Supplementary Information

CuI-mediated and air promoted cyclization for one-pot synthesis of

polyarylated oxazoles

Ping Hu, Qiang Wang, Yizhe Yan, Shuai Zhang, Baiqun Zhang and Zhiyong Wang*

Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China Fax: (+86) 551-360-3185 E-mail: zwang3@ustc.edu.cn

General	
Analytical and spectral data for compounds 3a-3y	S3-S9
NMR Spectrum of compounds 3a-3y and 4	

Experimental Section

Materials and Methods: NMR spectra were recorded on Brucker AVANCE 300 NMR spectrometer or Brucker AVANCE III 400 NMR spectrometer. The chemical shifts (δ) and coupling constants (*J*) were expressed in ppm and Hz respectively. HRMS was recorded on a Micromass UK LTD GCT spectrometer. Melting points were determined on a Beijing Tech Instrument Co., LTD X-6 melting point apparatus and are uncorrected, GC-MS was Shimadzu QP-5050 GC-MS system.

Optimization of the reaction conditions:

Except for copper salts, many other metal salts were examined, such as $FeCl_3$, $CoCl_2$, $NiCl_2$ and $ZnCl_2$, all these meltal salts can not catalyst the reaction. The amount of 1 equiv., 0.5 equiv., 0.3 equiv., 0.15 equiv. CuI was examined and 0.3 equiv. of CuI give the best yiled.

Experimental procedure

$$R_1$$
 NH_2 + Ph Ph $DMA, 4Å MS, r.t.$ Ph N R_1

A typical experimental procedure for air oxidative cyclization for one-pot synthesis of triarylated oxazoles via CuI mediated reaction of benzil with benzylamine derivatives(A): To a distilled DMA solution of benzil (0.2 mmol) were successively added, CuI (0.06 mmol), 4 Å MS(100 mg) were added after it, finally benzylamine derivatives (0.6 mmol) was added in two portions. After the reaction mixture was stirred for 1-2 hours at room temperature, the reaction mixture was extracted with EtOAc, dried with Na₂SO₄. Then solvent was removed under reduced pressure and purified by silica gel column chromatography to afford the desired product.

Ph
$$NH_2$$
 + R_2 R_3 R_3 R_3 R_3 R_3 R_2 R_3 R_3

A typical experimental procedure for air oxidative cyclization for one-pot synthesis of triarylated oxazoles via CuI mediated reaction of benzil derivatives with benzylamine (B): To a distilled DMA solution of benzil derivatives (0.2 mmol) were successively added, CuI (0.06 mmol), 4 Å MS(100 mg) were added after it, finally benzylamine (0.6 mmol) was added in two portions. After the reaction mixture was stirred for 1-2 hours at room temperature, the reaction mixture was

extracted with EtOAc, dried with Na₂SO₄. Then solvent was removed under reduced pressure and purified by silica gel column chromatography to afford the desired product.

Preparation of benzil derivations:

A typical experimental procedure for preparation of benzyl derivations: To a H_2O (1 ml) solution of VB₁ (0.3g, 1 mmol) were successively dissolved under ice-bath, EtOH (8 ml) and aldehydes (10 mmol) were added after that and we got settled solution. Ice-bathed NaOH (10% solution) was added to the solution until the pH of the solution become 8.0-9.0 and the solution became orange red. After the reaction mixture was stirred overnight at reflux, the reaction mixture was cooled and yellow crystal was found. After filtration, the solid was washed by cooled EtOH and diethyl ether, and finally recrystallization, we got yellow solid. Only those aldehydes with electron-withdrawing substitution group can get the corresponding benzil derivates. While electron-donating benzil derivates were purchased from aladdin.

Analytical and spectral data for compounds

[¹H NMR CDCl₃ δ: 7.26, ¹³C NMR CDCl₃ δ: 77.04]

2, 4, 5-triphenyloxazole (3a):

The white solid was obtained according to a general procedure A (87% yield), mp 114-115°C, ¹H NMR (400 MHz, CDCl₃) δ : 8.14-8.17 (m, 2H), 7.74-7.72 (m, 2H), 7.69-7.67 (m, 2H), 7.50-7.46 (m, 3H), 7.43-7.32 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 160.16, 145.57, 136.81, 132.60, 130.36, 129.02, 128.78, 128.70, 128.63, 128.56, 128.24, 128.17, 127.42, 126.55, 125.48, HRMS calc. C₂₁H₁₅NO (M⁺): 297.1154, Found: 297.1150.

4, 5-diphenyl-2-p-tolyloxazole (3b):

The white solid was obtained according to a general procedure A (88% yield), mp 130-131°C, ¹H NMR (300 MHz, CDCl₃) δ : 8.03 (d, *J*=16.4, 2H), 7.73 (d, *J* = 7.9 Hz, 2H), 7.67 (d, *J* = 6.7 Hz, 2H), 7.45-7.34 (m, 6H), 7.29(m, 2H), 2.42 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 160.39, 145.24, 140.64, 136.70, 132.72, 129.48, 129.12, 128.66, 128.60, 128.44, 128.17, 126.53, 126.45, 124.73, 21.55, HRMS calc. C₂₂H₁₇NO (M⁺): 311.1310, Found: 311.1312.

4, 5-diphenyl-2-m-tolyloxazole (3c):

The white solid was obtained according to a general procedure A (72% yield), mp 127-128°C, ¹H NMR (300 MHz, CDCl₃) δ: 8.02-7.92 (m, 2H), 7.73 (m, 2H), 7.68 (m, 2H), 7.44-7.32 (m, 7H), 7.29 (s, 1H), 2.44 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ: 160.72, 145.85, 138.92, 137.15, 133.05, 131.58, 129.44, 129.06, 129.00, 128.89, 128.59, 128.56, 127.68, 127.43, 126.94, 124.02, 21.75, HRMS calc. C₂₂H₁₇NO (M⁺): 311.1310, Found: 311.1312.

4, 5-diphenyl-2-o-tolyloxazole (3d):

The white solid was obtained according to a general procedure A (65% yield), mp 124-125°C, ¹H NMR (300 MHz, CDCl₃) δ : 8.12 (d, J = 7.9 Hz, 1H), 7.78-7.73 (m, 2H), 7.71-7.66 (m, 2H), 7.42 -7.38 (m, 3H), 7.38-7.34 (m, 3H), 7.34-7.30 (m, 3H), 2.80 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 160.66, 145.18, 137.54, 136.38, 132.76, 131.67, 129.97, 129.16, 128.92, 128.71, 128.58, 128.14, 128.10, 126.58, 126.39, 125.98, 22.16, HRMS calc. C₂₂H₁₇NO (M⁺): 311.1310, Found: 311.1312.

2-(4-methoxyphenyl)-4, 5-diphenyloxazole (3e):

The white solid was obtained according to a general procedure A (90% yield), mp 111-112°C, ¹H NMR (300 MHz, CDCl₃) δ : 8.12-8.07 (m, 2H), 7.72 (m, 2H), 7.66 (m, 2H), 7.43-7.37 (m, 3H), 7.34 (m, 3H), 7.02-6.96 (m, 2H), 3.87 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 161.4, 160.26, 145.01, 136.64, 132.78, 129.19, 128.86, 128.66, 128.61, 128.36, 128.16, 126.47, 120.24, 114.21, 55.39, HRMS calc. C₂₂H₁₇NO₂ (M⁺): 327.1259, Found: 311.1260.

2-(4-fluorophenyl)-4, 5-diphenyloxazole (3f):

The light yellow solid was obtained according to a general procedure A (74% yield), mp 129-130°C, ¹H NMR (300 MHz, CDCl₃) δ : 8.19-8.10 (m, 2H), 7.72 (d, J = 8.0 Hz, 2H), 7.66 (d, J = 8.0 Hz, 2H), 7.45-7.31 (m, 6H), 7.16 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ : 165.79, 162.46, 159.35, 145.64, 136.79, 132.48, 128.72, 128.65, 128.53, 128.31, 128.13, 126.58, 118.17, 116.13, 115.84, HRMS calc. C₂₁H₁₄FNO (M⁺): 310.1059, Found: 310.1060.

2-(4-chlorophenyl)-4, 5-diphenyloxazole (3g):

The light yellow solid was obtained according to a general procedure A (74% yield), mp 135-136°C, ¹H NMR (300 MHz, CDCl3) δ : 8.09 (d, J = 8.6 Hz, 2H), 7.74-7.69 (m, 2H), 7.66 (m, 2H), 7.45 (m, 2H), 7.43-7.31 (m, 6H); ¹³C NMR (75 MHz, CDCl3) δ : 159.21, 145.82, 136.93, 136.45, 132.39, 129.10, 128.82, 128.73, 128.65, 128.34, 128.11, 127.71, 126.62, 125.91, HRMS calc. C₂₁H₁₄FNO (M⁺): 331.0764, Found: 331.0759.

4, 5-diphenyl-2-(4-(trifluoromethyl)phenyl)oxazole (3h):

The white solid was obtained according to a general procedure A (60% yield), mp 133-134°C, ¹H NMR (300 MHz, CDCl3) δ : 8.26 (d, *J*=8.1Hz, 2H), 7.75-7.71 (m, 3H), 7.69-7.66 (m, 3H), 7.43-7.37 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ : 158.75, 146.51, 137.27, 132.22, 130.49, 129.40, 129.21, 128.95, 128.80, 128.72, 128.66, 128.48, 128.13, 126.74, 126.66, 125.91, 125.86, 125.81, 125.76, 122.11, HRMS calc. C₂₂H₁₄F₃NO (M⁺): 365.1027, Found: 365.1031.

2-(furan-2-yl)-4, 5-diphenyloxazole (3i):

The light yellow solid was obtained according to a general procedure A (80% yield), mp 110-111°C, ¹H NMR (300 MHz, CDCl₃) δ : 7.71 (m, 2H), 7.65 (m, 2H), 7.62-7.57 (m, 1H), 7.43-7.31 (m, 6H), 7.11 (d, J = 3.5 Hz, 1H), 6.56 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ : 153.07, 145.11, 144.50, 142.91, 136.51, 132.14, 128.72, 128.65, 128.58, 128.35, 128.17, 126.69, 111.92, 111.65, HRMS calc.C₁₉H₁₃NO₂ (M⁺): 287.0946, Found: 287.0940.

2-(naphthalen-2-yl)-4, 5-diphenyloxazole (3j):

The white solid was obtained according to a general procedure A (76% yield), mp 126-127°C, ¹H NMR (300 MHz, CDCl₃) δ : 9.44 (d, J = 8.6 Hz, 1H), 8.34 (d, J = 7.3 Hz, 1H), 7.98 (d, J = 8.2 Hz, 1H), 7.92 (d, J = 8.2 Hz, 1H), 7.83 (m, 2H), 7.75 (m, 2H), 7.67 (m, 1H), 7.57 (m, 2H), 7.48-7.34 (m, 6H), ¹³C NMR (75 MHz, CDCl₃) δ : 160.10, 145.32, 136.72, 134.02, 132.71, 131.22, 130.29, 129.06, 128.74, 128.64, 128.61, 128.53, 128.22, 128.18, 127.84, 127.59, 126.76, 126.74, 126.46, 124.96, 123.82, HRMS calc.C₂₅H₁₇NO (M⁺): 347.1310, Found: 347.1314.

4, 5-diphenyl-2-vinyloxazole (3k):

The white solid was obtained according to a general procedure A (56% yield), mp 110-111°C, ¹H NMR (300 MHz, CDCl₃) δ : 7.64 (m, 4H), 7.43-7.29 (m, 6H), 6.70 (m, 1H), 6.30 (d, J = 17.6 Hz, 1H), 5.70 (d, J = 11.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ : 159.49, 145.33, 136.25, 132.12, 129.00, 128.72, 128.60, 128.29, 128.02, 126.63, 123.18, 122.18, HRMS calc. C₁₇H₁₃NO (M⁺): 247.0997, Found: 247.1001.

4, 5-bis(4-fluorophenyl)-2-phenyloxazole (3m):

The white solid was obtained according to a general procedure B (82% yield), mp 125-126°C, ¹H NMR (300 MHz, CDCl₃) δ: 8.13 (m, 2H), 7.72-7.55 (m, 4H), 7.51-7.40 (m, 3H), 7.09 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ: 164.44, 164.40, 162.14, 161.11, 160.20, 144.60, 135.68, 130.52, 129.94, 129.83, 128.83, 128.62, 128.51, 128.47, 127.21, 126.46, 125.10, 125.06, 116.12, 115.89,

115.83, 115.61, HRMS calc. $C_{21}H_{13}F_2NO(M^+)$: 333.0965, Found: 333.0968.

4, 5-bis(4-chlorophenyl)-2-phenyloxazole (3n):

The white solid was obtained according to a general procedure B (89% yield), mp 129-130°C, ¹H NMR (300 MHz, CDCl₃) δ: 8.16-8.08 (m, 1H), 7.67-7.61 (m, 1H), 7.60-7.53 (m, 1H), 7.52-7.44 (m, 2H), 7.41-7.33 (m, 2H), ¹³C NMR (75 MHz, CDCl₃) δ: 160.49, 144.70, 136.11, 134.67, 134.31, 130.80, 130.38, 129.38, 129.12, 127.83, 127.21, 127.21, 127.06, 126.52, HRMS calc. C₂₁H₁₃Cl₂NO (M⁺): 365.0374, Found: 365.0370.

2-phenyl-4, 5-bis(4-(trifluoromethyl)phenyl)oxazole (30):

The white solid was obtained according to a general procedure B (55% yield), mp 120-121°C, ¹H NMR (300 MHz, CDCl₃) δ : 8.15 (m, 2H), 7.84 (d, J = 8.1 Hz, 2H), 7.77 (d, J = 8.2 Hz, 2H), 7.69 (m, 4H), 7.55-7.48 (m, 3H); ¹³C NMR (100MHz, CDCl₃) δ : 158.85, 139.40, 133.99, 132.97, 130.43, 129.61, 128.66, 128.27, 128.01, 127.76, 126.56, 126.41, 125.83, 125.76, 125.61, 125.27, 125.25, HRMS calc. C₂₃H₁₃F₆NO (M⁺): 433.0901, Found: 433.0907.

4, 5-bis(4-bromophenyl)-2-phenyloxazole (3p):

The white solid was obtained according to a general procedure B (84% yield), mp 119-120°C, ¹H NMR (300 MHz, CDCl₃) δ : 8.18-8.06 (m, 2H), 7.60 -7.54 (m, 3H), 7.47-7.42 (m, 8H); ¹³C NMR (75 MHz, CDCl₃) δ : 160.53, 144.71, 136.19, 132.05, 131.90, 131.21, 130.65, 129.61, 128.82, 128.01, 127.60, 126.99, 126.49, 122.86, 122.50, HRMS calc. C₂₁H₁₃Br₂NO (M⁺): 452.9364, Found: 452.9360.

2-phenyl-4, 5-dip-tolyloxazole (3q):

The white solid was obtained according to a general procedure B (70% yield), mp 132-133°C, ¹H NMR (300 MHz, CDCl₃) δ : 8.15 (m, 2H), 7.62 (d, J = 8.0 Hz, 2H), 7.57 (d, J = 8.2 Hz, 2H), 7.48-7.40 (m, 3H), 7.20 (m, 4H), 2.38 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ : 159.79, 145.45, 138.46, 137.87, 136.27, 130.14, 129.78, 129.33, 129.25, 128.69, 127.95, 127.55, 126.50,126.39, 126.32, 21.35, 21.32, HRMS calc. C₂₃H₁₉NO (M⁺): 325.1467, Found: 3251468.

4, 5-bis(4-methoxyphenyl)-2-phenyloxazole (3r):

The white solid was obtained according to a general procedure B (60% yield), mp 127-128°C, ¹H NMR (300 MHz, CDCl₃) δ 8.13 (m, 2H), 7.64 (d, *J* = 8.8 Hz, 2H), 7.61-7.56 (m, 2H), 7.48-7.41 (m, 3H), 6.92 (m, 4H), 3.84 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ: 159.75, 159.48, 145.04, 135.36, 133.99, 130.09, 129.31, 128.71, 128.06, 127.65, 126.34, 114.17, 114.05, 55.31, HRMS

calc. C₂₃H₁₉NO₃ (M⁺): 357.1365, Found: 357.1360.

4, 5-bis(3-chlorophenyl)-2-phenyloxazole (3s):

The white solid was obtained according to a general procedure B (76% yield), mp 118-119°C, ¹H NMR (300 MHz, CDCl₃) δ: 8.13-8.17(m, 2H), 7.75(s, 1H), 7.68(s, 1H), 76.57-7.54(m, 1H), 7.50-7.48(m, 4H), 7.35-7.31(m, 4H), ¹³C NMR (75 MHz, CDCl₃) δ: 160.69, 144.57, 136.34, 134.91, 134.78, 133.98, 130.78, 130.78, 130.29, 130.08, 129.97, 128.87, 128.64, 128.26, 126.93, 126.60, 126.53, 126.12, 124.59, C₂₁H₁₃Cl₂NO (M⁺): 365.0374, Found: 365.0370.

4, 5-bis(2-chlorophenyl)-2-phenyloxazole (3t):

The white solid was obtained according to a general procedure B (25% yield), mp 122-123°C, ¹H NMR (300 MHz, CDCl₃) δ : 8.06 (d, J = 7.7 Hz, 2H), 7.61-7.50 (m, 3H), 7.49-7.45 (m, 4H), 7.4-7.36 (m, 2H), 7.19 (d, J = 4.0 Hz, 1H), 7.08 (d, J = 7.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ : 162.26, 145.15, 136.91, 135.49, 135.36, 134.56, 131.35, 130.87, 130.65, 130.52, 129.45, 129.21, 128.84, 127.51, 127.18, 127.10, 126.69, 125.17, C₂₁H₁₃Cl₂NO (M⁺): 365.0374, Found: 365.0370.

2-phenyl-4, 5-di(pyridin-2-yl)oxazole (3u):

The white solid was obtained according to a general procedure B (85% yield), mp 131-132°C, ¹H NMR (300 MHz, CDCl₃) δ : 8.92 (d, J = 6.2 Hz, 2H), 8.61 (d, J = 6.1 Hz, 2H), 7.61-7.56 (m, 2H), 7.48-7.41 (m, 3H), 6.92 (m, 4H), 3.84 (s, 6H). δ 8.93(6.2Hz); ¹³C NMR (75 MHz, CDCl3) δ : 170.71, 161.54, 149.77, 149.57, 148.83, 147.44, 143.55, 135.27, 133.49, 131.00, 128.92, 128.12, 126.67, 126.61, 124.83, 123.64, C₁₉H₁₃N₃O (M⁺): 299.1059, Found: 299.1061.

4, 5-di(furan-2-yl)-2-phenyloxazole (3v):

The yellow solid was obtained according to a general procedure B (58% yield), mp 101-102°C, ¹H NMR (300 MHz, CDCl₃) δ : 8.1-8.09 (m, 2H), 7.59-7.53 (m, 2H), 7.52-7.44 (m, 3H), 7.40 (m, 2H), 7.16-7.06 (m, 2H);¹³C NMR (75 MHz, CDCl₃) δ : 159.86, 140.41, 135.00, 133.98, 131.44, 130.62, 129.67, 128.76, 127.57, 127.42, 126.84, 126.77, 126.62, 126.28, HRMS calc. C₁₇H₁₁NOS₂ (M⁺): 309.0282, Found: 309.0280.

5-methyl-2, 4-diphenyloxazole (3w):

The light yellow solid was obtained according to a general procedure B (70% yield), mp 74-75°C, ¹H NMR (300 MHz, CDCl₃) δ: 2.52 (s, 3H), 7.34-7.37 (m, 1H), 7.46-7.50 (m, 5H), 7.68-7.71 (m, 2H), 8.09-8.12 (m, 2H); ¹³C NMR (75 MHz, CDCl3) δ: 13.43, 125.27, 126.15, 127.39, 127.53, 128.69, 128.72, 129.12, 130.08, 133.30, 143.41, 159.29, HRMS calc. C₁₆H₁₃NO (M⁺): 235.0997, Found: 235.1001.

5-(3-Methoxy-phenyl)-2, 4-diphenyl-oxazole (3x₁):

The a colorless oil was obtained according to a general procedure B (49% yield), ¹H NMR (400 MHz, CDCl₃) δ 8.17-8.15 (m, 2H), 7.71-7.68 (m, 2H), 7.49-7.47 (m, 3H), 7.41-7.34 (m, 3H), 7.32-7.29 (m, 3H), 6.93-6.89 (m, 1H), 3.80 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.81, 145.69, 136.64, 133.86, 130.37, 129.67, 128.97, 128.77, 128.67, 128.62, 128.31, 127.39, 126.72, 126.49, 120.58, 114.50, 113.15, 55.30.. HRMS calc. C₂₂H₁₇NO₂(M⁺): 327.1259, Found: 327.1262. 4-(3-Methoxy-phenyl)-2, 5-diphenyl-oxazole (3x₂):

The a colorless oil was obtained according to a general procedure B (21% yield), ¹H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 8.17-8.14 (m, 2H), 7.75-7.73 (m, 2H), 7.50-7.45 (m, 3H), 7.43-7.35 (m, 3H), 7.29-7.27 (m, 2H), 7.22-7.20(m, 1H), 6.90-6.87(m, 1H), 3.75 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.10, 159.70, 145.39, 137.03, 132.58, 130.38, 130.15, 129.79, 128.77, 128.58, 128.31, 127.37, 126.49, 118.97, 114.54, 111.70, 55.25. HRMS calc. C₂₂H₁₇NO₂(M⁺): 327.1259, Found: 327.1261.

2, 5-Diphenyl-4-(4-trifluoromethyl-phenyl)-oxazole (3y₁):

The white solid was obtained according to a general procedure B (44% yield), mp 116-117 °C, ¹H NMR (400 MHz, CDCl₃) δ : 8.18-8.14 (m, 2H), 7.79 (d, J = 7.2Hz, 2H), 7.71-7.68 (m, 2H), 7.67-7.61 (m, 2H), 7.53-7.49 (m, 3H), 7.46-7.35 (m, 3H); ¹³C NMR (101 MHz, CDCl3) δ : 160.82, 144.02, 138.59, 132.32, 132.11, 130.76, 128.91, 128.87, 128.85, 128.79, 128.31, 128.17, 127.03, 126.93, 126.62, 126.51, 126.31, 125.75-125.64 (q, J = 15Hz). HRMS calc. $C_{22}H_{14}F_3NO(M^+)$: 365.1027, Found: 365.1029.

2, 4-Diphenyl-5-(4-trifluoromethyl-phenyl)-oxazole (3y₂):

The white solid was obtained according to a general procedure B (23% yield), mp 112-113 °C, ¹H NMR (400 MHz, CDCl₃) δ : 8.17-8.14 (m, 2H), 7.87 (d, J = 4.4 Hz, 2H), 7.68-7.64 (m, 4H), 7.53-7.49 (m, 3H), 7.46-7.38 (m, 3H); ¹³C NMR (101 MHz, CDCl3) δ : 160.51, 146.59, 136.17, 135.31, 130.62, 130.17, 129.85, 129.15, 128.91, 128.85, 128.55, 128.17, 127.11, 126.93, 126.51, 125.61-125.50(q, J = 16Hz). HRMS calc. C₂₂H₁₄F₃NO(M⁺): 365.1027, Found: 365.1022.

1, 2-diphenyl-2-(1-phenylethylimino)ethanone (4):

The light yellow solid was obtained according to a general procedure B (72% yield), mp 102-103°C, ¹H NMR (400 MHz, CDCl₃) δ : 7.85 (d, J = 4 Hz, 2H), 7.77 (d, J = 4 Hz, 2H),

7.56-7.59 (m, 1H), 7.37-7.42 (m, 5H), 7.28-7.35 (m, 4H), 7.24-7.26 (m, 1H), 4.61-4.66 (m, 1H), 1.50-1.52 (d, J = 8 Hz, 1H); ¹³C NMR (101 MHz, CDCl3) δ : 198.97, 164.37, 144.53, 135.35, 134.76, 134.67, 130.87, 129.95, 129.39, 129.14, 129.07, 128.65, 128.38, 127.53, 126.95, 126.67, 62.19, 24.74, HRMS calc. C₂₂H₁₉NO(M⁺): 313.3924, Found: 313.3920.

NMR Spectrum of compounds:

2, 4, 5-triphenyloxazole (3a):

4, 5-diphenyl-2-m-tolyloxazole (3c):

f1 (ppm)

2-(4-fluorophenyl)-4, 5-diphenyloxazole (3f):

4, 5-diphenyl-2-(4-(trifluoromethyl)phenyl)oxazole (3h):

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

2-(naphthalen-2-yl)-4, 5-diphenyloxazole (3j):

4, 5-diphenyl-2-vinyloxazole (3k):

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

4, 5-bis(4-fluorophenyl)-2-phenyloxazole (3m):

4, 5-bis(4-chlorophenyl)-2-phenyloxazole (3n):

2-phenyl-4, 5-bis(4-(trifluoromethyl)phenyl)oxazole (30):

4, 5-bis(4-bromophenyl)-2-phenyloxazole (3p):

4, 5-bis(4-methoxyphenyl)-2-phenyloxazole (3r):

4, 5-bis(3-chlorophenyl)-2-phenyloxazole (3s):

4, 5-bis(2-chlorophenyl)-2-phenyloxazole (3t):

2-phenyl-4, 5-di(pyridin-2-yl)oxazole (3u):

4, 5-di(furan-2-yl)-2-phenyloxazole (3v):

5-(3-Methoxy-phenyl)-2, 4-diphenyl-oxazole (3x₁):

4-(3-Methoxy-phenyl)-2, 5-diphenyl-oxazole (3x₂):

2,5-Diphenyl-4-(4-trifluoromethyl-phenyl)-oxazole (3y₁):

2,4-Diphenyl-5-(4-trifluoromethyl-phenyl)-oxazole (3y₂):

1, 2-diphenyl-2-(1-phenylethylimino)ethanone (4):

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

