Supporting Information

for

A Zinc-Salophen/Bile-Acid Conjugate Receptor Solubilized by CTABr Micelles Binds Phosphate in Water

Ondřej Jurček,^a Massimo Cametti,^{*^b} Marta Pontini,^{a,#} Erkki Kolehmainen^a and Kari Rissanen^{*a}

^a Laboratory of Organic Chemistry, Department of Chemistry, P.O.Box 35, 40014, Jyväskylä, Finland.; E-mail:<u>kari.t.rissanen@jyu.fi</u> ^b Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy; E-mail: <u>massimo.cametti@chem.polimi.it</u>

#current address: School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK

Table of content

Figure S1. UV-vis titration of 1 with (TBA)H ₂ PO ₄ DMSO and in 10% water/DMSOpage S2
Figure S2. Absorption spectra of a 0.1mM solution of 1 in DMSO and in water (CTABr, 10mM – 1%DMSO)page S3
Figure S3. Adhesion to the Lambert and Beer's Lawpage S3
Figure S4. UV-vis variation of a 0.1 mM solution of 1 in DMSO upon addition of (TBA)H ₂ PO ₄ page S4
Figure S5. UV-vis variation of a 0.1 mM solution of 1 in water (CTABr, 10mM – 1%DMSO) upon addition of (TBA)AcO and Titration profilepage S5
Figure S6. Observed absorbance variation of a 0.1mM solution of 1 upon addition of (TBA)X (X= chloride, acetate and phosphate)page S6
Figure S7. ³¹ P-NMR in DMSO
Figure S8. NMR assignment and experimental detailspage S8

Figure S1. Plots of the absorption variations of **1** upon addition of $(TBA)H_2PO_4$ in DMSO (\circ) and in a 10%water/DMSO mixture (•), recorded at 300 K. Lines represent the best fit curves (1:1 binding isotherm equation).

nm Figure S2. Absorption spectra of a 0.1mM solution of 1 in DMSO (- -) and in water (-) (CTABr, 10mM – 1%DMSO).

Figure S3. Plot of Absorption vs. [1] at 295 and 400 nm, and linear fit of the data (-)

Figure S4. UV-vis variation of a 0.1 mM solution of 1 in DMSO upon addition of (TBA) H_2PO_4 at 300 K.

Figure S5. top) UV-vis variation of a 0. 1mM solution of **1** in water (CTABr 10mM, 1% DMSO) upon addition of (TBA)AcO at 300 K; bottom) Plot of the Abs v. AcO conc. at 355 and 400 nm.

Figure S6. Absorption variation observed upon addition of (TBA)X (X= chloride (Δ), acetate (\bullet) and phosphate (\circ)) to a 0.1 mM solution of **1** in water (CTABr 10mM, 1%DMSO).

Figure S7. ³¹P-NMR in DMSO; a) (TBA) H_2PO_4 5mM, b) 1 : (TBA) H_2PO_4 4:1 (20mM : 5mM); c) 1 : (TBA) H_2PO_4 2:1 (20mM : 10mM); d) 1 : (TBA) H_2PO_4 1:1 (20mM : 20mM) and e) 1 : (TBA) H_2PO_4 1:4 (20mM : 80mM).

Figure S8. Numbering of 1, including numbering of 4; the assignment of individual ¹H and ¹³C signals was carried out by comparing them with NMR data of parental compounds published in the literature,¹ by heteronuclear 2D experiments PFG ¹H, ¹³C HMQC, and supported by data predicted by software ACD/ChemSketch C+H NMR Predictors and DB (Product version 10.04). ¹H chemical shifts were referenced to the trace signal of CHCl₃ (7.26 ppm from int. TMS) or DMSO (2.5 ppm) and ¹³C chemical shifts to the center peak of the solvent signal (77.00 ppm from int. TMS for CDCl₃, and 39.52 ppm for DMSO-*d*6).

¹ S. Ikonen, H. Macíčková-Cahová, R. Pohl, M. Šanda, and M. Hocek, *Org. Biomol. Chem.*, 2010, **8**, 1194-1201; A. Valkonen, M. Lahtinen, Virtanen E., S. Kaikkonen and E. Kolehmainen, *Biosens. Bioelectron*. 2004, **20**, 1233-1241.