Tri-substituted hexahomotrioxacalix[3]arene derivatives bearing imidazole units: synthesis and extraction properties for cations and chromate anions

Xin-Long Ni,^{*a,b*} Cheng-Cheng Jin,^{*a*} Xue-Kai Jiang,^{*a*} Masashi Takimoto,^{*a*} Shofiur Rahman,^{*a*} Xi Zeng,^{*b*} David L. Hughes,^{*c*} Carl Redshaw^{*d*} and Takehiko Yamato^{**a*}

^a Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1, Saga-shi, Saga 840-8502, Japan. Fax: (internat.) + 81(0)952/28-8548; E-mail: <u>yamatot@cc.saga-u.ac.jp</u>

^b Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, Guizhou, 550025, China

^c Energy Materials Laboratory, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK

^d Department of Chemistry, The University of Hull, UK, HU6 7RX

Figure S1. ¹H NMR spectrum of *cone*-2 (CDCl₃, 300 MHz).

Figure S2. ¹³C NMR spectrum of *cone*-2 (CDCl₃, 300 MHz).

Figure S3. ¹H NMR spectrum of *partial-cone-2* (CDCl₃, 300 MHz).

Figure S4. ¹³C NMR spectrum of *partial-cone-2* (CDCl₃, 300 MHz).

Figure S5. UV-vis spectral changes of *cone*-2 on addition of $Zn(ClO_4)_2$ (THF:CH₂Cl₂ = 1:50), [*cone*-2] = 1×10^{-5} M; [Zn(ClO₄)₂] = 0.1–2.5 equiv.

Figure S6. UV-vis spectral changes of *cone*-**2** on addition of Cu(ClO₄)₂ (THF:CH₂Cl₂=1:50), [*cone*-**2**] = 1×10^{-5} M; [Cu(ClO₄)₂] = 0.1–2.5 equiv.

Figure S7. UV-vis spectral changes of *cone*-2 on addition of Hg(ClO₄)₂ (THF:CH₂Cl₂ = 1:50), [*cone*-2] = 1×10^{-5} M; [Hg(ClO₄)₂] = 0.1–2.5 equiv.

Ligand	Extracted metal cations										
	Li ⁺	Na ⁺	\mathbf{K}^{+}	Cs^+	Co ²⁺	Ni ²⁺	Cu ²⁺	Zn^{2+}	Cd^{2+}	Ag^+	Hg ²⁺
cone-2	2	2	3	4	74	78	98	88	81	93	85
p-cone- 2	1	1	2	3	61	63	75	76	69	84	75

Table S1. Extraction percentages of metal picrates with ligands^a

^a Aqueous phase: [metal nitrate] = 1×10^{-2} M; [picric acid] = 2.5×10^{-2} M; organic phase: CH₂Cl₂, [ligand] = 1×10^{-2} M; at 25 °C, for 12 h.