Supporting Information

Directed Studies Towards The Total Synthesis of (+)-13-Deoxytedanolide: Simple and Convenient Synthesis of C8-C16 fragment

Sébastien Meiries, Alexandra Bartoli, Mélanie Decostanzi, Jean-Luc Parrain* and Laurent Commeiras*

Aix Marseille Université, CNRS, iSm2 UMR 7313, 13397 Marseille cedex 20, France E-mail: jl.parrain@univ-amu.fr; laurent.commeiras@univ-amu.fr

Table of Contents

S2 General experimental details

S3-S32 Experimental section and characterisation data, ¹H NMR and ¹³C NMR spectra for each compound

Supporting Information

Usual procedures

All reagents were obtained from commercial sources and used as supplied unless otherwise stated. Anhydrous THF, Et_2O , Toluene and CH_2Cl_2 were obtained from a MBraun[®] SPS-800 solvent purification system. Light petroleum refers to the fraction of petrol ether that was distilled between 40 °C and 65 °C.

The reactions were magnetically stirred and monitored by TLC, which were performed on Merck[®] 60F254 plates and achieved under a 254 nm UV ligh, visualized with an aqueous solution of potassium permanganate or an ethanolic solution of molybdophosphoric acid, followed by treatment with a heat gun.

Flash chromatography was performed with $Merck^{\text{®}}$ Kieselgel 60 (230-400) mesh silica gel.

Physical data and spectroscopic measurements

NMR data were recorded on a Bruker Avance 300 and 400 spectrometer in C_6D_6 or CDCl₃ and chemical shifts (δ) were given in ppm relative to the residual non-deutered solvent signal for ¹H NMR (C_6D_6 : 7.16 ppm), (CDCl₃: 7.26 ppm) and relative to the deutered solvent signal for ¹³C NMR (C_6D_6 : 128.06 ppm), (CDCl₃: 77.16 ppm); coupling constants (*J*) are in Hertz, and the classical abbreviations are used to describe the signal multiplicity (s = singlet, d = doublet, t = triplet, sept = septet, m = multiplet, dd = doublet of doublets, dt = doublets of triplets, br = broad, etc..). NMR Spectra were assigned using information ascertained from DEPT, HMQC and NOE experiments.

High resolution mass spectra (HRMS) have been performed using a mass spectrometer equipped with pneumatically assisted atmospheric pressure ionization. The sample was ionized in positive mode electrospray in the following conditions: electrospray voltage (ISV): 5500 V; orifice voltage (OR): 70 V; nebulising gas flow pressure (air): 0.6 psi. The mass spectrum was obtained using a time of flight analyzer (TOF). The measure was realized in triplicate. The sample was dissolved in methanol (500 μ L) then diluted (dilution factor 4/10000) in a methanolic solution of ammonium acetate (3 mM). The sample solution was infused in the ionization source at a 5 μ L/min flow rate.

Supporting Information

¹**H NMR** (300 MHz, CDCl₃) δ 1.18 (3H, d, *J* = 6.8 Hz, C*H*₃), 2.19-2.28 (1H, m, C*H*₂),), 2.48-2.57 (1H, m, C*H*₂), 2.69 (1H, dd, *J* = 13.4 and 9.8 Hz, C*H*₂), 3.27 (1H, dd, *J* = 13.4 and 3.2 Hz, C*H*₂), 3.36 (1H, m, *J* = 6.8 Hz, C*H*), 4.11-4.21 (2H, m, C*H*₂), 4.64-4.71 (1H, m, C*H*), 5.04-5.13 (2H, m, C*H*₂), 5.76-5.89 (m, 1H, C*H*), 7.20-7.35 (5H, m, C*H*_{Ar}); ¹³**C NMR** (CDCl₃, 75 MHz) δ 16.5 (CH₃), 37.2 (CH), 38.0 (CH₂), 38.1 (CH₂), 55.4 (CH), 66.1 (CH₂), 117.3 (CH₂), 127.4 (CH_{Ar}), 129.0 (2 x CH_{Ar}), 129.5 (2 x CH_{Ar}), 135.4 (CH), 135.5 (C_{Ar}), 153.2 (C), 176.6 (C); (*S*)-**14** [**α**]^{**19**}_{**D**} = +38.0 (*c* 1, CHCl₃); (*R*)-**14** [**α**]^{**19**}_{**D**} = -39.0 (*c* 1, CHCl₃)

Supporting Information

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

Supporting Information

¹**H NMR** (200 MHz, CDCl₃) δ0.92 (3H, d, J = 6.7 Hz, CH₃), 1.37 (1H, br s, OH), 1.65-1.82 (1H, m, CH), 1.87-2.01 (1H, m, CH₂), 2.11-2.25 (1H, m, CH₂), 3.40-3.55 (2H, m, CH₂), 4.99-5.09 (2H, m, CH₂), 5.71-5.92 (m, 1H, CH), ¹³**C NMR** (50 MHz, CDCl₃) δ 16.4 (CH₃), 35.6 (CH), 37.9 (CH₂), 67.7 (CH₂), 116.1 (CH₂), 137.1 (CH); (*R*)-**15** [α]¹⁹_D = +4.3 (*c* 1, CHCl₃); (*S*)-**15** [α]²⁴_D = -2.6 (*c* 1, CHCl₃)

Supporting Information

¹**H NMR** (400 MHz, CDCl₃) δ 1.07 (3H, d, J = 6.8 Hz, CH_3), 2.98-3.07 (1H, m, CH), 3.85 (1H, dd, J = 8.8 and 6.8 Hz, CH_2), 4.37 (1H, dd, J = 9.8 and 8.8 Hz, CH_2), 4.93 (1H, t, J = 2.5 Hz, CH), 6.29 (1H, t, J = 2.5 Hz, CH); ¹³**C NMR** (50 MHz, CDCl₃) δ 20.6 (CH₃), 36.5 (CH), 76.7 (CH₂), 106.3 (CH), 145.2 (CH).

Supporting Information

[α]²⁴_D +21.4, (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ0.84-0.90 (15H, m, 3 x CH₃ and 3 x CH₂), 1.02 (3H, d, J = 6.8 Hz, CH₃), 1.24-1.53 (12H, m, 6 x CH₂), 2.34-2.44 (1H, m, CH), 3.38-3.44 (1H, m, CH₂), 3.47-3.53 (1H, m, CH₂), 5.79 (1H, dd, J = 19.0 and 7.0 Hz, ³ $J_{Sn-H} = 70$ Hz, CH), 5.99 (1H, br d, J = 19.0 Hz, ² $J_{Sn-H} = 18$ Hz, CH); ¹³C NMR (75 MHz, CDCl₃) δ 9.5 (3 x CH₂, ¹ $J_{Sn-C} = 334$ Hz), 13.4 (3 x CH₃), 16.1 (CH₃), 27.3 (3 x CH₂, ³ $J_{Sn-C} = 54$ Hz), 29.2 (3 x CH₂, ² $J_{Sn-C} = 21$ Hz), 44.5 (CH, ³ $J_{Sn-C} = 57$ Hz), 66.9 (CH₂), 129.5 (C3, CH, ² $J_{Sn-C} = 23$ Hz), 151.2 (CH); **IR** (thin film) $v_{max} = 3325$, 2956, 2923, 2871, 2852, 1597, 1455, 1376, 1072, 1031, 990 cm⁻¹; **LRMS** *m*/*z* (ESI) 399.(M+Na)⁺; **HRMS** *m*/*z* (ESI) calcd for C₁₇H₃₇OSn [M+H]⁺: 377.1860, found 377.1861.

Supporting Information

[*α*]²¹_D -31.8 (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ0.84-0.98 (18H, 4 x CH₃ and 3 x CH₂), 1.16-1.56 (12H, m, 6 x CH₂), 1.88 (3H, d, J = 1.9 Hz, ³ $J_{Sn-H} = 44$ Hz, CH₃), 2.77-2.99 (1H, m, CH), 3.30-3.36 (1H, m, CH₂), 3.43-3.50 (1H, m, CH₂), 5.23 (1H, dq, J = 9.0 and 1.9 Hz, ³ $J_{Sn-H} = 70$ Hz, CH); ¹³C NMR (75 MHz, CDCl₃) δ9.3 (3 x CH₂, ¹ $J_{Sn-C} = 322$ Hz), 13.8 (3 x CH₃), 16.9 (CH₃), 19.7 (CH₃), 27.5 (C9, 3 x CH₂, ³ $J_{Sn-C} = 54$ Hz), 29.3 (3 x CH₂, ² $J_{Sn-C} = 20$ Hz), 35.3 (CH₃, ³ $J_{Sn-C} = 53$ Hz), 67.7 (CH₂), 141.2 (C), 143.1 (CH, ² $J_{Sn-C} = 24$ Hz); IR (thin film) $\nu_{max} = 3330$, 2955, 2924, 2871, 2850, 1456, 1377, 1071, 1030, 970 cm⁻¹; HRMS (ESI) *m*/*z* calcd for C₁₈H₃₉OSn [M+H]⁺: 391.2017, found 391.2017.

Supporting Information

 $[α]^{25}_{D}$ +23.1, (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 1.00 (3H, d, *J* = 6.8 Hz, CH₃), 1.88-1.92 (1H, m, OH), 2.33-2.46 (1H, m, CH), 3.40-3.53 (2H, m, CH₂), 6.12 (1H, d, *J* = 14.5 Hz, CH), 6.45 (1H, dd, *J* = 14.5 and 7.9 Hz, CH); ¹³C NMR (75 MHz, CDCl₃) δ 15.6 (CH₃), 43.4 (CH), 66.5 (CH₂), 76.2 (CH), 148.6 (CH).

Supporting Information

[*α*]²⁵_D +20.8, (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ0.05 (6H, s, 2 x CH₃), 0.90 (9H, s, 3 x CH₃), 1.01 (3H, d, J = 6.8 Hz, CH₃), 2.33-2.40 (1H, m, CH), 3.45 (1H, dd, J = 9.8 and 6.4 Hz, CH₂), 3.48 (1H, dd, J = 9.8 and 6.4 Hz, CH₂), 6.06 (1H, br dd, J = 14.6 Hz, CH), 6.49 (1H, dd, J = 14.6 and 6.5 Hz, CH); ¹³C NMR (100 MHz, CDCl₃) δ -5.2 (2 x CH₃), 15.7 (CH₃), 18.4 (C), 26.0 (3 x CH₃), 43.3 (CH), 67.0 (CH₂), 75.2 (CH), 149.2 (CH); **IR** (thin film) $v_{max} = 2955$, 2928, 2856, 1605, 1471, 1386, 1361, 1252, 1187, 1088, 1024, 1006, 947 cm⁻¹; **LRMS** *m*/*z* (ESI) 349 (M+Na)⁺; **HRMS** *m*/*z* (ESI) calcd for C₁₁H₂₄OSiI [M+H]⁺: 327.0636, found 327.0640

Supporting Information

 $[\alpha]^{25}_{D}$ -31.3, (*c* 1.0, CHCl₃); ¹**H** NMR (400 MHz, CDCl₃) δ 0.95 (3H, d, *J* = 6.8 Hz, CH₃), 1.82-1.85 (1H, m, OH), 2.41 (3H, d, J = 1.5 Hz, CH₃), 2.57-2.68 (1H, m, CH), 3.36-3.51 (2H, m, CH₂), 5.96 (1H, br dq, J = 9.8, 1.5 Hz, CH); ¹³C NMR (100 MHz, CDCl₃) δ 16.4 (CH₃), 28.2 (CH₃), 38.6 (CH), 67.0 (CH₂), 95.6 (CH), 143.6 (CH); **IR** (thin film) v_{max} = 3332, 2958, 2926, 2870, 1635, 1429, 1377, 1217, 1119, 1076, 1030, 996, cm⁻¹; LRMS m/z (ESI) 249 $(M+Na)^+$; **HRMS** m/z (ESI) calcd for C₆H₁₅NOI [M+NH₄]⁺: 244.0193, found 244.0185. Chloroform-d -7.26 0.5 7.0 6.0 3 4 30 7.5 5 5 4.0 1.5 6.5 5.0 2 2.5 2.0 Chloroform-d -77.16 150 145 140 115 110 105 100 90 85 80 75 70 65 20 15 135 130 125 120 95 60 40 35 30 25 55 50 45

Supporting Information

¹**H** NMR (400 MHz, CDCl₃) δ 1.21 (3H, d, J = 7.0 Hz, CH₃), 2.46 (3H, d, J = 1.5 Hz, CH₃), 3.23-3.31 (1H, m, CH), 6.06 (1H, br dq, J = 9.3, 1.5 Hz, CH), 9.51 (1H, d, J = 1.7 Hz, CH); ¹³C NMR (100 MHz, CDCl₃) δ 13.8 (CH₃), 28.4 (CH₃), 48.8 (CH), 67.0 (CH₂), 98.1 (CH), 136.6 (CH), 199.3 (CHO).

Supporting Information

Major diastereoisomer only: ¹**H NMR** (400 MHz, CDCl₃) δ 0.05 (6H, s, 2 x CH₃), 0.89 (1H, s, 3 x CH₃), 1.00 (6H, d, J = 6.8 Hz, 2 x CH₃), 1.66 (1H, br s, OH), 2.29-2.36 (1H, m, CH), 2.39 (3H, d, J = 1.5 Hz, CH₃), 2.50-2.59 (1H, m, CH), 3.40 (1H, dd, J = 9.8 and 6.8 Hz, CH₂), 3.49 (1H, dd, J = 9.8 and 6.3 Hz, CH₂), 3.88 (1H, app br t, J = 6.5 Hz, CH), 5.45 (1H, br dd, J = 15.6 and 6.8 Hz, CH), 5.60 (1H, br dd, J = 15.6 and 6.3 Hz, CH), 5.99 (1H, br dq, J = 9.8 and 1.5 Hz, CH); ¹³C NMR (100 MHz, CDCl₃) δ -5.3 (2 x CH₃), 15.9 (CH₃), 16.5 (CH₃), 18.3 (C), 25.9 (3 x CH₃), 28.1 (CH₃), 39.0 (CH), 41.7 (CH), 67.9 (CH₂), 76.3 (CH), 94.6 (CI), 129.8 (CH), 135.8 (CH), 142.9 (CH); **IR** (thin film) $v_{max} = 3419$, 2958, 2930, 2858, 1638, 1473, 1388, 1257, 1089, 1009, 974 cm⁻¹; **LRMS** *m*/*z* (ESI) 447 (M+Na)⁺; **HRMS** *m*/*z* (ESI) calcd for C₁₇H₃₇NO₂SiI [M+NH₄]⁺: 442.1633, found 442.1633.

Supporting Information

•

Supporting Information

[*α*]²¹_D +52.5 (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, C₆D₆) δ 0.00 (6H, s, 2 x CH₃), 0.82 (3H, d, J = 6.8 Hz, CH₃), 0.94 (9H, s, 3 x CH₃), 0.99 (3H, d, J = 7.0 Hz, CH₃), 2.12 (3H, br d, J = 1.5 Hz, CH₃), 2.22 (1H, app sept, J = 6.3 Hz, CH), 3.19 (1H, dq, J = 9.8 and 7.0 Hz, CH), 3.28 (2H, d, J = 6.0 Hz, CH₂), 6.06 (1H, br dd, J = 15.8 and 1.3 Hz, CH), 6.25 (1H, br dq, J = 9.8 and 1.5 Hz, CH), 6.90 (1H, dd, J = 15.8 and 7.3 Hz, CH); ¹³C NMR (100 MHz, C₆D₆) δ -5.3 (2 x CH₃), 15.7 (CH₃), 16.3 (CH₃), 18.5 (C), 26.1 (3 x CH₃), 27.9 (CH₃), 39.6 (CH), 47.2 (CH), 67.1 (CH₂), 96.1 (C), 127.5 (CH), 140.3 (CH), 149.8 (CH), 196.9 (C); **IR** (thin film) $v_{max} = 2955$, 2927, 2854, 1697, 1673, 1626, 1471, 1459, 1253, 1189, 1129, 1097, 1084, 1029, 980 cm⁻¹; **LRMS** *m*/*z* (ESI) 445 (M+Na)⁺; **HRMS** *m*/*z* (ESI) calcd for C₁₇H₃₂O₂SiI [M+H]⁺: 423.1211, found 423.1211.

Supporting Information

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

Supporting Information

[*α*]²²_D +65.6, (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 0.05 (6H, s, 2 x CH₃), 0.87 (3H, d, J = 6.6 Hz, CH₃), 0.90 (9H, s, 3 x CH₃), 1.16 (3H, d, J = 6.8 Hz, CH₃), 1.30-1.43 (1H, m, CH₂), 1.51-1.62 (1H, m, CH), 1.62-1.73 (1H, m, CH₂), 2.36-2.55 (2H, m, CH₂), 2.46 (3H, d, J = 1.5 Hz, CH₃), 3.33-3.40 (1H, m, CH), 3.42 (2H, d, J = 5.9 Hz, CH₂), 6.12 (1H, dq, J = 10.0 and 1.5 Hz, CH); ¹³C NMR (100 MHz, CDCl₃) δ -5.2 (2 x CH₃), 16.3 (CH₃), 16.8 (CH₃), 18.5 (C), 26.1 (3 x CH₃), 27.4 (CH₂), 28.1 (CH₃), 35.4 (CH), 38.8 (CH₂), 48.7 (CH), 68.2 (CH₂), 96.1 (C), 139.9 (CH), 209.9 (C); **IR** (thin film) $v_{max} = 2955$, 2929, 2883, 2856, 1716, 1472, 1462, 1434, 1252, 1117, 1091, 1037, 1028, 1005 cm⁻¹; **LRMS** *m*/*z* (ESI) 447 (M+Na)⁺; **HRMS** *m*/*z* (ESI) calcd for C₁₇H₃₄O₂SiI [M+H]⁺: 425.1367, found 425.1367.

Supporting Information

[*α*]³⁶_D -23.0, (*c* 1.0, CHCl₃); ¹**H** NMR (300 MHz, C₆D₆) δ0.07 (6H, s, 2 x CH₃), 0.79 (3H, d, J = 6.9 Hz, CH₃), 0.87 (3H, d, J = 6.7 Hz, CH₃), 0.98 (9H, s, 3 x CH₃), 1.19-1.45 (5H, m, 2 x CH₂ and OH), 1.51-1.61 (1H, m, CH), 2.12-2.24 (1H, m, CH), 2.17 (3H, d, J = 1.3 Hz, CH₃), 3.05-3.11 (1H, m, CH), 3.33-3.42 (1H, m, CH₂), 6.16 (1H, br dq, J = 10.0 and 1.3 Hz, CH); ¹³C NMR (75 MHz, C₆D₆) δ-5.1 (2 x CH₃), 16.8 (CH₃), 17.1 (CH₃), 18.6 (C), 26.3 (3 x CH₃), 28.1 (CH₃), 29.7 (CH₂), 32.4 (CH₂), 36.0 (CH), 41.9 (CH), 68.6 (CH₂), 74.9 (CH), 94.6 (C), 143.5 (CH); **IR (thin film)** $ν_{max} = 3397$, 2954, 2928, 2856, 1462, 1377, 1361, 1251, 1090 cm⁻¹; LRMS m/z (ESI) 449 (M+Na)⁺; **HRMS** m/z (ESI) calcd for C₁₇H₃₆O₂SiI [M+H]⁺: 427.1524, found 427.1523.

Supporting Information

[*α*]³⁶_D -31.8, (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, C₆D₆) δ 0.07 (6H, s, 2 x CH₃), 0.84 (3H, d, J = 6.8 Hz, CH₃), 0.89 (3H, d, J = 6.4 Hz, CH₃), 0.98 (9H, s, 3 x CH₃), 0.99-1.06 (1H, m, CH₂), 1.11-1.21 (1H, m, CH₂), 1.25 (1H, br s, OH), 1.35-1.46 (1H, m, CH₂), 1.48-1.60 (2H, m, CH and CH₂), 2.17 (3H, d, J = 1.5 Hz, CH₃), 2.19-2.27 (1H, m, CH), 3.03-3.11 (1H, m, CH), 3.34 (1H, dd, J = 9.8 and 5.6 Hz, CH₂), 3.41 (1H, dd, J = 9.8 and 5.6 Hz, CH₂), 6.08 (1H, dq, J = 10.0 and 1.5 Hz, CH); ¹³C NMR (75 MHz, C₆D₆) δ -5.1 (2 x CH₃), 15.5 (CH₃), 17.3 (CH₃), 18.6 (C), 26.3 (3 x CH₃), 28.0 (CH₃), 29.8 (CH₂), 32.4 (CH₂), 36.1 (CH₃), 42.0 (CH), 68.3 (CH₂), 75.2 (CH), 94.1 (C), 144.5 (CH); **IR** (thin film) v_{max} = 3358, 2954, 2928, 2856, 1633, 1462, 1378, 1361, 1252, 1092 cm⁻¹; **LRMS** *m*/*z* (ESI) 449 (M+Na)⁺; **HRMS** *m*/*z* (ESI) calcd for C₁₇H₃₆O₂SiI [M+H]⁺: 427.1524, found 427.1521.

Supporting Information

[*α*]²⁵_D -33.3, (*c* 1.0, CHCl₃); ¹**H** NMR (300 MHz, C₆D₆) δ 0.07 (6H, s, 2 x CH₃), 0.08 (6H, s, 2 x CH₃), 0.85 (3H, d, J = 6.8 Hz, CH₃), 0.90 (3H, d, J = 6.5 Hz, CH₃), 0.98 (9H, s, 3 x CH₃), 1.00 (9H, s, 3 x CH₃), 1.10-1.20 (1H, m, CH₂), 1.33-1.61 (4H, m, CH₂ and CH₂ and CH), 2.24 (3H, d, J = 1.5 Hz, CH₃), 2.37-2.49 (1H, m, CH), 3.35-3.45 (3H, m, CH and CH₂), 6.24 (1H, dq, J = 10.0 and 1.4 Hz, CH); ¹³C NMR (100 MHz, C₆D₆) δ -5.2 (2 x CH₃), -4.1 (CH₃), -4.0 (CH₃), 16.4 (CH₃), 16.9 (CH₃), 18.3 (C), 18.6 (CH₃), 26.2 (3 x CH₃), 26.2 (3 x CH₃), 28.0 (CH₃), 28.7 (CH₂), 32.1 (CH₂), 36.4 (CH), 40.8 (CH), 68.5 (CH₂), 75.9 (CH), 94.1 (C), 144.3 (CH); **LRMS** *m*/*z* (ESI) 563 (M+Na)⁺; **HRMS** *m*/*z* (ESI) calcd for C₂₃H₅₃NO₂Si₂I [M+NH₄]⁺: 558.2654, found 558.2651.

Supporting Information

[*α*]²⁵_D -32.8, (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, C₆D₆) δ 0.05 (3H, s, CH₃), 0.06 (3H, s, CH₃), 0.83 (2 x 3H, 2 x d overlapped, J = 6.7 Hz, 2 x CH₃), 0.97 (9H, s, 3 x CH₃), 1.01-1.06 (1H, m, CH₂), 1.29-1.49 (4H, m, CH₂ and CH₂ and CH), 2.22 (3H, d, J = 1.5 Hz, CH₃), 2.35-2.44 (1H, m, CH), 3.17 (1H, dd, J = 10.0 and 6.0 Hz, CH₂), 3.23 (1H, dd, J = 10.3 and 5.5 Hz, CH₂), 3.33 (1H, q, J = 5.0 Hz, CH), 6.23 (1H, br dq, J = 10.0 and 1.5 Hz, CH); ¹³C NMR (75 MHz, C₆D₆) δ -4.2 (CH₃), -4.1 (CH₃), 16.5 (CH₃), 16.8 (CH₃), 18.3 (C), 26.2 (3 x CH₃), 28.0 (CH₃), 28.6 (CH₂), 32.2 (CH₂), 36.2 (CH), 40.7 (CH), 67.9 (CH₂), 75.8 (CH), 94.1 (C), 144.2 (CH); LRMS *m*/*z* (ESI) 449 (M+Na)⁺; HRMS *m*/*z* (ESI) calcd for C₁₇H₃₆O₂SiI [M+H]⁺: 427.1524, found 427.1517.

Supporting Information

[α]²⁸_D -46.0, (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, C₆D₆) δ 0.00 (3H, s, CH₃), 0.03 (3H, s, CH₃), 0.77 (3H, d, J = 6.9 Hz, CH₃), 0.78 (3H, d, J = 7.1 Hz, CH₃), 0.94 (9H, s, 3 x CH₃), 1.07-1.16 (1H, m, CH₂), 1.18-1.32 (2H, m, CH₂), 1.41-1.56 (1H, m, CH₂), 1.73-1.84 (1H, m, CH), 2.20 (3H, d, J = 1.5 Hz, CH₃), 2.24-2.41 (1H, m, CH), 3.26 (1H, q, J = 5.5 Hz, CH), 6.14 (1H, br dq, J = 10.0 and 1.5 Hz, CH), 9.30 (1H, d, J = 1.3 Hz, CH); ¹³C NMR (75 MHz, C₆D₆) δ -4.2 (CH₃), -4.1(CH₃), 13.3 (CH₃), 16.2 (CH₃), 18.3 (CH₃), 25.8 (CH₂), 26.1 (3 x CH₃), 27.9 (CH₃), 31.6 (CH₂), 40.8 (CH), 46.2 (CH), 75.2 (CH), 94.3 (C), 144.0 (CH), 202.9 (CH); **IR** (thin film) $v_{max} = 2256$, 2931, 2858, 1709, 1472, 1464, 1379, 1361, 1254, 1067, 1045, 1027, 1006 cm⁻¹; **LRMS** *m*/*z* (ESI) 447 (M+Na)⁺

Supporting Information

The alcool is not described because the mixture of diastereomers.

IR (thin film) $v_{\text{max}} = 3364$, 2957, 2928, 2883, 2857, 1471, 1461, 1406, 1378, 1361, 1253, 1065, 1027, 1004, 942 cm⁻¹; **LRMS** *m*/*z* (ESI) 463 (M+Na)⁺; **HRMS** *m*/*z* (ESI) calcd for $C_{18}H_{38}O_2SiI[M+H]^+$: 441.1680, found 441.1667.

Supporting Information

[*α*]³⁶_D -28.6, (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, C₆D₆) δ 0.03 (3H, s, CH₃), 0.04 (3H, s, CH₃), 0.79 (3H, d, J = 6.8 Hz, CH₃), 0.87 (3H, d, J = 7.0 Hz, CH₃), 0.95 (9H, s, 3 x CH₃), 1.15-1.38 (3H, m, CH₂ and CH₂), 1.49-1.59 (1H, m, CH₂), 1.75 (3H, s, CH₃), 2.01-2.10 (1H, m, CH), 2.21 (3H, d, J = 1.5 Hz, CH₃), 2.28-2.40 (1H, m, CH), 3.26-3.31 (1H, m, CH), 6.17 (1H, br dq, J = 10.0 and 1.5 Hz, CH); ¹³C NMR (75 MHz, C₆D₆) δ -4.2 (CH₃), -4.1 (CH₃), 16.3 (CH₃), 16.5 (CH₃), 18.3 (C), 26.2 (3 x CH₃), 27.8 (CH₃), 28.0 (CH₃), 28.3 (CH₂), 32.3 (CH₂), 40.7 (CH), 47.0 (CH), 75.4 (CH), 94.3 (CH), 144.0 (CH), 209.6 (CH); **IR** (thin film) $v_{max} = 2955$, 2929, 2856, 1713, 1471, 1461, 1378, 1359, 1253, 1170, 1067, 1043, 1026, 1006, 940 cm⁻¹; **LRMS** *m*/*z* (ESI) 461 (M+Na)⁺; **HRMS** *m*/*z* (ESI) calcd for C₁₈H₃₆O₂SiI [M+H]⁺: 439.1524, found 439.1517.

