Supporting Information

Promiscuity of a Modular Polyketide Synthase Towards Natural and Non-Natural Extender Units

Irina Koryakina, John McArthur, Matthew M Draelos, and Gavin J Williams*

Department of Chemistry, North Carolina State University, Raleigh, NC, USA

*Corresponding author, e-mail: gavin_williams@ncsu.edu

Supporting Information Index

Data is presented in same order as main text.

Supplemental DataS3
Figure S1. High resolution LC/MS analysis of <i>holo</i> -Mod6TE reactions (related to Table 1 and Figure 1)
Table S1. RP-HPLC and High Res LC-MS analysis of <i>holo</i> -Mod6TE-catalyzed formation oftriketide lactones (related to Table 1 and Figure 1)
Figure S2. RP-HPLC analysis of <i>holo</i> -Mod6TE negative control reactions using each extender unit that lack <i>holo</i> -Mod6TE (related to Table 1 and Figure 1)
Table S2. RP-HPLC and Low Res LC-MS analysis of holo-Mod6TE negative control reactions that lack diketide-SNAc 4 (related to Table 1 and Figure 1)
Figure S3. ¹ H-NMR of the methyl triketide pyrone 3b S12
Figure S4. ¹ H-NMR of the allyl triketide pyrone 3e
Figure S5. HPLC calibration curve of the methyl triketide pyrone 3b
Figure S6. RP-HPLC analysis of holo-AT°-Mod6TE reactions using the diketide-SNAc 4 and each extender unit (related to Table 1)
Figure S7. RP-HPLC analysis of the conversion of <i>apo</i> -AT ^o -Mod6TE to triketide lactone using each extender unit in the absence of Sfp (related to Table 1)
Figure S8. LC-MS analysis of Sfp-catalyzed acylation of <i>apo</i> -ACP6 from DEBS (related to main text)
Table S3. LC-MS analysis of Sfp-catalyzed acylation of DEBS apo-ACP6 using acyl-CoAs2a-2l (related to main text)
Figure S9. Protein sequences used for exact mass determinations of <i>apo</i> -ACP6 from DEBS
Figure S10. RP-HPLC analysis of the conversion of <i>apo</i> -AT°-Mod6TE to triketide lactone using the diketide-SNAc 4 , each extender unit, and Sfp (related to Table 1) S38
Table S4. LC-MS analysis of the conversion of apo-AT°-Mod6TE to triketide lactone usingthe diketide-SNAc 4, each extender unit, and Sfp (related to Table 1)
Scheme S1S40

Figure S1. High resolution LC-MS analysis of *holo*-Mod6TE reactions.

Reaction with 2a

Reaction with 2b

Reaction with 2c

Reaction with 2e

Reaction with 2g

Reaction with 2h

Reaction with 2i

Reaction with 2k

Acyl-CoA/ product ^a	Product retention time (mins) ^b	Relative conversion rate (%) ^c	Calculated mass ^d	Observed mass ^e
2a/3a	N.D ^f	$N.D^{f}$	155.0703	$N.D^{f}$
2b/3b	26.29	100	169.0859	169.0858
2c/3c	31.88	44	183.1016	183.1012
2d/3d	29.31	15	193.0859	193.0861
2e/3e	34.23	36	195.1016	195.1011
2f/3f	N.D ^f	$N.D^{f}$	197.1172	N.D ^f
2g/3g	23.72	1	211.1329	211.1329
2h/3h	N.D ^f	trace	231.1016	231.1044
2i/3i	25.96	2	259.1302	259.1333
2j/3j	N.D ^f	$N.D^{f}$	171.0652	N.D ^f
2k/3k	26.44	9	185.0808	185.0805
21/31	37.32	31	224.1030	224.1027

Table S1. RP-HPLC and High-Res LC-MS analysis of *holo*-Mod6TE-catalyzed formation of triketide lactones.

^a See Scheme 1 for structures of acyl-CoAs and products.

^b HPLC retention time. See Supplemental Information for HPLC conditions.

^c Relative conversions were determined by HPLC and calculated by dividing the integrated area of the product from the non-natural acyl-CoA by the integrated area of the product from **2b**. Minimum detection limit is 1.6 % conversion. See Supplemental Information for reaction conditions.

^dCalculated mass of triketide pyrone product, [M+H]⁺.

^e Observed mass of triketide pyrone product, [M+H]⁺. See Supplemental Information for LC-MS conditions.

^fN.D, non-detected.

Figure S2. RP-HPLC analysis of *holo*-Mod6TE negative control reactions using the extender units (i) **2a**, (ii) **2b**, (iii) **2c**, (iv) **2d**, (v) **2e**, (vi) **2f**, (vii) **2g**, (viii) **2h**, (ix) **2i**, (x) **2j**, (xi) **2k**, (xii) **2l**. Panel (a) are negative control reactions that lacked *holo*-Mod6TE. Panel (b) are negative control reactions that lacked *holo*-Mod6TE. Panel (b) are negative control reactions that lacked diketide-SNAc **4**. * indicates contaminants present in the **2g-2i** acyl-CoA preparations which were detected under the specialized conditions required for HPLC analysis of the resulting lactones. Each sample was also analyzed by low res ESI-MS (Table S3). See Supplemental Information for assay conditions and detection methods.

Acyl-CoA/ product ^a	Product retention time (mins) ^b	Relative conversion rate (%) ^c	Calculated mass ^d	Observed Mass ^e
2a/3a	$N.D^{f}$	N.D ^f	155.07	N.D ^f
2b/3b	26.29	7.1 ^ŕ	169.08	169.10
2c/3c	N.D ^f	N.D ^f	183.10	N.D ^f
2d/3d	N.D ^f	N.D ^f	193.08	N.D ^f
2e/3e	N.D ^f	N.D ^f	195.10	N.D ^f
2f/3f	N.D ^f	N.D ^f	197.1011	N.D ^f
2g/3g	N.D ^f	N.D ^f	211.13	N.D ^f
2h/3h	N.D ^f	N.D ^f	231.10	N.D ^f
2i/3i	N.D ^f	N.D ^f	259.13	N.D ^f
2j/3j	N.D ^f	N.D ^f	171.06	N.D ^f
2k/3k	$N.D^{f}$	$N.D^{f}$	185.08	N.D ^f
21/31	$N.D^{f}$	$N.D^{f}$	224.10	N.D ^f

Table S2. RP-HPLC and Low Res ESI-MS analysis of *holo*-Mod6TE negative control reactions that lack diketide-SNAc **4**.

^a See Scheme 1 for structures of acyl-CoAs and products.

^b HPLC retention time/Low Res LC-MS retention time. See Supplemental Information for HPLC and LC-MS conditions.

^cCalculated mass of triketide pyrone product, [M+H]⁺.

^d Relative conversions were determined by HPLC and calculated by dividing the integrated area of the product in the absence of **4** by the integrated area of the same product in the presence of **4** (Table S1). See Supplemental Information for reaction conditions.

^eObserved mass of triketide pyrone product, [M+H]⁺.

^{*f*}N.D, non-detected.

Figure S3. ¹H-NMR of the methyl triketide pyrone **3b**.

Figure S6. RP-HPLC analysis of *holo*-AT^o-Mod6TE reactions using the diketide-SNAc **4** and each extender unit (i) **2a**, (ii) **2b**, (iii) **2c**, (iv) **2d**, (v) **2e**, (vi) **2f**, (vii) **2g**, (viii) **2h**, (ix) **2i**, (x) **2j**, (xi) **2k**, (xii) **2l**. Mass ions consistent with the expected triketide lactone were not observed for **2a-f** and **2j-l** (data not shown). For **2g**, **2h**, and **2i**, very low abundance mass ions (211.10, 231.10 and 259.10 respectively, data not shown) were observed that were in agreement with the expected lactone. * indicates contaminants present in the **2g-2i** acyl-CoA preparations which were detected under the specialized conditions required for HPLC analysis of the resulting lactones. See Supplemental Information for assay conditions and detection methods.

Figure S7. RP-HPLC analysis of the conversion of *apo*-AT^o-Mod6TE to triketide lactone using each extender unit in the absence of Sfp (i) **2a**, (ii) **2b**, (iii) **2c**, (iv) **2d**, (v) **2e**, (vi) **2f**, (vii) **2g**, (viii) **2h**, (ix) **2i**, (x) **2j**, (xi) **2k**, (xii) **2l**. For **2g**, **2h**, and **2i**, very low abundance mass ions (211.10, 231.10 and 259.10 respectively, data not shown) were observed that were in agreement with the expected lactone.* indicates contaminants present in the **2g-2i** acyl-CoA preparations which were detected under the specialized conditions required for HPLC analysis of the resulting lactones. See Supplemental Information for assay conditions and detection methods.

Figure S8. LC-MS analysis of Sfp-catalyzed acylation of apo-ACP6 from DEBS. A control reaction (L) that lacks any acyl-CoA is included to demonstrate identification of acylated ACP is dependent on the presence of extender unit. A series of negative controls that lacked Sfp are included (M-W) and illustrate that Sfp is absolutely required to acylate the ACP. See Supplemental Information for assay conditions and detection methods.

B) Sfp loading of DEBS apo-ACP6 with 2b produced by WT-MatB

Counts vs. Mass-to-Charge (m/z)

0.5

0-J______750 775 800 825 850 875 900 925 950 975 1000 1025 1050 1075 1100 1125 1150 1175 1200 1225 Counts vs. Mass-to-Charge (m/z)

Deconvoluted spectra, expanded on target peak:

Component m/z:

Component m/z:

F) Sfp loading of DEBS apo-ACP6 with 2f produced by MatB T207G/M306I

Component m/z:

Component m/z:

Deconvoluted spectra, expanded on target peak:

Component m/z:

Component m/z:

x10 4 Cpd 7: Compound 7: +ESI Scan Frag=220.0V 121765.d (Isotope Width=7.2)

750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 Counts vs. Mass-to-Charge (m/z)

Deconvoluted spectra, expanded on target peak:

Component m/z:

0-

800 825 850 875 900 925 950 975 1000 1025 1050 1075 1100 1125 1150 1175 1200 Counts vs. Mass-to-Charge (m/z) M) Negative control containing Sfp and DEBS *apo*-ACP6, in the absence of acyl-CoAs

N) Negative control containing DEBS *apo*-ACP6 and 2a produced by WT-MatB, in the absence of Sfp

O) Negative control containing DEBS *apo*-ACP6 and 2b produced by WT-MatB, in the absence of Sfp

P) Negative control containing DEBS *apo*-ACP6 and 2c produced by MatB T207S/M306I, in the absence of Sfp

R) Negative control containing DEBS *apo*-ACP6 and 2e produced by MatB T207S/M306I, in the absence of Sfp

Counts vs. Deconvoluted Mass (amu)

T) Negative control containing DEBS *apo*-ACP6 and 2g produced by MatB T207A, in the absence of Sfp

V) Negative control containing DEBS *apo*-ACP6 and 2i produced by MatB T207G/M306I, in the absence of Sfp

W) Negative control containing DEBS *apo*-ACP6 and 2j produced by WT MatB, in the absence of Sfp

X) Negative control containing DEBS *apo*-ACP6 and 2k produced by MatB T207A/M306I, in the absence of Sfp

Counts vs. Deconvoluted Mass (amu)

Table S3. ESI-MS analysis of Sfp-catalyzed acylation of DEBS *apo*-ACP6 using acyl-CoAs **2a-I**.

acyl- CoAª	acyl-ACP6 _{DEBS} calculated Mass (Da) ^b	acyl-ACP6 _{DEBS} observed mass (Da) ^c	predicted mass increase (Da) ^d	observed mass increase (Da) ^e
2a	11,715.99 ^f	11,715.91 ^f	426.01	426.18
2b	11,730.01 ^f	11,730.13 ^f	440.03	440.40
2c	11,744.02 ^f	11744,16 ^f	454.04	454.43
2d	11,754.01 ^f	11,753.95 ^f	464.03	464.22
2e	11,756.02 ^f	11,756.02 ^f	466.04	466.29
2f	11,758.04 ^f	11,757.95 ^f	468.06	468.22
2g	11,772.05 ^f	11,772.10 ^f	482.07	482.37
2h	11,748.01 ^g	11,747.98 ^{<i>g</i>}	458.03	458.25
2i	11,820.05 ^f	11,820.09 ^f	530.07	530.11
2j	11,731.99 ^f	11,732.00 ^f	442.01	442.27
2k	11,746.00 ^f	11,746.03 ^f	456.02	456.30
21	11,785.02 ^f	11,785.08 ^f	495.04	495.35

^a See Scheme 1 for structures of acyl-CoAs.

- ^b Calculated (calc) mass for ACP6_{DEBS} covalently modified with acylphosphopantetheine moiety of the corresponding acyl-CoA substrate. The calculated mass is adjusted to include loss of N-terminal methionine (-130.194 Da)
- ^c Observed (obs) mass for ACP6_{DEBS} covalently modified with acylphosphopantetheine moiety of the corresponding acyl-CoA substrate. Detected masses were not observed in control reactions that omitted sfp.

 d [acyl-ACP6_{DEBS}]_{calc} – [apo-ACP6_{DEBS}]_{calc}

^e [acyl-ACP6_{DEBS}]_{obs} – [apo-ACP6_{DEBS}]_{obs}

 $f[M+H]^+$

 g [M-CO₂+H]⁺

Figure S9. Protein sequence used for exact mass determinations of *apo*-ACP6 from DEBS.

DEBS ACP6 (substrate for Sfp):

MGSSHHHHHHSSGLVPRGSHMAAPAREMTSQELLEFTHSHVAAILGHSSPDAVGQDQPF TELGFDSLTAVGLRNQLQQATGLALPATLVFEHPTVRRLADHIGQQL **Figure S10.** RP-HPLC analysis of the conversion of *apo*-AT^o-Mod6TE to triketide lactone using each extender unit and Sfp (i) **2a**, (ii) **2b**, (iii) **2c**, (iv) **2d**, (v) **2e**, (vi) **2f**, (vii) **2g**, (viii) **2h**, (ix) **2i**, (x) **2j**, (xi) **2k**, (xii) **2l**. Reactions included *apo*-AT^o-Mod6TE, Sfp, and diketide-SNAC **4**. Each sample was also analyzed by low res ESI-MS (Table S5). * indicates contaminants present in the **2g-2i** acyl-CoA preparations which were detected under the specialized conditions required for HPLC analysis of the resulting lactones. See Supplemental Information for assay conditions and detection methods.

Table S4. LC-MS analysis of the conversion of *apo*-AT^o-Mod6TE to triketide lactone using each extender unit and Sfp.

Acyl-CoA/ product ^ª	Product retention time (mins) ^b	Relative conversion rate (%) ^c	Calculated mass ^d	Observed mass ^e
2a/3a	26.15	58	155.07	155.10
2b/3b	26.29	100	169.08	169.10
2c/3c	31.88	103	183.10	183.10
2d/3d	29.31	45	193.08	193.10
2e/3e	34.23	82	195.10	195.10
2f/3f	N.D ^f	$N.D^{f}$	197.11	N.D ^f
2g/3g	23.72	58	211.13	211.10
2h/3h	N.D ^f	$N.D^{f}$	231.10	231.10
2i/3i	25.96	33	259.13	259.13
2j/3j	N.D ^f	$N.D^{f}$	171.06	N.D ^f
2k/3k	26.44	21	185.08	185.10
21/31	37.32	64	224.10	224.10

^a See Scheme 1 for structures of acyl-CoAs and products. Acyl-CoA is transferred to *apo-* AT°-Mod6TE via Sfp (see Scheme 2)

^b HPLC retention time. See Supplemental Information for HPLC conditions.

^c Relative conversions were determined by HPLC and calculated by dividing the integrated area of the product from the non-natural acyl-CoA by the integrated area of the product from **2b**. Minimum detection limit is 1.6 % conversion. See Supplemental Information for reaction conditions.

^dCalculated mass of triketide pyrone product, [M+H]⁺.

^eObserved mass of triketide pyrone product, [M+H]⁺.

^{*f*}N.D, non-detected. See Supplemental Information for LC-MS conditions.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

