Synthesis of Functionalised 4*H*-Quinolizin-4-ones via Tandem Horner-Wadsworth-Emmons Olefination/Cyclisation

Calum W. Muir,^a Alan R. Kennedy,^a Joanna M. Redmond,^b and Allan J. B. Watson*^a

^aDepartment of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, UK. Fax: +44 (0)141 548 4822; Tel: +44 (0)141 548 2439; E-mail: allan.watson.100@strath.ac.uk.

^bGlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK.

Supporting Information

1. General

1.1. Reagents

All reagents and solvents were obtained from commercial suppliers and were used without further purification unless otherwise stated. Purification was carried out according to standard laboratory methods.¹

1.2 Purification of Solvents

i) All solvents used for dry reactions (dichloromethane, tetrahydrofuran, toluene) were obtained from a PureSolv SPS-400-5 solvent purification system. These solvents were transferred to and stored in a septum-sealed oven-dried flask over previously activated 4 Å molecular sieves and purged with and stored under nitrogen.

ii) Dichloromethane, diethyl ether, ethyl acetate, methanol, and petroleum ether 40-60° for purification purposes were used as obtained from suppliers without further purification.

1.3 Purification of Starting Materials

2-Picoline was dried by heating to reflux over calcium chloride and then distilled under reduced pressure, then purged with and stored under nitrogen over 4 Å molecular sieves.

1.4 Organometallic Reagents

n-Butyllithium (1.6 M in hexanes) and isopropylmagnesium chloride (2 M in Et₂O) were used as obtained from commercial suppliers.

1.5 Experimental Details

i) Air-sensitive reactions were carried out using conventional glassware. The glassware was oven-dried and purged with N₂ before use.

- ii) Purging refers to a vacuum/nitrogen-refilling procedure.
- iii) Reactions were carried out at -78 $^{\circ}\text{C}$ using dry ice/acetone baths.
- iv) Reactions were carried out at -20 °C using controlled dry ice/acetone baths.
- v) Reactions were carried out at 0 $^{\circ}\text{C}$ using ice/water baths.
- vi) Room temperature was generally ca. 18 °C.
- vii) Reactions were carried out at elevated temperatures using a temperature-regulated hotplate/stirrer.

1.6 Purification of Products

i) Thin layer chromatography was carried out using Merck silica plates coated with fluorescent indicator UV254. These were analysed under 254 nm UV light or developed using potassium permanganate solution.

ii) Flash chromatography was carried out using ZEOprep 60 HYD 40-63 µm silica gel or IST Isolute Flash silica cartridges.

1.4 Analysis of Products

i) Fourier Transformed Infra-Red (FTIR) spectra were obtained on a Shimadzu IRAffinity-1 machine.

ii) ¹H and ¹³C NMR spectra were obtained on a Bruker AV 400 at 400 MHz and 100 MHz respectively. Chemical shifts are reported in ppm and coupling constants are reported in Hz with CDCl₃ referenced at 7.27 (¹H) and 77.36 ppm (¹³C), respectively.²

iii) High-resolution mass spectra were obtained on a Thermo Surveyor HPLC coupled to a LTQ Orbitrap mass spectrometer (ThermoFisher) instrument at the Strathclyde Institute for Pharmacy and Biomedical Science, University of Strathclyde, Glasgow. Run conditions 4.6 x 50 mm Gemini C18 column (Phenomenex) flow rate 0.4 ml min⁻¹ MeCN/H₂O containing 0.1% v/v formic acid (95:5): (i) run time = 3 min; (ii) positive ion ESI mode spray voltage 4.5 kV; (iii) sheath gas 50 psi; (iv) auxiliary gas 15 psi; (v) heated capillary temperature 275 °C; (vi) resolution setting = 30,000.

(iv) Crystal data for **3a** (C₁₅H₁₁NO, MW = 221.25) were measured at 123 K using an Oxford Diffraction Xcalibur E instrument and MoK α radiation, λ = 0.71073 Å. Found monoclinic, space group P21/c, a = 9.0140(5), b= 10.7721(5), c= 11.3234(7) Å, β = 101.481(6)°, V = 1077.50(10) Å3, Z = 4, μ = 0.086 mm-1, 20max = 54°, 4957 reflections, 2347 unique, Rint 0.0276; final refinement to convergence on F2 gave R = 0.0475 (F, 1703 obs. data only) and Rw = 0.1061 (F2, all data), GOF = 1.041. CCDC reference number 915082.

2. Experimental Procedures

2.1 Preparation of Weinreb Amides

The Weinreb amides required for the synthesis of the ketopyridines were prepared either via the corresponding acyl chloride (Method A) or ester (Method B) as per the following chart.

2.2 General Experimental Procedure for the Preparation of Weinreb Amides from Acyl Chlorides and *N*,*O*-Dimethylhydroxylamine Hydrochloride

For example, for Compound 5d. 4-(n-Butyl)-N-methoxy-N-methylbenzamide

An oven-dried flask containing a stir bar and fitted with a septum was purged with N₂. The flask was then charged with *N*,*O*-dimethylhydroxylamine hydrochloride (1.1 equiv, 27.5 mmol, 2.68 g) and dry CH_2CI_2 (100 mL). The mixture was cooled to 0 °C and stirred for 5 min before addition of Et_3N (2.5 equiv, 50 mmol, 5.06 g, 6.97 mL) and 4-*n*-butylbenzoyl chloride (1 equiv, 25 mmol, 4.92 g). The resulting mixture was stirred for 30 min before warming to room temperature and stirring for 16 h. The mixture was treated with sat. aq. NaHCO₃ solution (30 mL) and stirred vigorously for 10 min. The phases were separated and the aqueous layer was re-extracted with CH_2CI_2 (3 x 20 mL). The combined organic phases were dried by passing through a hydrophobic frit and concentrated under reduced pressure to afford a residue that was purified by flash column chromatography (1:3 EtOAc/petroleum ether 40-60°) to afford the title compound (5.083 g, 92% yield).

2.3 General Experimental Procedure for the Preparation of Weinreb Amides from Esters and *N*,*O*-Dimethylhydroxylamine Hydrochloride Using Isopropylmagnesium Chloride

For example, for Compound 5p. N-Methoxy-N-methylfuran-2-carboxamide

Following the procedure of Williams:³ An oven-dried flask containing a stir bar and fitted with a septum was purged with N₂. The flask was then charged with *N*,*O*-dimethylhydroxylamine hydrochloride (1.55 equiv, 15.5 mmol, 1.51 g), methyl 2-furoate (1 equiv, 10 mmol, 1.26 g, 1.07 mL) and dry THF (20 mL). The mixture was cooled to -20 °C and stirred for 5 min before addition of *i*-PrMgCl (2 M in Et₂O, 3 equiv, 30 mmol, 15 mL) dropwise over 15 min. The resulting mixture was stirred for a further 10 min before quenching with sat. aq. NaHCO₃ solution (10 mL) and H₂O (10 mL). The mixture was allowed to warm to room temperature and was stirred vigorously for 10 min. EtOAc (10 mL) was added and the phases were separated. The aqueous layer was re-extracted with EtOAc (3 x 20 mL). The combined organic phases were dried (MgSO₄), filtered, and concentrated under reduced pressure to afford a residue that was purified by flash column chromatography (1:1 EtOAc/petroleum ether 40-60°) to afford the title compound (1.32 g, 85% yield).

2.4 General Experimental Procedure for the Deprotonation of 2-Picoline and Nucleophilic Addition to Weinreb Amides

For example, for Compound 1a. 1-Phenyl-2-(pyridin-2-yl)ethanone

An oven-dried flask equipped with a stirrer bar and fitted with a septum was purged with N_2 . The flask was cooled to -78 °C by submerging in a bath of dry ice/acetone. The flask was then charged with dry THF (11 mL) and 2-picoline (2 equiv, 4 mmol, 372.5 mg, 0.395 mL) and stirred. *n*-Butyllithium (1.6 M in hexanes, 2 equiv, 4 mmol, 2.5 mL) was added to the flask dropwise over 5 minutes. Concurrently, an additional oven dried flask equipped with a stirrer bar and fitted with a septum was purged with N_2 . The flask was cooled to -78 °C by submerging in dry a dry ice/acetone bath. The flask was then charged with dry THF (5 mL) and *N*-methoxy-*N*-methylbenzamide (1 equiv, 2 mmol, 330.4 mg, 0.304 mL) and stirred. After 30 min, the deprotonated picoline solution was then added to the Weinreb amide solution by dropwise addition via syringe over 10 minutes. The reaction was allowed to proceed for 3 hours before quenching with water. EtOAc (5 mL) was added and the phases were separated. The aqueous layer was then re-extracted with EtOAc (5 x 5 mL). The combined organic phases were dried (MgSO₄), passed through a hydrophobic frit, and concentrated under reduced pressure to afford a residue that was purified by flash column chromatography (1:2 EtOAc/petroleum ether 40-60°) to afford the title compound (327 mg, 83% yield).

2.5 General Experimental Procedure for the Synthesis of Quinolizinones via Tandem Horner-Wadsworth-Emmons Olefination/Intramolecular Cyclisation

For example, for Compound 3a. 2-Phenyl-4H-quinolizin-4-one

An oven-dried flask equipped with stirrer bar was purged with N₂ and cooled to 0 °C by submerging in an ice/water bath. The flask was charged with dry toluene (5 mL), triethyl phosphonoacetate (2 equiv, 2 mmol, 448.4 mg, 0.398 mL), and NaH (60% dispersion in mineral oil, 2 equiv, 2 mmol, 83.0 mg). The mixture was stirred for 15 min before removing from the cooling bath and warming to room temperature. 1-Phenyl-2-(pyridin-2-yl)ethanone (**1a**, 1 equiv, 1 mmol, 197.1 mg) was added and the reaction mixture was heated to reflux for 20 hours. The reaction was then treated with Et_2O (5 mL), concentrated under reduced pressure to a residue that was purified by flash column chromatography (1:1 EtOAc/petroleum ether 40-60°) to afford the title compound (203.5 mg, 92% yield).

3. Compound Characterisation Data

Compound 1a. 1-Phenyl-2-(pyridin-2-yl)ethanone

1-Phenyl-2-(pyridin-2-yl)ethanone Chemical Formula: C₁₃H₁₁NO Molecular Weight: 197.2325

Appearance: Orange solid

υ_{max} (solid): 3051, 2922, 1680, 1624, 1595, 1543, 1491, 1465 cm⁻¹.

Approx. 3:1 keto:enol and approx. 3.8:1 enol olefin stereoisomers based on ¹H NMR taken in CDCl₃ at 298 K.²

For ¹H and ¹³C NMR spectra, see Section 3.5.

HRMS ($C_{13}H_{12}NO$) [M+H⁺] requires 198.0919, found [M+H⁺] 198.0913.

Compound 1b. 1-(Pyridin-2-yl)heptan-2-one

1-(Pyridin-2-yl)heptan-2-one Chemical Formula: C₁₂H₁₇NO Molecular Weight: 191.2695

Appearance: Yellow oil.

υ_{max} (neat): 2959, 2926, 1709, 1636, 1585, 1464 cm⁻¹.

Approx. 5.6:1 keto:enol and approx. 1.5:1 enol olefin stereoisomers based on ^{1}H NMR taken in CDCl₃ at 298 K.²

For ¹H and ¹³C NMR spectra, see Section 3.5.

HRMS ($C_{12}H_{18}NO$) [M+H⁺] requires 192.1388, found [M+H⁺] 192.1381.

Compound 1c. 3-Methyl-1-(pyridin-2-yl)butan-2-one

3-Methyl-1-(pyridin-2-yl)butan-2-one Chemical Formula: C₁₀H₁₃NO Molecular Weight: 163.2163

Appearance: Orange oil.

υ_{max} (neat): 2957, 2928, 2870, 1709, 1636, 1585, 1475 cm⁻¹.

Approx. 12.5:1 keto:enol and approx. 7:1 enol olefin stereoisomers based on ¹H NMR taken in CDCl₃ at 298 K.²

For ¹H and ¹³C NMR spectra, see Section 3.5.

¹H NMR (400 MHz, CDCl₃): δ 8.55 (d, 1H, *J* = 4.9 Hz, keto), 8.47 (d, 1H, *J* = 5.6 Hz, enol), 8.38 (d, 1H, *J* = 5.8, enol), 8.21 (d, 1H, *J* = 7.5 Hz, enol),

¹³C NMR (400 MHz, CDCl₃): δ

HRMS ($C_{10}H_{14}NO$) [M+H⁺] requires 164.1075, found [M+H⁺] 164.1070.

Compound 1d. 1-Cyclobutyl-2-(pyridin-2-yl)ethanone

1-Cyclobutyl-2-(pyridin-2-yl)ethanone Chemical Formula: C₁₁H₁₃NO Molecular Weight: 175.2270

Appearance: Yellow oil.

υ_{max} (neat): 2982, 2943, 1705, 1643, 1591, 1474, 1435 cm⁻¹.

Approx. 5:1 keto:enol and approx. 1:1 enol olefin stereoisomers based on ¹H NMR taken in CDCl₃ at 298 K.²

For ¹H and ¹³C NMR spectra, see Section 3.5.

HRMS ($C_{11}H_{14}NO$) [M+H⁺] requires 176.1075, found [M+H⁺] 176.1069.

Compound 1e. 1-(1-Benzylpiperidin-4-yl)-2-(pyridin-2-yl)ethanone

1-(1-Benzylpiperidin-4-yl)-2-(pyridin-2-yl)ethanone Chemical Formula: C₁₉H₂₂N₂O Molecular Weight: 294.3908

Appearance: Brown oil.

υ_{max} (neat): 2940, 2801, 2758, 1709, 1641, 1595, 1551, 1474 cm⁻¹.

Approx. 8.3:1 keto:enol and only one olefin stereoisomer based on ¹H NMR taken in CDCl₃ at 298 K.²

For ¹H and ¹³C NMR spectra, see Section 3.5.

HRMS ($C_{19}H_{23}N_2O$) [M+H⁺] requires 295.1810, found [M+H⁺] 295.1805.

Compound 1f. 1-(4-Fluorophenyl)-2-(pyridin-2-yl)ethanone

1-(4-Fluorophenyl)-2-(pyridin-2-yl)ethanone Chemical Formula: C₁₃H₁₀FNO Molecular Weight: 215.2230

Appearance: Yellow solid.

 υ_{max} (solid): 2922, 1632, 1595, 1506, 1456 cm⁻¹.

Approx. 2:1 keto:enol and approx. 1.7:1 enol olefin stereoisomers based on ¹H NMR taken in CDCl₃ at 298 K.² For ¹H and ¹³C NMR spectra, see Section 3.5.

HRMS ($C_{13}H_{11}FNO$) [M+H⁺] requires 216.0825, found [M+H⁺] 216.0816.

Compound 1g. 1-(4-Chlorophenyl)-2-(pyridin-2-yl)ethanone

1-(4-Chlorophenyl)-2-(pyridin-2-yl)ethanone Chemical Formula: C₁₃H₁₀ClNO Molecular Weight: 231.6776

Appearance: Yellow powder.

 υ_{max} (solid): 3088, 3026, 1626, 1589, 1549, 1454, 1406 cm⁻¹.

Approx. 1.3:1 keto:enol and approx. 7.6:1 enol olefin stereoisomers based on ¹H NMR taken in CDCl₃ at 298 K.² $= 14 \times 11^{13}$ CMMP exact the set of 5

For ¹H and ¹³C NMR spectra, see Section 3.5.

HRMS (C₁₃H₁₁CINO) [M+H⁺] requires 232.0529, found [M+H⁺] 232.0525.

Compound 1h. 1-(4-Bromophenyl)-2-(pyridin-2-yl)ethanone

1-(4-Bromophenyl)-2-(pyridin-2-yl)ethanone Chemical Formula: C₁₃H₁₀BrNO Molecular Weight: 276.1286

Appearance: Orange powder.

 υ_{max} (solid): 2922, 1626, 1585, 1547, 1450, 1404 $\text{cm}^{-1}.$

Approx. 1.2:1 keto:enol and approx. 3.5:1 enol olefin stereoisomers based on ¹H NMR taken in CDCl₃ at 298 K.²

For ¹H and ¹³C NMR spectra, see Section 3.5.

HRMS ($C_{13}H_{11}BrNO$) [M+H⁺] requires 276.0024, found [M+H⁺] 276.0020.

Compound 1j. 2-(Pyridin-2-yl)-1-(o-tolyl)ethanone

2-(Pyridin-2-yl)-1-(*o*-tolyl)ethanone Chemical Formula: C₁₄H₁₃NO Molecular Weight: 211.2591

Appearance: Red solid.

 υ_{max} (solid): 3053, 2924, 1665, 1579, 1568, 1468, 1454, 1431 cm⁻¹.

Approx. 2.4:1 keto:enol and only one enol olefin stereoisomer based on ¹H NMR taken in CDCl₃ at 298 K.²

For ¹H and ¹³C NMR spectra, see Section 3.5.

HRMS ($C_{14}H_{14}NO$) [M+H⁺] requires 212.1075, found [M+H⁺] 212.1068.

Compound 1k. 1-(4-(n-Butyl)phenyl)-2-(pyridin-2-yl)ethanone

Appearance: Yellow solid.

υ_{max} (solid): 2953, 2928, 2857, 1681, 1628, 1595, 1547, 1464 cm⁻¹.

Approx. 2:1 keto:enol and approx. 2.2:1 enol olefin stereoisomers based on ¹H NMR taken in CDCl₃ at 298 K.²

For ¹H and ¹³C NMR spectra, see Section 3.5.

HRMS ($C_{17}H_{20}NO$) [M+H⁺] requires 254.1545, found [M+H⁺] 254.1538.

Compound 1I. 1-(4-Methoxyphenyl)-2-(pyridin-2-yl)ethanone

(4-Methoxyphenyl)-2-(pyridin-2-yl)ethanone Chemical Formula: C₁₄H₁₃NO₂ Molecular Weight: 227.2585

Appearance: Yellow solid.

υ_{max} (solid): 3011, 1624, 1591, 1547, 1510 cm⁻¹.

Approx. 7.1:1 keto:enol and approx. 16:1 enol olefin stereoisomers based on ¹H NMR taken in CDCl₃ at 298 K.² For ¹H and ¹³C NMR spectra, see Section 3.5.

HRMS ($C_{14}H_{14}NO_2$) [M+H⁺] requires 228.1025, found [M+H⁺] 228.1021.

Compound 1m. 1-(4-((tert-Butyldimethylsilyl)oxy)phenyl)-2-(pyridin-2-yl)ethanone

1-(4-((*tert-*Butyldimethylsilyl)oxy)phenyl)-2-(pyridin-2-yl)ethanone Chemical Formula: C₁₉H₂₅NO₂Si Molecular Weight: 327.4928

Appearance: Yellow solid.

 υ_{max} (solid): 3055, 2934, 1636, 1599, 1574, 1513, 1466 cm⁻¹.

Approx. 8.3:1 keto:enol and only one enol olefin stereoisomer based on ¹H NMR taken in CDCl₃ at 298 K.²

For ¹H and ¹³C NMR spectra, see Section 3.5.

HRMS (C₁₉H₂₆NO₂Si) [M+H⁺] requires 328.1733, found [M+H⁺] 328.1725.

Compound 1n. 1-(4-(Dibenzylamino)phenyl)-2-(pyridin-2-yl)ethanone

1-(4-(Dibenzylamino)phenyl)-2-(pyridin-2-yl)ethanone Chemical Formula: C₂₇H₂₄N₂O Molecular Weight: 392.4923

Appearance: Brown oil.

υ_{max} (neat): 3024, 2914, 1661, 1593, 1555, 1522, 1493, 1450 cm⁻¹.

Approx. 20:1 keto:enol and approx. 1.5:1 enol olefin stereoisomers based on ¹H NMR taken in CDCl₃ at 298 K.²

NRn

For ¹H and ¹³C NMR spectra, see Section 3.5.

HRMS ($C_{27}H_{25}N_2O$) [M+H⁺] requires 393.1967, found [M+H⁺] 393.1958.

Compound 1o. 1-(Furan-2-yl)-2-(pyridin-2-yl)ethanone

1-(Furan-2-yl)-2-(pyridin-2-yl)ethanone Chemical Formula: C₁₁H₉NO₂ Molecular Weight: 187.1947

Appearance: Brown solid.

 υ_{max} (solid): 3129, 3049, 3007, 1670, 1589, 1564, 1493, 1433 cm⁻¹.

Approx. 4.5:1 keto:enol and only one enol olefin stereoisomer based on ¹H NMR taken in CDCl₃ at 298 K.²

For ¹H and ¹³C NMR spectra, see Section 3.5.

HRMS ($C_{11}H_{10}NO_2$) [M+H⁺] requires 188.0712, found [M+H⁺] 188.0705.

Compound 3a. 2-Phenyl-4H-quinolizin-4-one

2-Phenyl-4*H*-quinolizin-4-one Chemical Formula: C₁₅H₁₁NO Molecular Weight: 221.2539

Appearance: Yellow crystalline solid.

 υ_{max} (solid): 3121, 3057, 1651, 1626, 1543, 1466, 1429, 1408 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 9.13 (d, 1H, *J* = 7.4 Hz), 7.70-7.72 (m, 2H), 7.44-7.54 (m, 4H), 7.34-7.38 (m, 1H), 6.99-7.03 (m, 1H), 6.91 (s, 2H).

¹³C NMR (400 MHz, CDCl₃): δ 158.7, 150.5, 142.3, 138.4, 129.7, 129.3, 129.0, 127.3, 127.2, 125.7, 114.9, 106.6, 102.2.

HRMS ($C_{15}H_{12}NO$) [M+H⁺] requires 222.0919, found [M+H⁺] 222.0912.

Compound 3b. 2-Pentyl-4H-quinolizin-4-one

2-Pentyl-4*H*-quinolizin-4-one Chemical Formula: C₁₄H₁₇NO Molecular Weight: 215.2909

Appearance: Brown oil.

υ_{max} (neat): 2965, 2932, 2970, 1709, 1636, 1597, 1553, 1475, 1435 cm⁻¹.

¹H NMR (400 MHz, $CDCl_3$): δ 9.04 (d, 1H, J = 8.0 Hz), 7.37 (d, 1H, J = 8.9 Hz), 7.24-7.28 (m, 1H), 6.90 (ddd, 1H, J = 7.70, 6.60, 1.4 Hz), 6.49 (d, 2H, J = 2.1 Hz), 2.61 (t, 2H, J = 8.0 Hz), 1.64-1.72 (m, 2H), 1.31-1.37 (m, 4H), 0.90 (t, 3H, J = 7.0 Hz).

¹³C NMR (400 MHz, CDCl₃): δ 158.9, 154.8, 142.1, 129.4, 127.4, 125.3, 114.5, 109.0, 104.3, 36.2, 31.7, 30.0, 22.8, 14.2.

HRMS ($C_{14}H_{18}NO$) [M+H⁺] requires 216.1388, found [M+H⁺] 216.1380.

Compound 3c. 2-IsopropyI-4H-quinolizin-4-one

2-Isopropyl-4*H*-quinolizin-4-one Chemical Formula: C₁₂H₁₃NO Molecular Weight: 187.2377

Appearance: Yellow crystalline solid.

υ_{max} (solid): 2965, 2870, 1708, 1636, 1553, 1476, 1435 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 9.03 (d, 1H, *J* = 7.4 Hz), 7.39 (d, 1H, *J* = 8.9 Hz), 7.26 (m, 1H), 6.91 (m, 1H), 6.54 (s,

2H), 2.89 (dt, 1H, *J* = 13.8, 6.9 Hz), 1.29 (d, *J* = 6.9 Hz, 6H).

¹³C NMR (400 MHz, CDCl₃): δ 160.2, 158.9, 142.0, 129.0, 127.0, 125.2, 114.2, 106.9, 102.4, 34.3, 22.9.

HRMS ($C_{12}H_{14}NO$) [M+H⁺] requires 188.1075, found [M+H⁺] 188.1069.

Compound 3d. 2-Cyclobutyl-4H-quinolizin-4-one

2-Cyclobutyl-4*H*-quinolizin-4-one Chemical Formula: C₁₃H₁₃NO Molecular Weight: 199.2484

Appearance: Brown oil.

 υ_{max} (neat): 3109, 3061, 2960, 2935, 2864, 1659, 1627, 1560, 1547, 1413 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 9.01 (d, 1H, *J* = 7.4 Hz), 7.37 (d, 1H, *J* = 8.9 Hz), 7.22-7.26 (m, 1H), 6.88 (m, 1H), 6.48 (s, 2H), 3.53 (pent, 1H, *J* = 8.7 Hz), 2.32-2.40 (m, 2H), 2.13-2.23 (m, 2H), 1.98-2.08 (m, 1H), 1.84-1.92 (m, 1H). ¹³C NMR (400 MHz, CDCl₃): δ 158.7, 157.5, 141.9, 129.0, 127.0, 125.0, 114.2, 106.4, 101.9, 39.8, 28.7, 18.1. HRMS (C₁₃H₁₄NO) [M+H⁺] requires 200.1075, found [M+H⁺] 200.1069.

Compound 3e. 2-(1-Benzylpiperidin-4-yl)-4H-quinolizin-4-one

Appearance: Brown oil.

 υ_{max} (neat): 2936, 2797, 2755, 1652, 1629, 1452 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 9.03 (dd, 1H, *J* = 7.3, 0.6 Hz), 7.24-7.39 (m, 7H), 6.89-6.93 (m, 1H), 6.52-6.55 (m, 2H), 3.56 (s, 2H), 3.04 (d, 2H, *J* = 11.8 Hz), 2.47-2.55 (m, 1H), 2.08-2.14 (m, 2H), 1.77-1.86 (m, 4H).

¹³C NMR (400 MHz, CDCl₃): δ 158.8, 157.7, 142.0, 138.2, 129.2, 129.1, 128.2, 128.2, 127.0, 125.2, 114.3, 107.4, 102.4, 63.3, 53.8, 42.6, 32.4.

HRMS ($C_{21}H_{23}N_2O$) [M+H⁺] requires 319.1810, found [M+H⁺] 319.1802.

Compound 3f. 2-(4-Fluorophenyl)-4H-quinolizin-4-one

2-(4-Fluorophenyl)-4*H*-quinolizin-4-one Chemical Formula: C₁₅H₁₀FNO Molecular Weight: 239.2444 Appearance: Yellow crystalline solid.

 υ_{max} (solid): 3123, 2922, 1653, 1626, 1599, 1562, 1543, 1506, 1454 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 9.12 (d, 1H, J = 7.3 Hz), 7.66-7.70 (m, 2H), 7.53 (d, 1H, J = 8.9 Hz), 7.35-7.39 (m, 1H), 7.17-7.21 (m, 2H), 6.99-7.03 (m, 1H), 6.85 (d, 2H, J = 3.5 Hz).

¹³C NMR (400 MHz, CDCl₃): δ 163.8 (d, ¹*J*_{C-F} = 249.4 Hz), 162.6, 158.8, 149.5, 142.6, 134.0 (d, ⁴*J*_{C-F} = 2.9 Hz), 128.5 (d, ³*J*_{C-F} = 8.5 Hz), 127.5, 125.8, 116.4, 115.5 (d, ²*J*_{C-F} = 21.6 Hz), 106.5, 102.0. HRMS (C₁₅H₁₁FNO) [M+H⁺] requires 240.0825, found [M+H⁺] 240.0818.

Compound 3g. 2-(4-Chlorophenyl)-4H-quinolizin-4-one

Appearance: Yellow powder.

 υ_{max} (solid): 3105, 2928, 1651, 1620, 1558, 1541, 1494, 1454, 1435, 1414 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 9.12 (d, 1H, *J* = 7.3 Hz), 7.62-7.64 (m, 2H), 7.53 (d, 1H, *J* = 8.8 Hz), 7.46-7.49 (m, 2H), 7.36-7.40 (m, 1H), 7.00-7.04 (m, 1H), 6.85 (d, 2H, *J* = 3.8 Hz).

¹³C NMR (400 MHz, CDCl₃): δ 158.9, 149.5, 142.8, 137.2, 135.8, 130.2, 129.6, 128.8, 127.6, 126.0, 115.3, 106.7, 102.0.

HRMS ($C_{15}H_{11}CINO$) [M+H⁺] requires 256.0529, found [M+H⁺] 256.0524.

Compound 3h. 2-(4-Bromophenyl)-4H-quinolizin-4-one

Appearance: Yellow solid.

 υ_{max} (solid): 3106, 2927, 1651, 1620, 1558, 1542, 1495, 1455 $\text{cm}^{\text{-1}}.$

¹H NMR (400 MHz, CDCl₃): δ 9.13 (d, 1H, *J* = 7.3 Hz), 7.62-7.64 (m, 2H), 7.56-7.58 (m, 2H), 7.53 (d, 1H, *J* = 8.9 Hz), 7.36-7.40 (m, 1H), 7.00-7.04 (m, 1H), 6.83-6.85 (m, 2H).

¹³C NMR (400 MHz, CDCl₃): δ 159.0, 149.6, 142.9, 137.8, 132.6, 130.3, 129.1, 127.8, 126.0, 124.1, 115.3, 106.7, 102.0.

HRMS ($C_{15}H_{11}BrNO$) [M+H⁺] requires 300.0024, found [M+H⁺] 300.0020.

Compound 3j. 2-(o-Tolyl)-4H-quinolizin-4-one

2-(o-Tolyl)-4*H*-quinolizin-4-one Chemical Formula: C₁₆H₁₃NO Molecular Weight: 235.2805

Appearance: Brown oil.

 υ_{max} (neat): 3061, 3016, 1655, 1628, 1560, 1547, 1489, 1439, 1406 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 9.13 (dd, 1H, *J* = 7.4 Hz), 7.46 (d, 1H, *J* = 8.9 Hz), 7.25-7.36 (m, 5H), 7.00 (ddd, 1H, *J* = 7.7, 6.6, 1.4 Hz), 6.61 (m, 2H), 2.33 (s, 3H).

¹³C NMR (400 MHz, CDCl₃): δ 158.3, 152.2, 141.7, 139.5, 134.9, 130.5, 129.5, 128.8, 128.3, 127.1, 125.9, 125.4,

114.8, 109.4, 104.6, 20.2.

HRMS ($C_{16}H_{14}NO$) [M+H⁺] requires 236.1075, found [M+H⁺] 236.1068.

Compound 3k. 2-(4-(n-Butyl)phenyl)-4H-quinolizin-4-one

Appearance: Brown solid.

υ_{max} (solid): 2955, 2928, 2856, 1735, 1681, 1628, 1562, 1545, 1512, 1454 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 9.04 (d, 1H, *J* = 7.5 Hz), 8.67 (d, 1H, *J* = 4.7 Hz), 7.74 (d, 1H, *J* = 7.7 Hz), 7.38-7.42 (m, H), 7.12 (d, 2H, *J* = 8.3 Hz), 6.91 (t, 1H, *J* = 7.2 Hz), 6.60 (s, 1H), 6.50 (s, 1H), 2.57 (m, 2H), 1.28-1.38 (m, 4H), 0.90 (t, 3H, *J* = 7.3 Hz).

¹³C NMR (400 MHz, CDCl₃): δ 159.1, 150.6, 144.8, 142.6, 135.9, 129.8, 129.4, 127.5, 127.4, 125.9, 114.9, 106.6, 102.2, 35.7, 33.8, 22.7, 14.2.

HRMS ($C_{19}H_{20}NO$) [M+H⁺] requires 278.1545, found [M+H⁺] 278.1540.

Compound 3I. 2-(4-Methoxyphenyl)-4H-quinolizin-4-one

Appearance: Yellow solid.

 υ_{max} (solid): 3115, 2994, 2839, 1651, 1620, 1560, 1545, 1510, 1442, 1418 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 9.09 (d, 1H, *J* = 7.4 Hz), 7.65-7.69 (m, 2H), 7.50 (d, 1H, *J* = 8.9 Hz), 7.31-7.35 (m, 1H), 7.00-7.04 (m, 2H), 6.95-6.98 (m, 1H), 6.87 (s, 2H), 3.88 (s, 3H).

¹³C NMR (400 MHz, CDCl₃): δ 161.1, 159.1, 150.2, 142.6, 130.9, 129.9, 128.8, 127.6, 125.9, 115.0, 114.8, 106.2, 102.1, 55.8.

HRMS ($C_{16}H_{14}NO_2$) [M+H⁺] requires 252.1025, found [M+H⁺] 252.1018.

Compound 3m. 2-(4-((tert-Butyldimethylsilyl)oxy)phenyl)-4H-quinolizin-4-one

Appearance: Brown solid.

υ_{max} (solid): 2930, 2857, 1736, 1649, 1603, 1552, 1512, 1454 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 9.09 (d, 1H, *J* = 7.3 Hz), 7.58-7.62 (m, 2H), 7.49 (d, 1H, *J* = 8.9 Hz), 7.30-7.34 (m, 1H), 6.94-6.98 (m, 3H), 6.86 (s, 2H), 1.02 (s, 9H), 0.26 (s, 6H).

¹³C NMR (400 MHz, CDCl₃): δ 159.1, 157.5, 150.4, 142.6, 131.5, 129.9, 128.8, 127.6, 125.9, 121.0, 114.9, 106.3, 102.2, 26.0, 18.6, 4.0.

HRMS ($C_{16}H_{15}NO_2Si$) [M-(Me + *t*-Bu)+2H] requires 281.0872, found [M-(Me + *t*-Bu)+2H] 281.1515 (fragment shown below).

HRMS fragment of compound 3n.

2-(4-((Methylsilyl)oxy)phenyl)-4*H*-quinolizin-4-one Chemical Formula: C₁₆H₁₅NO₂Si Molecular Weight: 281.3813

Compound 3n. 2-(4-(Dibenzylamino)phenyl)-4H-quinolizin-4-one

Appearance: Brown/yellow solid.

 υ_{max} (solid): 3061, 2913, 2862, 1655, 1603, 1518, 1450 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 9.05 (d, 1H, *J* = 7.3 Hz), 7.57-7.60 (m, 2H), 7.45 (d, 1H, *J* = 8.9 Hz), 7.35-7.39 (m, 4H), 7.26-7.32 (m, 7H), 6.82-6.94 (m, 5H), 4.74 (s, 4H).

¹³C NMR (400 MHz, CDCl₃): δ 150.5, 150.3, 142.5, 138.1, 129.7, 129.2, 128.6, 127.5, 127.5, 126.9, 125.9, 120.0, 114.6, 112.9, 105.2, 54.5.

HRMS ($C_{29}H_{25}N_2O$) [M+H⁺] requires 417.1967, found [M+H⁺] 417.1961.

Compound 3o. 2-(Furan-2-yl)-4H-quinolizin-4-one

2-(Furan-2-yl)-4*H*-quinolizin-4-one Chemical Formula: C₁₃H₉NO₂ Molecular Weight: 211.2161

Appearance: Brown solid.

 υ_{max} (soild): 3102, 2957, 2922, 2853, 1736, 1651, 1618, 1593, 1460 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 9.08 (d, 1H, *J* = 7.4 Hz), 7.59 (d, 1H, *J* = 1.2 Hz), 7.48 (d, 1H, *J* = 8.9 Hz), 7.30-7.34 (m, 1H), 6.90-6.97 (m, 4H), 6.56 (dd, 1H, *J* = 3.4, 1.8 Hz).

¹³C NMR (400 MHz, CDCl₃): δ 159.0, 151.7, 144.6, 143.0, 139.4, 130.1, 127.8, 125.9, 114.9, 112.6, 110.2, 102.6, 98.9.

HRMS (C₁₃H₁₀NO₂) [M+H⁺] requires 212.0712, found [M+H⁺] 212.0704.

Compound 5a. N-Methoxy-N-methylbenzamide

N-Methoxy-*N*-methylbenzamide Chemical Formula: C₉H₁₁NO₂ Molecular Weight: 165.1891

Appearance: Colourless oil.

υ_{max} (neat): 2970, 1638, 1447, 1412 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 7.67-7.70 (m, 2H), 7.41-7.46 (m, 3H), 3.57 (s, 3H), 3.37 (s, 3H). ¹³C NMR (400 MHz, CDCl₃): δ 169.9, 134.1, 130.5, 128.1, 128.0, 61.0, 33.7.

HRMS $(C_9H_{12}NO_2)$ [M+H⁺] requires 166.0868, found [M+H⁺] 166.0863.

Compound 5b. N-Methoxy-N-methylhexanamide

n-Pent N-OMe

N-Methoxy-N-methylhexanamide Chemical Formula: C₈H₁₇NO₂ Molecular Weight: 159.2261

Appearance: Colourless oil.

υ_{max} (neat): 2955, 2934, 2860, 1637, 1462, 1443, 1412 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 3.69 (s, 3H), 3.18 (s, 3H), 2.41 (t, 2H, *J* = 7.6 Hz), 1.60-1.68 (m, 2H), 1.29-1.38 (m, 4H), 0.91 (t, 3H, *J* = 7.0 Hz).

¹³C NMR (100 MHz, CDCl₃): δ 174.5, 60.8, 31.8, 31.5, 31.3, 24.0, 22.1, 13.6.

HRMS ($C_8H_{18}NO_2$) [M+H⁺] requires 160.1338, found [M+H⁺] 160.1331.

Compound 5c. N-Methoxy-N-methylisobutyramide

N-Methoxy-N-methylisobutyramide Chemical Formula: C₆H₁₃NO₂ Molecular Weight: 131.1729

Appearance: Colourless oil.

υ_{max} (neat): 2961, 1732, 1647, 1483, 1460, 1404 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 3.69 (s, 3H), 3.18 (s, 3H), 2.93-3.00 (m, 1H), 1.13 (d, 6H, *J* = 6.9 Hz).

¹³C NMR (400 MHz, CDCl₃): δ 178.9, 60.3, 39.1, 33.4, 26.9.

HRMS ($C_6H_{14}NO_2$) [M+H⁺] requires 132.1025, found [M+H⁺] 132.1018.

Compound 5d. N-Methoxy-N-methylcyclobutanecarboxamide

N-Methoxy-N-methylcyclobutanecarboxamide Chemical Formula: C₇H₁₃NO₂ Molecular Weight: 143.1836

Appearance: Colourless oil.

 υ_{max} (neat): 2943, 2870, 1674, 1462, 1443, 1414 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 3.58 (s, 3H), 3.41 (br m, 1H), 3.10 (s, 3H), 2.20-2.30 (m, 2H), 2.02-2.10 (m, 2H), 1.85-1.96 (m, 1H), 1.74-1.84 (m, 1H).

¹³C NMR (400 MHz, CDCl₃): δ 175.0, 61.1, 35.9, 32.1, 24.7, 18.5.

HRMS $(C_7H_{14}NO_2)$ [M+H⁺] requires 144.1025, found [M+H⁺] 144.1020.

Compound 5e. 1-Benzyl-N-methoxy-N-methylpiperidine-4-carboxamide

Appearance: Orange oil.

 υ_{max} (neat): 2947, 2754, 1651, 1447 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 7.32-7.34 (m, 3H), 7.24-7.30 (m, 2H), 3.70 (s, 3H), 3.53 (s, 2H), 3.18 (s, 3H), 2.94-2.97 (m, 2H), 2.63-2.69 (m, 1H), 2.01-2.06 (m, 2H), 1.80-1.90 (m, 2H), 1.70-1.73 (m, 2H).

¹³C NMR (400 MHz, CDCl₃): δ 176.4, 138.4, 129.0, 128.1, 126.9, 63.2, 61.5, 53.1, 38.2, 32.3, 28.3.

HRMS $(C_{15}H_{23}N^2O_2)$ [M+H⁺] requires 263.1760, found [M+H⁺] 263.1751.

Compound 5f. 4-Fluoro-N-methoxy-N-methylbenzamide

4-Fluoro-*N*-methoxy-*N*-methylbenzamide Chemical Formula: C₉H₁₀FNO₂ Molecular Weight: 183.1796

Appearance: Colourless oil.

υ_{max} (neat): 2970, 2938, 1637, 1603, 1506, 1460, 1441, 1418 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 7.73-7.76 (m, 2H), 7.07-7.11 (m, 2H), 3.54 (s, 3H), 3.37 (s, 3H).

¹³C NMR (400 MHz, CDCl₃): 164.4 (d, ¹ J_{C-F} = 250.9 Hz), 162.8, 131.2 (d, ³ J_{C-F} = 8.5 Hz), 130.2 (d, ⁴ J_{C-F} = 3.0 Hz), 115.4 (d, ² J_{C-F} = 21.9 Hz), 61.0, 33.6.

HRMS (C₉H₁₁FNO₂) [M+H⁺] requires 184.0774, found [M+H⁺] 184.0767.

Compound 5g. 4-Chloro-N-methoxy-N-methylbenzamide

4-Chloro-N-methoxy-N-methylbenzamide Chemical Formula: C₉H₁₀ClNO₂ Molecular Weight: 199.6342

Appearance: Pale yellow oil.

υ_{max} (neat): 2968, 1638, 1593, 1458, 1442, 1414 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, 2H, J = 8.6 Hz), 7.38 (d, 2H, J = 8.6 Hz), 3.54 (s, 3H), 3.36 (s, 3H).

¹³C NMR (400 MHz, CDCl₃): δ 168.6, 136.7, 132.3, 129.8, 128.2, 61.0, 33.5.

HRMS (C₉H₁₁CINO₂) [M+H⁺] requires 200.0478, found [M+H⁺] 200.0474.

Compound 5h. 4-Bromo-N-methoxy-N-methylbenzamide

Appearance: Pale yellow oil.

 υ_{max} (neat): 2968, 2934, 1635, 1587, 1458, 1412 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, 2H, *J* = 8.7 Hz), 7.55 (d, 2H, *J* = 8.7 Hz), 3.54 (s, 3H), 3.36 (s, 3H).

 ^{13}C NMR (400 MHz, CDCl_3): δ 168.7, 132.8, 131.2, 130.0, 125.1, 61.1, 33.5.

HRMS ($C_9H_{11}BrNO_2$) [M+H⁺] requires 243.9973, found [M+H⁺] 243.9971.

Compound 5i. N-Methoxy-N-methyl-4-nitrobenzamide

N-Methoxy-N-methyl-4-nitrobenzamide Chemical Formula: C₉H₁₀N₂O₄ Molecular Weight: 210.1867

Appearance: Colourless oil.

 υ_{max} (neat): 3115, 2986, 2930, 1634, 1595, 1524, 1423 $\text{cm}^{\text{-1}}.$

¹H NMR (400 MHz, CDCl₃): δ 8.27 (d, 2H, J = 8.9 Hz), 7.84 (d, 2H, J = 8.9 Hz), 3.53 (s, 3H), 3.40 (s, 3H)

¹³C NMR (400 MHz, CDCl₃): δ 167.7, 148.8, 140.0, 129.2, 123.2, 61.4, 33.1.

HRMS ($C_9H_{10}N_2O_4$) [M+H⁺] requires 211.0719, found [M+H⁺] 211.0713.

Compound 5j. N-Methoxy-N,2-dimethylbenzamide

V-Methoxy-*N*,2-dimethylbenzamide Chemical Formula: C₁₀H₁₃NO₂ Molecular Weight: 179.2157

Appearance: Pale yellow oil.

υ_{max} (neat): 2968, 2934, 1668, 1459, 1410 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 7.18-7.31 (m, 4H), 3.52 (br s, 3H), 3.30 (s, 3H), 2.34 (s, 3H). ¹³C NMR (400 MHz, CDCl₃): δ 170.6, 135.6, 135.0, 130.2, 129.2, 126.4, 125.5, 61.1, 33.5, 19.1. HRMS ($C_{10}H_{14}NO_2$) [M+H⁺] requires 180.1025, found [M+H⁺] 180.1018.

Compound 5k. 4-(n-Butyl)-N-methoxy-N-methylbenzamide

4-(*n*-Butyl)-*N*-methoxy-*N*-methylbenzamide Chemical Formula: C₁₃H₁₉NO₂ Molecular Weight: 221.2955

Appearance: Colourless oil.

υ_{max} (neat): 2957, 2930, 1639, 1611, 1458, 1416 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, 2H, J = 8.2 Hz), 7.21 (d, 2H, J = 8.3 Hz), 3.57 (s, 3H), 3.35 (s, 3H), 2.64 (t, 2H, 2H) = 0.0112 \pm 0.012

J = 8.0 Hz), 1.58-1.65 (m, 2H), 1.32-1.41 (m, 2H), 0.93 (t, 3H, *J* = 7.3 Hz).

¹³C NMR (400 MHz, CDCl₃): δ 169.9, 145.7, 131.2, 128.2, 127.9, 60.8, 35.4, 33.8, 33.2, 22.2, 13.8.

HRMS ($C_{13}H_{20}NO_2$) [M+H⁺] requires 222.1494, found [M+H⁺] 222.1488.

Compound 5I. 4-Methoxy-N-methoxy-N-methylbenzamide

N,4-Dimethoxy-N-methylbenzamide Chemical Formula: C₁₀H₁₃NO₃ Molecular Weight: 195.2151

Appearance: Pale yellow oil.

 υ_{max} (neat): 2965, 2934,1632, 1605, 1510, 1460, 1420 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, 2H, *J* = 8.9 Hz), 6.91 (d, 2H, *J* = 8.9 Hz), 3.85 (s, 3H), 3.57 (s, 3H), 3.36 (s, 3H). ¹³C NMR (400 MHz, CDCl₃): δ 169.3, 161.5, 130.5, 126.0, 113.2, 60.8, 55.2, 33.8. HRMS (C₁₀H₁₄NO₃) [M+H⁺] requires 196.0974, found [M+H⁺] 196.0968.

Compound 5m. 4-((tert-Butyldimethylsilyl)oxy)-N-methoxy-N-methylbenzamide

Appearance: Colourless oil.

 υ_{max} (neat): 2955, 2930, 2859, 1639, 1603, 1506, 1462, 1415 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 7.65 (d, 2H, *J* = 8.7 Hz), 6.85 (d, 2H, *J* = 8.7 Hz), 3.56 (s, 3H), 3.35 (s, 3H), 0.99 (s, 9H), 0.22 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 169.5, 158.0, 130.3, 126.7, 119.4, 60.8, 33.9, 25.6, 18.1, -4.5.

HRMS ($C_{15}H_{26}NO_{3}Si$) [M+H⁺] requires 296.1682, found [M+H⁺] 296.1677.

Compound 5n. 4-(Dibenzylamino)-N-methoxy-N-methylbenzamide

Appearance: Colourless oil.

υ_{max} (neat): 3030, 2932, 1620, 1609, 1522, 1445 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, 2H, *J* = 9.1 Hz), 7.33-7.37 (m, 4H), 7.28-7.3 (m, 2H), 7.23-7.25 (m, 4H), 6.72 (d, 2H, *J* = 9.0 Hz), 4.71 (s, 4H), 3.60 (s, 3H), 3.34 (s, 3H).

¹³C NMR (400 MHz, CDCl₃): δ 169.8, 151.1, 137.7, 130.7, 128.7, 127.1, 126.5, 121.2, 111.1, 60.7, 53.9, 34.2.

HRMS $(C_{23}H_{25}N_2O_2)$ [M+H⁺] requires 361.1916, found [M+H⁺] 361.1911.

Compound 5o. N-Methoxy-N-methylfuran-2-carboxamide

N-Methoxy-N-methylfuran-2-carboxamide Chemical Formula: C₇H₉NO₃ Molecular Weight: 155.1513

Appearance: Brown oil.

υ_{max} (neat): 3119, 2968, 2938, 1627, 1560, 1407 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, 1H, *J* = 1.5 Hz), 7.14 (d, 1H, *J* = 3.5 Hz), 6.51 (dd, 1H, *J* = 3.5, 1.7 Hz), 3.77 (s, 3H), 3.35 (s, 3H).

¹³C NMR (400 MHz, CDCl₃): δ 159.1, 145.7, 145.2, 117.3, 111.5, 61.3, 33.1.

HRMS $(C_7H_{10}NO_3)$ [M+H⁺] requires 156.0661, found [M+H⁺] 156.0654.

3.5 IR, ¹H NMR, ¹³C NMR, and HRMS Spectra for Compounds

Compound 1a: 1-Phenyl-2-(pyridin-2-yl)ethanone

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

FTIR:

Compound 1b: 1-(Pyridin-2-yl)heptan-2-one

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

FTIR:

Compound 1c: 3-Methyl-1-(pyridin-2-yl)butan-2-one

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

FTIR:

Compound 1d: 1-Cyclobutyl-2-(pyridin-2-yl)ethanone

¹H NMR:

FTIR:

Compound 1e: 1-(1-Benzylpiperidin-4-yl)-2-(pyridin-2-yl)ethanone

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

FTIR:

Compound 1f: 1-(4-Fluorophenyl)-2-(pyridin-2-yl)ethanone

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

FTIR:

Compound 1g: 1-(4-Chlorophenyl)-2-(pyridin-2-yl)ethanone

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

FTIR:

Compound 1h: 1-(4-Bromophenyl)-2-(pyridin-2-yl)ethanone

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

FTIR:

Compound 1j: 2-(Pyridin-2-yl)-1-(o-tolyl)ethanone

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

FTIR:

Compound 1k: 1-(4-(n-Butyl)phenyl)-2-(pyridin-2-yl)ethanone

¹H NMR:

FTIR:

Compound 1I: 1-(4-Methoxyphenyl)-2-(pyridin-2-yl)ethanone

¹H NMR:

. 200 . 190 180

. 170 . 160 150

140

130

. 120

110 100 f1 (ppm) . 90 . 80 . 70 60

50

40

30

20

. 10

37

FTIR:

Compound 1m: 1-(4-((tert-Butyldimethylsilyl)oxy)phenyl)-2-(pyridin-2-yl)ethanone

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

FTIR:

Compound 1n: 1-(4-(Dibenzylamino)phenyl)-2-(pyridin-2-yl)ethanone

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

FTIR:

Compound 1o: 1-(Furan-2-yl)-2-(pyridin-2-yl)ethanone

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

FTIR:

Compound 3a: 2-Phenyl-4H-quinolizin-4-one

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

FTIR:

Compound 3b: 2-Pentyl-4H-quinolizin-4-one

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

FTIR:

Compound 3c: 2-IsopropyI-4H-quinolizin-4-one

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

FTIR:

Compound 3d: 2-Cyclobutyl-4H-quinolizin-4-one

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

FTIR:

Compound 3e: 2-(1-Benzylpiperidin-4-yl)-4H-quinolizin-4-one

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

FTIR:

Compound 3f: 2-(4-Fluorophenyl)-4H-quinolizin-4-one

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

FTIR:

Compound 3g: 2-(4-Chlorophenyl)-4H-quinolizin-4-one

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

FTIR:

Compound 3h: 2-(4-Bromophenyl)-4H-quinolizin-4-one

¹H NMR:

Compound 3j: 2-(o-Tolyl)-4H-quinolizin-4-one

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

FTIR:

Compound 3k: 2-(4-(n-Butyl)phenyl)-4H-quinolizin-4-one

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

FTIR:

Compound 3I: 2-(4-Methoxyphenyl)-4H-quinolizin-4-one

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

FTIR:

Compound 3m: 2-(4-((tert-Butyldimethylsilyl)oxy)phenyl)-4H-quinolizin-4-one

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

FTIR:

Compound 3n: 2-(4-(Dibenzylamino)phenyl)-4H-quinolizin-4-one

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

FTIR:

Compound 3o: 2-(Furan-2-yl)-4H-quinolizin-4-one

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

FTIR:

Compound 5a: N-Methoxy-N-methylbenzamide

¹H NMR:

¹³C NMR:

FTIR:

HRMS:

74

Compound 5b: N-Methoxy-N-methylhexanamide

¹H NMR:

₹77.32 ₹77.00 76.68 $\left\{ \begin{array}{c} 32.14 \\ 31.81 \\ 31.56 \end{array} \right\}$ - 61.12 -4E+05 -3E+05 -3E+05 -3E+05 -3E+05 -3E+05 -2E+05 -2E+05 -2E+05 -2E+05 -2E+05 -1E+05 -1E+05 -1E+05 ī - 80000 - 60000 40000 20000 - 0 - -20000 -40000 0 140 130 120 110 100 80 70 f1 (ppm) 60 50 40 30 20 10 90

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

FTIR:

Compound 5c: N-Methoxy-N-methylisobutyramide

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

FTIR:

Compound 5d: N-Methoxy-N-methylcyclobutanecarboxamide

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

FTIR:

Compound 5e: 1-Benzyl-N-methoxy-N-methylpiperidine-4-carboxamide

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

FTIR:

Compound 5f: 4-Fluoro-N-methoxy-N-methylbenzamide

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

FTIR:

Compound 5g: 4-Chloro-N-methoxy-N-methylbenzamide

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

FTIR:

Compound 5h: 4-Bromo-N-methoxy-N-methylbenzamide

¹H NMR:

¹³C NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

FTIR:

Compound 5i: N-Methoxy-N-methyl-4-nitrobenzamide

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

FTIR:

Compound 5j: N-Methoxy-N,2-dimethylbenzamide

¹H NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

FTIR:

Compound 5k: 4-(n-Butyl)-N-methoxy-N-methylbenzamide

¹H NMR:

f1 (ppm)

FTIR:

HRMS:

94

Compound 5I: 4-Methoxy-N-methoxy-N-methylbenzamide

¹H NMR:

¹³C NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

FTIR:

Compound 5m: 4-((*tert*-Butyldimethylsilyl)oxy)-*N*-methoxy-*N*-methylbenzamide

¹H NMR:

¹³C NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

FTIR:

Compound 5n: 4-(Dibenzylamino)-N-methoxy-N-methylbenzamide

¹H NMR:

¹³C NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

FTIR:

Compound 5o: N-Methoxy-N-methylfuran-2-carboxamide

¹H NMR:

¹³C NMR:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

FTIR:

3.6 Crystal Structure Data for 3a

3.6.1 General

Crystal data for **3a** ($C_{15}H_{11}NO$, MW = 221.25) were measured at 123 K using an Oxford Diffraction Xcalibur E instrument and MoK α radiation, λ = 0.71073 Å. Found monoclinic, space group P21/c, a = 9.0140(5), b= 10.7721(5), c= 11.3234(7) Å, β = 101.481(6)°, V = 1077.50(10) Å3, Z = 4, μ = 0.086 mm-1, 20max = 54°, 4957 reflections, 2347 unique, Rint 0.0276; final refinement to convergence on F2 gave R = 0.0475 (F, 1703 obs. data only) and Rw = 0.1061 (F2, all data), GOF = 1.041. CCDC reference number 915082.

3.6.2 CIF Check

checkCIF/PLATON report (basic structural check)

No syntax errors found.	CIF dictionary
Please wait while processing	Interpreting this report

Datablock: watson1

Bond precisi	on:	C-C =	0.002	21 A		Wavelength=0.71073
Cell:	a=9.01	40(5)	b=10	.7721(5)	c=11.3	3234(7)
	alpha=90 be		beta	eta=101.481(6)gamma=90		=90
Temperature:	123 K					
		Calculat	ed			Reported
Volume		1077.50(11)			1077.50(10)
Space group		P 21/c				P21/c
Hall group		-P 2ybc				?
Moiety formu	la	C15 H11	N O			?
Sum formula		C15 H11	N O			C15 H11 N O
Mr		221.25				221.25
Dx,g cm-3		1.364				1.364
Ζ		4				4
Mu (mm-1)		0.086				0.086
F000		464.0				464.0
F000'		464.19				
h,k,lmax		11,13,14	:			11,13,14
Nref		2349				2347
Tmin,Tmax		0.980,0.	983			0.953,1.000
Tmin'		0.975				
Correction method= MULTI-SCAN						
Data completeness= 0.999 Theta(max)= 27.000						
R(reflections) = 0.0475(1703) wR2(reflections) = 0.1061(2347)			ns) = 0.1061(2347)			
S = 1.041		Npar=	154			

The following ALERTS were generated. Each ALERT has the format

test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level G

PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF

?

0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
0 ALERT level C = Check. Ensure it is not caused by an omission or oversight
1 ALERT level G = General information/check it is not something unexpected
0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
0 ALERT type 2 Indicator that the structure model may be wrong or deficient
0 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

3.6.3 Crystal Data and Structure Refinement for 3a.

Table 1. Crystal Data and Structure Refinement	t for 3a.
Identification code	watson1
Empirical formula	C15 H11 N O
Formula weight	221.25
Temperature	123(2) K
Wavelength	0.71073 Å

Crystal system	Monoclinic		
Space group	P2 ₁ /c		
Unit cell dimensions	a = 9.0140(5) Å	□= 90°.	
	b = 10.7721(5) Å	□= 101.481(6)°.	
	c = 11.3234(7) Å	□ = 90°.	
Volume	1077.50(10) Å ³		
Z	4		
Density (calculated)	1.364 Mg/m ³		
Absorption coefficient	0.086 mm ⁻¹		
F(000)	464		
Crystal size	0.30 x 0.20 x 0.20 mm ³		
Theta range for data collection	2.98 to 27.00°.		
Index ranges	-11<=h<=11, -13<=k<=13, -	·14<=l<=14	
Reflections collected	4957		
Independent reflections	2347 [R(int) = 0.0276]		
Completeness to theta = 27.00°	99.9 %		
Absorption correction	Semi-empirical from equival	lents	
Max. and min. transmission	1.00000 and 0.95340		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	2347 / 0 / 154		
Goodness-of-fit on F ²	1.041		
Final R indices [I>2sigma(I)]	R1 = 0.0475, wR2 = 0.0937		
R indices (all data)	R1 = 0.0769, wR2 = 0.1061		
Largest diff. peak and hole	0.235 and -0.234 e.Å ⁻³		

Table 2. Atomic coordinates (x10 ⁴) and equivalent isotropic displacement parameters (Å ² x10 ³)
for 3a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)	
O(1)	1077(1)	2359(1)	416(1)	28(1)	
N(1)	1440(2)	4324(1)	1213(1)	18(1)	
C(1)	1520(2)	3433(2)	284(2)	20(1)	
C(2)	2141(2)	3880(2)	-676(1)	19(1)	
C(3)	2645(2)	5090(2)	-748(1)	18(1)	
C(4)	2495(2)	5923(2)	167(1)	19(1)	
C(5)	1910(2)	5547(2)	1148(1)	18(1)	
C(6)	1781(2)	6346(2)	2125(1)	21(1)	
C(7)	1299(2)	5925(2)	3107(2)	23(1)	
C(8)	879(2)	4661(2)	3160(2)	23(1)	
C(9)	937(2)	3907(2)	2223(1)	21(1)	
C(10)	3374(2)	5487(2)	-1754(1)	19(1)	
C(11)	2966(2)	4965(2)	-2904(2)	22(1)	

C(12)	3675(2)	5335(2)	-3824(2)	27(1)
C(13)	4799(2)	6231(2)	-3614(2)	29(1)
C(14)	5206(2)	6764(2)	-2486(2)	26(1)
C(15)	4506(2)	6392(2)	-1561(2)	22(1)

Table 3. Bond lengths [Å] and angles [°] for 3a.

O(1)-C(1)	1.2428(19)
N(1)-C(9)	1.3857(19)
N(1)-C(5)	1.391(2)
N(1)-C(1)	1.436(2)
C(1)-C(2)	1.403(2)
C(2)-C(3)	1.388(2)
C(2)-H(2)	0.9500
C(3)-C(4)	1.397(2)
C(3)-C(10)	1.487(2)
C(4)-C(5)	1.383(2)
C(4)-H(4)	0.9500
C(5)-C(6)	1.424(2)
C(6)-C(7)	1.350(2)
C(6)-H(6)	0.9500
C(7)-C(8)	1.418(2)
C(7)-H(7)	0.9500
C(8)-C(9)	1.346(2)
C(8)-H(8)	0.9500
C(9)-H(9)	0.9500
C(10)-C(15)	1.396(2)
C(10)-C(11)	1.399(2)
C(11)-C(12)	1.384(2)
C(11)-H(11)	0.9500
C(12)-C(13)	1.385(3)
C(12)-H(12)	0.9500
C(13)-C(14)	1.382(2)
C(13)-H(13)	0.9500
C(14)-C(15)	1.385(2)
C(14)-H(14)	0.9500
C(15)-H(15)	0.9500
C(9)-N(1)-C(5)	120.24(14)
C(9)-N(1)-C(1)	117.40(13)
C(5)-N(1)-C(1)	122.29(13)
O(1)-C(1)-C(2)	126.86(15)
O(1)-C(1)-N(1)	118.00(14)
C(2)-C(1)-N(1)	115.12(14)
C(3)-C(2)-C(1)	123.58(15)
C(3)-C(2)-H(2)	118.2
C(1)-C(2)-H(2)	118.2
C(2)-C(3)-C(4)	118.61(15)

C(2)-C(3)-C(10)	121.02(14)
C(4)-C(3)-C(10)	120.34(14)
C(5)-C(4)-C(3)	121.11(15)
C(5)-C(4)-H(4)	119.4
C(3)-C(4)-H(4)	119.4
C(4)-C(5)-N(1)	119.25(14)
C(4)-C(5)-C(6)	123.43(15)
N(1)-C(5)-C(6)	117.32(14)
C(7)-C(6)-C(5)	121.73(16)
C(7)-C(6)-H(6)	119.1
C(5)-C(6)-H(6)	119.1
C(6)-C(7)-C(8)	119.36(16)
C(6)-C(7)-H(7)	120.3
C(8)-C(7)-H(7)	120.3
C(9)-C(8)-C(7)	119.56(16)
C(9)-C(8)-H(8)	120.2
C(7)-C(8)-H(8)	120.2
C(8)-C(9)-N(1)	121.70(16)
C(8)-C(9)-H(9)	119.2
N(1)-C(9)-H(9)	119.2
C(15)-C(10)-C(11)	118.34(15)
C(15)-C(10)-C(3)	120.14(15)
C(11)-C(10)-C(3)	121.52(15)
C(12)-C(11)-C(10)	120.59(17)
C(12)-C(11)-H(11)	119.7
C(10)-C(11)-H(11)	119.7
C(11)-C(12)-C(13)	120.24(17)
C(11)-C(12)-H(12)	119.9
C(13)-C(12)-H(12)	119.9
C(14)-C(13)-C(12)	119.90(16)
C(14)-C(13)-H(13)	120.0
C(12)-C(13)-H(13)	120.0
C(13)-C(14)-C(15)	120.07(17)
C(13)-C(14)-H(14)	120.0
C(15)-C(14)-H(14)	120.0
C(14)-C(15)-C(10)	120.85(16)
C(14)-C(15)-H(15)	119.6
C(10)-C(15)-H(15)	119.6

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å²x 10³)for watson1. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
O(1)	38(1)	16(1)	31(1)	-1(1)	12(1)	-3(1)	
N(1)	18(1)	18(1)	18(1)	1(1)	4(1)	1(1)	
C(1)	20(1)	16(1)	24(1)	-2(1)	2(1)	2(1)	
C(2)	22(1)	18(1)	19(1)	-3(1)	4(1)	2(1)	
C(3)	16(1)	19(1)	18(1)	0(1)	0(1)	3(1)	
C(4)	21(1)	16(1)	21(1)	1(1)	3(1)	-1(1)	
C(5)	17(1)	16(1)	20(1)	0(1)	1(1)	1(1)	
C(6)	20(1)	19(1)	23(1)	-4(1)	3(1)	0(1)	
C(7)	22(1)	28(1)	20(1)	-4(1)	3(1)	4(1)	
C(8)	22(1)	29(1)	19(1)	4(1)	5(1)	2(1)	
C(9)	20(1)	20(1)	25(1)	6(1)	6(1)	2(1)	
C(10)	20(1)	17(1)	21(1)	2(1)	5(1)	6(1)	
C(11)	22(1)	22(1)	24(1)	-1(1)	4(1)	4(1)	
C(12)	33(1)	30(1)	20(1)	0(1)	7(1)	10(1)	
C(13)	33(1)	31(1)	28(1)	9(1)	16(1)	10(1)	
C(14)	21(1)	25(1)	35(1)	6(1)	9(1)	2(1)	
C(15)	21(1)	22(1)	22(1)	2(1)	4(1)	3(1)	

Table 5. Hydrogen coordinates ($x10^4$) and isotropic displacement parameters (Å² $x10^3$) for 3a.

	Х	У	Z	U(eq)	
H(2)	2221	3324	-1312	23	
H(4)	2802	6761	113	23	
H(6)	2041	7197	2085	25	
H(7)	1242	6470	3755	28	
H(8)	559	4349	3853	28	
H(9)	626	3067	2254	26	
H(11)	2195	4351	-3056	27	
H(12)	3390	4974	-4601	33	
H(13)	5289	6479	-4245	35	
H(14)	5967	7387	-2344	32	
H(15)	4800	6756	-786	26	

Table 6. Torsion angles [°] for 3a.

C(9)-N(1)-C(1)-O(1)	2.9(2)
C(5)-N(1)-C(1)-O(1)	179.90(15)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

C(9)-N(1)-C(1)-C(2)	-175.44(14)
C(5)-N(1)-C(1)-C(2)	1.5(2)
O(1)-C(1)-C(2)-C(3)	-178.43(17)
N(1)-C(1)-C(2)-C(3)	-0.2(2)
C(1)-C(2)-C(3)-C(4)	-1.6(2)
C(1)-C(2)-C(3)-C(10)	176.44(15)
C(2)-C(3)-C(4)-C(5)	2.3(2)
C(10)-C(3)-C(4)-C(5)	-175.78(15)
C(3)-C(4)-C(5)-N(1)	-1.1(2)
C(3)-C(4)-C(5)-C(6)	177.76(15)
C(9)-N(1)-C(5)-C(4)	175.97(15)
C(1)-N(1)-C(5)-C(4)	-0.9(2)
C(9)-N(1)-C(5)-C(6)	-2.9(2)
C(1)-N(1)-C(5)-C(6)	-179.82(14)
C(4)-C(5)-C(6)-C(7)	-175.42(16)
N(1)-C(5)-C(6)-C(7)	3.4(2)
C(5)-C(6)-C(7)-C(8)	-1.3(3)
C(6)-C(7)-C(8)-C(9)	-1.3(3)
C(7)-C(8)-C(9)-N(1)	1.8(2)
C(5)-N(1)-C(9)-C(8)	0.4(2)
C(1)-N(1)-C(9)-C(8)	177.42(15)
C(2)-C(3)-C(10)-C(15)	-147.47(16)
C(4)-C(3)-C(10)-C(15)	30.6(2)
C(2)-C(3)-C(10)-C(11)	31.8(2)
C(4)-C(3)-C(10)-C(11)	-150.15(15)
C(15)-C(10)-C(11)-C(12)	0.3(2)
C(3)-C(10)-C(11)-C(12)	-179.02(15)
C(10)-C(11)-C(12)-C(13)	-0.1(3)
C(11)-C(12)-C(13)-C(14)	-0.5(3)
C(12)-C(13)-C(14)-C(15)	0.9(3)
C(13)-C(14)-C(15)-C(10)	-0.7(3)
C(11)-C(10)-C(15)-C(14)	0.1(2)
C(3)-C(10)-C(15)-C(14)	179.40(15)

Symmetry transformations used to generate equivalent atoms:

4. References

1. W. L. F. Armarego and C. L. L. Chai, Purification of Laboratory Chemicals, 7th ed., Elsevier, Oxford, 2013.

2. The β -ketopyridines prepared exist as a mixture of enol and keto tautomers in various ratios. In addition, some of the enol tautomers exhibit *cis-trans* isomerism. As such, the ¹H and ¹³C NMR spectra for these compounds are complicated and we have elected to provide the spectra, which can be found in the appendix.

3. J. M. Williams, R. B. Jobson, N. Yasuda, G. Marchesini, U. H. Dolling and E. J. J. Grabowski, *Tetrahedron Lett.*, 1995, **36**, 5461.