, $1642,1605,1528,1249,1133,1084,999 \mathrm{~cm}^{-1} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) $169.6,168.5,158.8,154.3,142.2,134.8$, $133.2,131.2,126.2,121.9,121.7,118.8,115.5,48.8,41.2,34.5,31.6,27.5,23.3,22.4,20.5,2.3,13.9,9.5$; HRMS (ESI) m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{47} \mathrm{BN}_{5} \mathrm{O}_{3} \mathrm{~F}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$621.3638, found 621.3589.
A sample of this nitroxide $(14.4 \mathrm{mg}, 0.0241 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added $\mathrm{L}-(+)$-ascorbic acid ($6.4 \mathrm{mg}, 0.036$ mmol). After stirring at rt for 2 h , the reaction mixture was concentrated. The resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed once with water. The aqueous layers was extracted once with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic portion was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo to yield the corresponding hydroxylamine as a red oil ($12.2 \mathrm{mg}, 85 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.10(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}), 6.64(\mathrm{~d}, 1 \mathrm{H} J=7.2 \mathrm{~Hz}$), 6.32 $(\mathrm{d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 5.54(\mathrm{dt}, 1 \mathrm{H}, J=15,7.5,7.5 \mathrm{~Hz}), 5.35(\mathrm{dd}, 1 \mathrm{H}, J=15,6.6$ $\mathrm{Hz}), 4.28(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{t}, 2 \mathrm{H}, 7.4 \mathrm{~Hz}), 2.89(\mathrm{dd}, 1 \mathrm{H}, J=7.2,2.1 \mathrm{~Hz}), 2.69(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3$ H), $2.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.50(\mathrm{~d}, 4 \mathrm{H}, J=4.8 \mathrm{~Hz}), 1.28-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H}), 0.84(\mathrm{t}, 6 \mathrm{H}, J=5.8 \mathrm{~Hz})$.

(S,E)-5,5-Difluoro-3-(3-((8-((1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl)amino)-2-methyl-8-oxooct-5-en-4-yl)am-ino)-3-oxopropyl)-7-phenyl-5H-dipyrrolo $\left[1,2-c: 2^{\prime}, 1^{\prime}-f\right][1,3,2]$ diazaborinin-4-ium-5-uide (BODIPY®R-R6G-JP4-039, 33). To a solution of JP4-039 ($125 \mathrm{mg}, 0.294 \mathrm{mmol}$) in MeOH (3 mL) was added ascorbic acid ($65 \mathrm{mg}, 0.37 \mathrm{mmol}$). The orange solution became homogenous in less than 1 min . Stirring was continued 30 min , and the reaction mixture was concentrated. To the residue was added ethyl acetate (10 mL), water (5 mL), and $5 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(5 \mathrm{~mL})$). The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic portion was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated, and the crude hydroxylamine was carried on to the next reaction.

To a solution of the crude hydroxylamine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added trifluoroacetic acid ($440 \mu \mathrm{~L}, 5.89 \mathrm{mmol}$). The solution was warmed to rt and stirred 4 h . The solvent and excess acid were evaporated, and the residue was dissolved in EtOAc (25 mL). The organic portion was washed with saturated $\mathrm{Na} 2 \mathrm{CO} 3(2 \times 5 \mathrm{~mL})$ and brine (5 mL), dried over MgSO_{4}, and cocentrated to give the free amine as a white solid, which was carried on to the next reaction.

To BODIPY®-R6G-NHS (31) ($50.0 \mathrm{mg}, 0.114 \mathrm{mmol}$) was added a solution of the crude amine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, followed by diisopropylethylamine ($36 \mu \mathrm{~L}, 0.21 \mathrm{mmol}$). The resulting red solution was stirred at rt for 18 h , and the reaction mixture was concentrated. The residue was dissolved in $\mathrm{MeOH}(2 \mathrm{~mL})$, and catalytic copper (II) acetate hydrate was added. The mixture was stirred open to air for 30 min , then poured into water $(10 \mathrm{~mL})$. The aqueous mixture was extracted with EtOAc, and the combined organics were dried over MgSO_{4} and evaporated. The resulting residue was purified by chromatography on $\mathrm{SiO}_{2}\left(1-5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to provide BODIPY-R6G JP4-039 (33) (46 mg, 62\%) as a red semisolid: IR (ATR) 3303, 2958, 2926, 2855, 1653, 1616, 1540, 1463, 1245, 1137, $1085 \mathrm{~cm}^{-1}$; HRMS (ESI) [M+H] ${ }^{+}$calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{BF}_{2} \mathrm{~N}_{5} \mathrm{O}_{3} 647.3813$, found 647.3802 . NMR spectra are severely broadened and not useful, so the compound was characterized as the hydroxylamine after reduction with ascorbic acid in methanol.

Analytical data for hydroxylamine 32: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ layered with 5% ascorbic acid in $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 7.89(\mathrm{dd}, 2$ $\mathrm{H}, J=7.2,1.2 \mathrm{~Hz}), 7.47(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~d}, 1 \mathrm{H}, J=4.2 \mathrm{~Hz}), 7.03(\mathrm{~d}, 1 \mathrm{H}, J=4.2 \mathrm{~Hz}), 6.65(\mathrm{~d}, 1 \mathrm{H}, J=4.2$ $\mathrm{Hz}), 6.41(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}), 5.53(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{dd}, 1 \mathrm{H}, J=15.3,6.9 \mathrm{~Hz}), 4.20(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{dd}, 2 \mathrm{H}, J=6.9,5.1$ $\mathrm{Hz}), 2.90(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.89(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.22(\mathrm{~m}, 17 \mathrm{H}), 0.83(\mathrm{dd}, 6 \mathrm{H}, J=8.4$, 3.6 Hz ,); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ layered with 5% ascorbic acid in $\mathrm{D}_{2} \mathrm{O}$) $\delta 171.7,170.5,161.4,136.7,135.1,132.5$, $130.9,130.0,129.4,128.5,123.8,12.6,120.2,101.3,56.1,50.6,43.3,40.2,40.0,35.9,29.8,35.2,24.6,22.6,22.4,20.4 ;$ HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{36} \mathrm{H}_{49} \mathrm{BF}_{2} \mathrm{~N}_{5} \mathrm{O}_{3}$ 648.3891, found 648.3896 .

X-Ray Crystallography Data for Compound 25.

Table S1. Crystal data and structure refinement for 25.

Identification code	mf29229s
Empirical formula	C24 H40 N3 O4
Formula weight	434.59
Temperature	223(2) K
Wavelength	0.71073 A
Crystal system	Orthorhombic
Space group	P 212121
Unit cell dimensions	$a=6.8433(18) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=18.424(5) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=20.221(5) \AA \quad \gamma=90^{\circ}$.
Volume	2549.5(12) \AA^{3}
Z	4
Density (calculated)	$1.132 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.077 \mathrm{~mm}^{-1}$
F(000)	948
Crystal size	$0.27 \times 0.25 \times 0.18 \mathrm{~mm}^{3}$
Theta range for data collection	2.21 to 24.99°
Index ranges	$-8<=\mathrm{h}<=8,-21<=\mathrm{k}<=21,-24<=1<=24$
Reflections collected	20281
Independent reflections	$2581[\mathrm{R}(\mathrm{int})=0.0592]$
Completeness to theta $=24.99^{\circ}$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9863 and 0.9796
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2581 / 0 / 288
Goodness-of-fit on F^{2}	1.100
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0484, \mathrm{wR} 2=0.1258$
R indices (all data)	$\mathrm{R} 1=0.0707, \mathrm{wR} 2=0.1371$
Absolute structure parameter	?
Largest diff. peak and hole	0.183 and -0.147 e. \AA^{-3}

Table S2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for MCF292-29(25). U(eq) is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

	x	y	z	U(eq)
$\mathrm{O}(1)$	9677(4)	7238(1)	840(1)	61(1)
N(1)	7414(5)	6362(2)	920(2)	70(1)
C(1)	14877(9)	6353(3)	-2903(2)	110(2)
$\mathrm{N}(2)$	3320(5)	5820(2)	2602(2)	72(1)
$\mathrm{O}(2)$	1622(4)	5793(2)	2844(1)	84(1)
$\mathrm{C}(2)$	16937(7)	6357(3)	-1884(2)	91(2)
$\mathrm{O}(3)$	15174(4)	4187(1)	-520(1)	62(1)
N(3)	14139(4)	5171(2)	-1022(1)	54(1)
C(3)	15166(6)	6026(2)	-2215(2)	69(1)
$\mathrm{O}(4)$	15157(4)	5257(1)	40(1)	62(1)
C(4)	13312(6)	6131(2)	-1813(2)	57(1)
C(5)	13401(5)	5912(2)	-1085(2)	49(1)
C(6)	11417(5)	5982(2)	-783(2)	52(1)
C(7)	10828(5)	6512(2)	-393(2)	50(1)
C(8)	8781(5)	6604(2)	-149(2)	54(1)
C(9)	8693(5)	6765(2)	582(2)	49(1)
$\mathrm{C}(10)$	6973(6)	6477(3)	1624(2)	72(1)
$\mathrm{C}(11)$	4995(10)	6830(2)	1712(2)	87(2)
$\mathrm{C}(12)$	4680(11)	7011(2)	2443(2)	103(2)
C(13)	4778(6)	6333(2)	2856(2)	64(1)
$\mathrm{C}(14)$	7051(6)	5790(3)	2022(2)	79(1)
$\mathrm{C}(15)$	6743(7)	5968(4)	2753(2)	94(2)
$\mathrm{C}(16)$	5536(9)	5285(2)	1808(2)	91(2)
$\mathrm{C}(17)$	3594(7)	5605(3)	1908(2)	86(2)
$\mathrm{C}(18)$	3405(7)	6296(4)	1504(2)	109(2)
$\mathrm{C}(19)$	4341(8)	6473(3)	3587(2)	101(2)
$\mathrm{C}(20)$	14845(5)	4906(2)	-456(2)	50(1)
$\mathrm{C}(21)$	15660(6)	3735(2)	43(2)	62(1)
$\mathrm{C}(22)$	17630(7)	3947(3)	320(2)	91(2)
$\mathrm{C}(23)$	14055(9)	3773(2)	560(2)	99(2)
C(24)	15751(8)	2982(2)	-266(2)	84(1)

Table S3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for MCF292-29 (25).

$\mathrm{O}(1)-\mathrm{C}(9)$	1.219(4)
$\mathrm{N}(1)-\mathrm{C}(9)$	1.336(4)
$\mathrm{N}(1)-\mathrm{C}(10)$	1.471(4)
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N})$	0.93(4)
$\mathrm{C}(1)-\mathrm{C}(3)$	$1.528(5)$
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9700
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	0.9700
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	0.9700
$\mathrm{N}(2)-\mathrm{O}(2)$	1.262(4)
$\mathrm{N}(2)-\mathrm{C}(13)$	$1.466(5)$
$\mathrm{N}(2)-\mathrm{C}(17)$	1.471 (5)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.512(7)
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9700
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	0.9700
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{C})$	0.9700
$\mathrm{O}(3)-\mathrm{C}(20)$	1.349(4)
$\mathrm{O}(3)-\mathrm{C}(21)$	1.451(4)
$\mathrm{N}(3)-\mathrm{C}(20)$	1.334(4)
$\mathrm{N}(3)-\mathrm{C}(5)$	1.462(4)
$\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~N})$	0.91(3)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.520(6)
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9900
$\mathrm{O}(4)-\mathrm{C}(20)$	1.214(4)
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.526(5)$
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9800
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	0.9800
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.495(5)$
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9900
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.318(4)$
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9400
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.495(5)$
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9400
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.507(5)$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9800
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9800
$\mathrm{C}(10)-\mathrm{C}(14)$	1.501(6)

$\mathrm{C}(10)-\mathrm{C}(11)$	1.512(7)
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9900
$\mathrm{C}(11)-\mathrm{C}(18)$	1.526(7)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.531(6)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9900
$\mathrm{C}(12)-\mathrm{C}(13)$	1.504(6)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9800
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9800
$\mathrm{C}(13)-\mathrm{C}(15)$	1.517(7)
$\mathrm{C}(13)-\mathrm{C}(19)$	1.529(5)
$\mathrm{C}(14)-\mathrm{C}(16)$	$1.458(7)$
$\mathrm{C}(14)-\mathrm{C}(15)$	1.529(6)
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9900
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9800
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	0.9800
$\mathrm{C}(16)-\mathrm{C}(17)$	1.468 (7)
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9800
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9800
$\mathrm{C}(17)-\mathrm{C}(18)$	1.517(7)
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9900
C(18)-H(18A)	0.9800
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9800
C(19)-H(19A)	0.9700
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.9700
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	0.9700
$\mathrm{C}(21)-\mathrm{C}(22)$	1.511(6)
$\mathrm{C}(21)-\mathrm{C}(24)$	1.522(5)
$\mathrm{C}(21)-\mathrm{C}(23)$	1.517(6)
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9700
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	0.9700
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	0.9700
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9700
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	0.9700
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	0.9700
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	0.9700
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	0.9700
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	0.9700

$\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{C}(10)$	123.3(3)
$\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N})$	121(2)
$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N})$	116(2)
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	109.5
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5
$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5
$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5
$\mathrm{H}(1 \mathrm{~B})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5
$\mathrm{O}(2)-\mathrm{N}(2)-\mathrm{C}(13)$	121.1(3)
$\mathrm{O}(2)-\mathrm{N}(2)-\mathrm{C}(17)$	118.5(3)
$\mathrm{C}(13)-\mathrm{N}(2)-\mathrm{C}(17)$	114.9(3)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	109.5
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	109.5
$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	109.5
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{C})$	109.5
$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{C})$	109.5
$\mathrm{H}(2 \mathrm{~B})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{C})$	109.5
$\mathrm{C}(20)-\mathrm{O}(3)-\mathrm{C}(21)$	121.8(2)
$\mathrm{C}(20)-\mathrm{N}(3)-\mathrm{C}(5)$	122.8(3)
$\mathrm{C}(20)-\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~N})$	116.1(19)
$\mathrm{C}(5)-\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~N})$	119.4(19)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	112.4(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(1)$	110.4(4)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(1)$	109.2(4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	108.3
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	108.3
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	108.3
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	116.7(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	108.1
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	108.1
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	108.1
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	108.1
$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	107.3
$\mathrm{N}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	111.0(3)
$\mathrm{N}(3)-\mathrm{C}(5)-\mathrm{C}(4)$	110.2(3)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	109.6(3)
$\mathrm{N}(3)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	108.7

$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	108.7
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	108.7
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	125.9(3)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	117.0
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	117.0
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	124.6(3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	117.7
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	117.7
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	112.6(3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.1
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.1
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.1
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.1
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	107.8
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{N}(1)$	122.7(3)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	122.6(3)
$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	114.7(3)
$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(14)$	112.9(4)
$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(11)$	111.1(4)
$\mathrm{C}(14)-\mathrm{C}(10)-\mathrm{C}(11)$	109.3(3)
$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	107.8
$\mathrm{C}(14)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	107.8
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	107.8
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(18)$	109.2(3)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	109.5(5)
$\mathrm{C}(18)-\mathrm{C}(11)-\mathrm{C}(12)$	107.8(4)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	110.1
$\mathrm{C}(18)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	110.1
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	110.1
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	110.5(3)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.6
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.6
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.6
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.6
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	108.1
$\mathrm{N}(2)-\mathrm{C}(13)-\mathrm{C}(12)$	108.1(4)
$\mathrm{N}(2)-\mathrm{C}(13)-\mathrm{C}(15)$	105.7(4)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(15)$	109.3(4)

$\mathrm{N}(2)-\mathrm{C}(13)-\mathrm{C}(19)$	108.3(3)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(19)$	112.8(4)
$\mathrm{C}(15)-\mathrm{C}(13)-\mathrm{C}(19)$	112.4(4)
$\mathrm{C}(16)-\mathrm{C}(14)-\mathrm{C}(10)$	110.7(4)
$\mathrm{C}(16)-\mathrm{C}(14)-\mathrm{C}(15)$	109.0(4)
$\mathrm{C}(10)-\mathrm{C}(14)-\mathrm{C}(15)$	109.4(4)
$\mathrm{C}(16)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.2
$\mathrm{C}(10)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.2
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.2
$\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{C}(14)$	110.5(3)
$\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.5
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.5
$\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	108.1
$\mathrm{C}(14)-\mathrm{C}(16)-\mathrm{C}(17)$	110.3(4)
$\mathrm{C}(14)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.6
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.6
$\mathrm{C}(14)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.6
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.6
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	108.1
$\mathrm{N}(2)-\mathrm{C}(17)-\mathrm{C}(16)$	110.8(4)
$\mathrm{N}(2)-\mathrm{C}(17)-\mathrm{C}(18)$	106.1(4)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	109.9(4)
$\mathrm{N}(2)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	110.0
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	110.0
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	110.0
$\mathrm{C}(11)-\mathrm{C}(18)-\mathrm{C}(17)$	109.4(3)
$\mathrm{C}(11)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.8
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.8
$\mathrm{C}(11)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.8
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.8
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	108.3
$\mathrm{C}(13)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.5
$\mathrm{C}(13)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{C}(13)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5

$\mathrm{H}(19 \mathrm{~B})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{O}(4)-\mathrm{C}(20)-\mathrm{N}(3)$	$125.3(3)$
$\mathrm{O}(4)-\mathrm{C}(20)-\mathrm{O}(3)$	$125.0(3)$
$\mathrm{N}(3)-\mathrm{C}(20)-\mathrm{O}(3)$	$109.7(3)$
$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{C}(22)$	$110.2(3)$
$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{C}(24)$	$102.1(3)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(24)$	$110.6(4)$
$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{C}(23)$	$110.4(3)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(23)$	$112.3(4)$
$\mathrm{C}(24)-\mathrm{C}(21)-\mathrm{C}(23)$	$110.8(4)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	109.5
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{H}(22 \mathrm{~B})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{C}(21)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	109.5
$\mathrm{C}(21)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{C}(21)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{H}(23 \mathrm{~B})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{C}(21)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	109.5
$\mathrm{C}(21)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5
$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5
$\mathrm{C}(21)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{H}(24 \mathrm{~B})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109
Sy	

Symmetry transformations used to generate equivalent atoms:

Table S4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for MCF292-29 (25). The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{O}(1)$	57(2)	68(1)	57(1)	0(1)	4(1)	-8(1)
N(1)	76(2)	87(2)	46(2)	-15(2)	18(2)	-31(2)
C(1)	111(4)	164(5)	54(2)	20(3)	13(3)	6(4)
$\mathrm{N}(2)$	61(2)	104(3)	51(2)	0(2)	11(2)	-21(2)
$\mathrm{O}(2)$	57(2)	131(2)	63(2)	28(2)	12(1)	-14(2)
C(2)	73(3)	120(4)	79(3)	0 (3)	26(3)	-8(3)
$\mathrm{O}(3)$	85(2)	51(1)	51(1)	-3(1)	-15(1)	6 (1)
N(3)	66(2)	53(2)	42(2)	-9(1)	-6(1)	7(1)
C(3)	74(3)	83(3)	49(2)	2(2)	13(2)	3(2)
$\mathrm{O}(4)$	79(2)	61(1)	45(1)	-7(1)	-9(1)	-6(1)
C(4)	58(2)	63(2)	50(2)	1(2)	2(2)	8(2)
C(5)	49(2)	53(2)	45(2)	-3(1)	1(2)	-1(2)
C(6)	50(2)	56(2)	50(2)	-3(2)	2(2)	-4(2)
C(7)	54(2)	54(2)	44(2)	1(2)	6(2)	-2(2)
C(8)	51(2)	64(2)	47(2)	4(2)	9(2)	2(2)
C(9)	41(2)	57(2)	49(2)	4(2)	5(2)	3(2)
C(10)	72(3)	97(3)	49(2)	-21(2)	19(2)	-34(2)
C(11)	138(5)	61(2)	61(2)	16(2)	31(3)	24(3)
C(12)	166(6)	73(3)	71(3)	-3(2)	56(3)	14(3)
C(13)	61(2)	88(3)	41(2)	-4(2)	5(2)	-12(2)
C(14)	59(3)	120(4)	57(2)	7(3)	5(2)	27(3)
C(15)	67(3)	168(5)	47(2)	3(3)	-7(2)	10(3)
C(16)	143(5)	67(3)	64(3)	8(2)	29(3)	6 (3)
C(17)	82(3)	120(4)	57(2)	-7(3)	0 (2)	-46(3)
C(18)	59(3)	221(7)	49(2)	-2(3)	-5(2)	53(4)
C(19)	106(4)	147(4)	50(2)	-18(3)	22(2)	-33(4)
C(20)	49(2)	57(2)	42(2)	-4(2)	-4(2)	-4(2)
C(21)	71(3)	60(2)	55(2)	5(2)	-6(2)	6(2)
C(22)	84(3)	111(4)	79(3)	-7(3)	-25(2)	22(3)
C(23)	127(4)	71(3)	99(3)	2(2)	45(3)	-8(3)
C(24)	105(3)	63(2)	83(3)	6(2)	-3(3)	15(2)

Table S5. Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for MCF292-29 (25).

	X	y	z	U(eq)
H(1N)	6740(60)	5990(20)	714(19)	72(12)
H(1A)	16055	6285	-3162	164
H(1B)	14602	6868	-2862	164
H(1C)	13790	6114	-3120	164
H(2A)	17116	6138	-1452	137
H(2B)	16744	6875	-1834	137
H(2C)	18086	6268	-2153	137
H(3N)	13850(50)	4837(16)	-1341(16)	48(9)
H(3A)	15397	5499	-2266	83
H(4A)	12264	5852	-2024	69
H(4B)	12944	6644	-1836	69
H(5A)	14306	6244	-852	59
H(6A)	10507	5615	-879	62
H(7A)	11761	6856	-259	60
H(8A)	8042	6159	-239	65
H(8B)	8158	7002	-392	65
H(10A)	7970	6813	1804	87
H(11A)	4912	7277	1442	104
H(12A)	5686	7353	2590	124
H(12B)	3402	7242	2501	124
H(14A)	8347	5560	1964	95
H(15A)	6802	5521	3014	113
H(15B)	7787	6291	2906	113
H(16A)	5640	4833	2061	109
H(16B)	5717	5169	1339	109
H(17A)	2570	5255	1776	104
H(18A)	3537	6183	1032	131
H(18B)	2114	6512	1576	131
H(19A)	3074	6705	3628	151
H(19B)	5340	6787	3771	151
H(19C)	4330	6016	3824	151
H(22A)	18607	3919	-27	137

$\mathrm{H}(22 \mathrm{~B})$	17979	3620	676	137
$\mathrm{H}(22 \mathrm{C})$	17569	4440	487	137
$\mathrm{H}(23 \mathrm{~A})$	14020	4257	750	149
$\mathrm{H}(23 B)$	14312	3421	906	149
$\mathrm{H}(23 \mathrm{C})$	12806	3667	355	149
$\mathrm{H}(24 \mathrm{~A})$	16775	2971	-597	126
$\mathrm{H}(24 B)$	14506	2871	-472	126
$\mathrm{H}(24 \mathrm{C})$	16029	2626	75	126

Irradiation survival curves in 32Dcl3 cells.

Procedure: Murine 32D cl 3 cells were suspended at 1×10^{5} cells and irradiated to doses of irradiation ranging from 0 to 8 Gy using a J. L. Shepherd Mark I cesium irradiator at a dose rate of 72 cGy per min. In some groups, nitroxides were added at a concentration of $10 \mu \mathrm{M}$ either 1 h before irradiation or 10 min after irradiation. The cells were resuspended in methycellulose containing 10% serum and 15% WEHI- 3 conditioned medium as a source of IL3, and incubated at $37^{\circ} \mathrm{C}$ for 7 d , at which colonies of >50 cells were counted. The data was analyzed using linear quadratic and single-hit, multi-target models.

Data used to calculate D_{0} and \tilde{n} for Organic and Biomolecular Chemistry manuscript.

Compound	Before Irradiation		After Irradiation	
	D_{0}	ñ	D_{0}	ñ
Control	1.4	1.0	1.7	1.0
	1.3	1.0	1.8	1.0
	1.3	1.1	1.7	1.2
TEMPO	1.2	1.1	1.3	2.1
	1.3	1.0	1.6	1.0
	1.3	1.0	1.3	1.7
JP4-039	2.8	1.0	1.3	3.7
	2.3	1.0	1.2	3.2
	1.7	0.9	1.0	3.6
BODOPY®-FL-JP4-039	1.7	1.2	1.3	4.5
	2.8	1.4	1.4	3.4
	3.2	1.2	1.2	5.6
BODOPY®-R6G-JP4-039			1.3	4.2
			1.5	4.0
			1.6	2.2
TMIO	2.1	0.9	1.4	2.0
	1.6	1.0	1.2	2.9
	1.8	1.0	1.2	2.5
ABNO	4.3	1.0	1.5	1.8
	2.7	1.1	1.4	2.4
	2.3	1.0	1.2	2.1
1-Me-AZADO	3.5	1.0	1.5	2.6
	2.3	1.1	1.2	4.0
	2.1	0.9	1.3	1.5

Visualization of $\mathbf{3 3}$ in KM101 cells. Panel A: Untreated KM101 cells. Panel B: KM101 cells incubated with BODIPY®-R6G-JP4-039 (33, red). Panel C: KM101 cells incubated with BODIPY®-R6G-JP4-039 (33, red) + MitoTracker Deep Red FM (grey). Panel D: GFP ${ }^{+}$KM101 cells. Panel E: GFP ${ }^{+}$KM101 cells incubated with BODIPY®-R6G-JP4-039 (33, red). Panel F: GFP ${ }^{+}$KM101 cells incubated with BODIPY®-R6G-JP4-039 (33, red) + MitoTracker Deep Red FM (grey).

In Panels C and F, pink colors indicate co-localization of MitoTracker Deep Red FM and BODIPY®-R6G-JP4039.

NMR Spectra

$\xrightarrow{\sim}$

$26 \cdot 29-$

$\begin{array}{ll} \infty \\ 0 \\ 0 & \text { のn } \end{array}$	\bigcirc	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{m}$	¢ ${ }_{\circ}^{\circ}$
$\infty \stackrel{\sim}{\circ}$	$\dot{\circ}$	m	6	$\dot{\sigma}$
ササ	m	\sim	\checkmark	\bigcirc

$$
\text { This journal is © The Royal Society of Chemistry } 2013
$$

$$
L 080^{\circ} \text { п—— }
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { no } \\
\text { M } \\
\text { n } \\
\text { n } \\
\text { ni } \\
1 \\
1
\end{array} \\
& \text { とL9 }{ }^{\circ} \text { ォー }
\end{aligned}
$$

Electronic Supplementary Material（ESI）for Organic \＆Biomolecular Chemistry

の	－6	の $\sim \wedge \sim$	－－6
\bigcirc	\bigcirc ○．	の．${ }^{\text {¢ }}$ ．	$\bigcirc \overbrace{}^{\circ}{ }^{\infty}$ ．
$\stackrel{\sim}{\sim}$	$\infty \stackrel{\circ}{\circ}$	$\bullet \sim$ の「	『mo
$\stackrel{\text { 「 }}{ }$	$\stackrel{\sim}{\sim} \stackrel{\sim}{\square}$	がツツ	N N N
	V	111	11

か $\dot{\sim}$

12－H

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2013

13

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

$\stackrel{\square}{\circ}$	$\stackrel{6}{6}$	웅
\bullet	\bigcirc	$\infty \infty$
$\stackrel{\sim}{\sim}$	$\stackrel{+}{\square}$	- ${ }_{\text {N }}^{\text {N }}$
		V

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

	,	,	,	,	,				1
200	180	160	140	120	100	80	60	40	20

$\sqrt{ }$

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

9.5 $\begin{array}{llllll}0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5\end{array}$
1.
.5 5.0 $\begin{array}{lll}4.0 & 3.5 & 3.0\end{array}$ 2.5 $\begin{array}{lll}2.0 & 1.5 & 1.0\end{array}$

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

 1

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

24-H (6-Boc-amino-1-Me-AZADO-H)

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

25-H

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

30-H

\qquad

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

27

29

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry

Electronic Supplementary Material (ESI) for Organic \& Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2013

1		1	,	1	1	1	1		I	
200	180	160	140	120	100	80	60	40	20	0

[^0]: ${ }^{a}$ Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA, ${ }^{b}$ Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA, 'Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA

[^1]: ${ }^{1}$ Griffiths, P. G.; Moad, G.; Rizzardo, E.; Solomon, D. H. Aust. J. Chem. 1983, 36, 397.

[^2]: ${ }^{2}$ Giroud, A. M.; Rassat, A. Bull. Soc. Chim. Fr. 1979, II, 48.
 ${ }^{3}$ Bolton, R.; Gillies, D. G.; Sutcliffe, L. H.; Wu, X. J. Chem. Soc., Perkin Trans. 2 1993, 2049.

[^3]: ${ }^{4}$ Mach, R. H.; Luedtke, R. R.; Unsworth, C. D.; Boundy, V. A.; Nowak, P. A.; Scripko, J. G.; Elder, S. T.; Jackson, J. R.; Hoffman, P. L.; Evora, P. H.; Rao, A. V.; Molinoff, P. B.; Childers, S. R.; Ehrenkaufer, R. L. J. Med. Chem. 1993, 36, 3707.

[^4]: ${ }^{5}$ Oldenziel, O. H.; Wildeman, J.; van Leusen, A. M. Org. Synth. 1977, 57, 8.
 ${ }^{6}$ Rohde, J. J.; Pliushchev, M. A.; Sorensen, B. K.; Wodka, D.; Shuai, Q.; Wang, J.; Fung, S.; Monzon, K. M.; Chiou, W. J.; Pan, L.; Deng, X.; Chovan, L. E.; Ramaiya, A.; Mullally, M.; Henry, R. F.; Stolarik, D. F.; Imade, H. M.; Marsh, K. C.; Beno, D. W. A.; Fey, T. A.; Droz, B. A.; Brune, M. E.; Camp, H. S.; Sham, H. L.; Frevert, E. U.; Jacobson, P. B.; Link, J. T. J. Med. Chem. 2007, 50, 149.

