Electronic Supplementary Information

Radiofluorination of diaryliodonium tosylates under aqueous-organic and cryptand-free conditions

Joong-Hyun Chun, Sanjay Telu, Shuiyu Lu* and Victor W. Pike

Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Rm. B3 C346, 10 Center Drive, Bethesda MD 20892-1003, USA.

E-mail: Shuiyu.lu@mail.nih.gov; Fax: +1 301 480 5112; Tel: +1 301 451 3904.

1 Materials		S2	
2	General methods		S2
3 Syntheses of reagents for making diaryliodonium salts		S3	
4	Syntheses of diaryliodonium salts		S4
Appendix 1.		¹ H, ¹⁹ F and ¹³ C NMR spectra	S9
Apper	ndix 2.	Selected radio-HPLC chromatograms	S18
Apper	ndix 3.	Configuration of the microfluidic apparatus	S20

Experimental

1 Materials

DMF (99%, anhydrous), water (HPLC grade), K₂CO₃ (99%), K 2.2.2 (4,7,13,16,21,24hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane), Koser's reagent, 4-anisole, 4-iodobiphenyl, diphenyliodonium tosylate (1) and reference fluoroarenes were purchased from either Sigma-Aldrich (Milwaukee, WI) or Alfa Aesar (Ward Hill, MA). 4-Bromo-4'-iodobenzophenone was obtained from Rieke Metals, Inc. (Lincoln, NE). The following diaryliodonium tosylates were prepared as described previously: (2-methylphenyl)(phenyl)iodonium tosylate (2) [1], (2-bromophenyl)(phenyl)iodonium tosylate (3) [1], (3-ethoxycarbonylphenyl)(4'methoxyphenyl)iodonium (4-methoxyphenyl)[3'tosylate (9)[2], (trifluoromethyl)phenyl]iodonium tosylate (10)[3], (4-methoxyphenyl)(3'nitrophenyl)iodonium tosylate (11) [3], and (3-cyanophenyl)(4'-methoxyphenyl)iodonium tosylate (13) [3].

2 General methods

 1 H (400 MHz), 13 C (100 MHz), and 19 F (376 MHz) NMR spectra were recorded at room temperature on an Avance-400 spectrometer (Bruker; Billerica, MA). 1 H and 13 C chemical shifts are reported in δ units downfield from the chemical shift for tetramethylsilane and 19 F NMR chemical shifts in δ units downfield from the chemical shift for CFCl₃. Abbreviations br, s, d, t, and m denote broad, singlet, doublet, triplet and multiplet, respectively.

High resolution mass spectra (HRMS) were obtained from the Mass Spectrometry Laboratory, University of Illinois at Urbana-Champaign (Urbana, IL) under electron ionization conditions using a double-focusing high-resolution mass spectrometer (Autospec; Micromass Inc., USA). Melting points were measured with a Mel-Temp melting point apparatus (Electrothermal; Fisher Scientific).

3 Syntheses of reagents for making diaryliodonium salts

3.1 4-Cyano(diacetoxyiodo)benzene (A)

Peracetic acid in acetic acid (32 wt.%, 10 mL) was added drop-wise to cooled (~ 0 °C) 4-iodobenzonitile (1.15 g, 5 mmol). The temperature was gradually raised to rt and the reaction mixture was stirred overnight (ca. 14 h) to give a white precipitate. Water (20 mL) was added to the mixture and the resultant solid was filtered off, washed with Et₂O (30 mL × 3), and dried *in vacuo* for 4 h to give **A** as a white solid (1.12 g, 65%); mp 171–173 °C; ¹H-NMR (CDCl₃) δ 8.21 (2 H, d, J = 8.8 Hz, ArH), 7.78 (2 H, d, J = 8.8 Hz, ArH), 2.03 (6 H, s, Me); ¹³C-NMR (CDCl₃) δ 176.9, 135.8, 134.3, 125.4, 117.3, 115.9, 20.6.

3.2 1-Cyano-4-[hydroxy(tosyloxy)iodo]benzene (**B**)

A (1.04 g, 3 mmol) in MeCN (20 mL) was added in one portion to a heated (~ 60 °C) bright yellow solution of p-TsOH·H₂O (0.63 g, 3.3 mmol). The reaction mixture was cooled to rt. The precipitate was filtered off and washed with Et₂O (30 mL × 3) to give **B** as a white solid (0.95 g, 76%); mp 138–139 °C; ¹H-NMR (DMSO- d_6) δ 10.04 (1 H, br s, OH), 8.34 (2 H, d, J = 7.6 Hz, ArH), 8.07 (2 H, d, J = 7.6 Hz, ArH), 7.47 (2 H, d, J = 7.6 Hz, ArH), 7.12 (2 H, d, J = 7.6 Hz, ArH), 2.29 (3 H, s, Me); ¹³C-NMR (DMSO- d_6) δ 145.3, 137.9, 134.6, 134.5, 128.2, 125.5, 117.6, 114.6, 20.8.

3.3 1-Fluoro-4-[hydroxy(tosyloxy)iodo]benzene (C)

m-Chloroperbenzoic acid (*m*-CPBA; 77% max.; 1.73 g, 7.7 mmol) was added portionwise to a solution of 4-fluoroiodobenzene (1.55 g, 7 mmol) in CHCl₃ (30 mL). *p*-TsOH·H₂O (1.47 g, 7.7 mmol) was added to the pale yellow solution and the temperature was raised to 40 °C. The reaction mixture was stirred for 1 h and then cooled to rt. The resultant precipitate was filtered off, washed with Et₂O (50 mL × 3), and dried *in vacuo* for 6

h to give **C** as a white solid (1.96 g, 68%); mp 145–146 °C; ¹H-NMR (DMSO- d_6) δ 9.89 (1 H, br s, OH), 8.29 (2 H, dt, J = 1.6, 3.6 Hz, ArH), 7.50–7.45 (4 H, m, ArH), 7.12 (2 H, d, J = 8 Hz, ArH), 2.29 (s, 3H, Me); ¹⁹F-NMR (DMSO- d_6) δ –105.86.

3.4 4-(Diacetoxyiodo)biphenyl (**D**)

Peracetic acid (32 wt.% diluted in acetic acid, 12 mL) was added drop-wise to a mixture of 4-iodobiphenyl (1.96 g, 7 mmol) in acetic acid (5 mL). The reaction was gradually heated to 50 °C and stirred for 5 h. Consumption of 4-iodobipenyl was monitored with TLC. The yellow solution was cooled to rt and water (30 mL) was added. The aqueous phase was extracted with CH_2Cl_2 (30 mL × 2), dried over MgSO₄, and concentrated under reduced pressure. The resulting oil was triturated with Et_2O and then the solid was filtered off and recrystallized from acetic acid to give **D** as a pale yellow solid (0.62 g, 22%); mp 155–159 °C; ¹H-NMR (CDCl₃) δ 7.86 (2 H, d, J = 8.4 Hz, ArH), 7.45 (2 H, d, J = 8.4 Hz, ArH), 7.55–7.51 (5 H, m, Ph), 1.94 (6 H, s, Me); ¹³C-NMR (CDCl₃) δ 175.6, 142.0, 133.2, 131.6, 127.4, 126.8, 126.2, 125.1, 124.9, 120.1, 19.2.

4. Syntheses of diaryliodonium salts

4.1 (2-Cyanophenyl)(4'-methoxyphenyl)iodonium tosylate (4).

m-CPBA (0.49 g, 2.3 mmol, 77% max. content) was added to a solution of 2-iodobenzonitrile (0.46 g, 2 mmol) in CH₂Cl₂ (10 mL) and the mixture was stirred for 15 min. *p*-TsOH·H₂O (0.38 g, 2.0 mmol) was added to the colorless solution and the resulting pale yellow solution was stirred for 10 min. Anisole (0.33 g, 3 mmol) was then added and the resulting mixture was stirred for 14 h. Solvent was removed *in vacuo* and the crude product was sonicated for 5 min in Et₂O (25 mL). Et₂O was decanted off and the residual solid was washed with water to remove tosic acid and then dissolved in MeCN. Et₂O was added

slowly to precipitate **4** slowly (~15 min) as a white solid (0.68 g, 67%); mp 173–176 °C (decomp.); 1 H-NMR (DMSO- d_{6}) δ 8.67–8.59 (1 H, m, ArH), 8.19–8.11 (3 H, m, ArH), 7.90–7.83 (2 H, m, ArH), 7.46 (2 H, d, J = 8.0 Hz, ArH), 7.11 (4 H, overlappping doublets, ArH), 3.80 (3 H, s, OMe), 2.29 (3 H, s, Me); 13 C-NMR (DMSO- d_{6}) δ 162.2, 145.6, 137.7, 137.2, 136.3, 135.4, 132.9, 128.1, 125.5, 120.7, 118.0, 117.8, 116.4, 106.3, 91.7, 55.8, 20.8; LC-MS (ESI, m/z) [M–OTs] ${}^{+}$ Calc'd. for C₁₄H₁₁ONI: 335.98, Found: 336.10. HRMS [M–OTs] ${}^{+}$ Calc'd. for C₁₄H₁₁OIN: 335.9885, Found: 335.9881.

4.2 (4-Methoxycarbonylphenyl)(4'-methoxyphenyl)iodonium tosylate (5).

The method described for **4** was used with methyl-4-iodobenzoate (0.53 g, 2 mmol). The process gave crude product (0.72 g) that contained about 10% tosic acid and 10% unreacted methyl-4-iodobenzoate. A portion (0.15 g) of this material was washed with water to remove tosic acid. Then the solid was dissolved in CH₂Cl₂ (0.5 mL). Diethyl ether was added slowly to precipitate **5** as white solid (80 mg, 36%). mp 179–181 °C; ¹H-NMR (CDCl₃) δ 7.97 (d, J = 8.4 Hz, 2H, ArH), 7.90–7.86 (m, 4H, ArH), 7.47 (d, J = 8 Hz, 2H, ArH), 7.01 (d, J = 8.0 Hz, 2H, ArH), 6.83 (d, J = 8.8 Hz, 2H, ArH), 3.91 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 2.31 (s, 3H, CH₃); ¹³C-NMR (CDCl₃) δ 165.2, 162.1, 145.7, 137.6, 137.5, 135.1, 132.4, 131.8, 128.1, 125.5, 121.8, 117.6, 105.5, 55.8, 52.7, 20.8; LC-MS (ESI, m/z) [M–OTs]⁺ Calc'd. for C₁₅H₁₄O₃I: 369.00, Found: 368.90. HRMS [M–OTs]⁺ Calc'd. for C₁₅H₁₄O₃I: 368.9988, Found: 368.9991.

4.3 (4-Cyanophenyl)(4'-methoxyphenyl)iodonium tosylate (6).

Anisole (0.7 g, 6.4 mmol) was added to a suspension of $\bf B$ (0.13 g, 0.3 mmol) in CHCl₃ (7 mL). The reaction mixture was then refluxed for 5 h. The obtained light brown solution was concentrated under reduced pressure and the residual light brown oil was triturated with Et₂O. The solid was filtered off, and washed with Et₂O/hexane to give $\bf 6$ as a

beige solid (0.12 g, 80%). mp 188–191 °C; ¹H-NMR (DMSO- d_6) δ 8.36 (2 H, d, J = 8.4 Hz, ArH), 8.21 (2 H, d, J = 8.4 Hz, ArH), 7.98 (2 H, d, J = 8.4 Hz, ArH), 7.47 (2 H, d, J = 8 Hz, ArH), 7.12–7.07 (4 H, m, ArH), 3.80 (3 H, s, OMe), 2.28 (3 H, s, Me); ¹³C-NMR (DMSO- d_6) δ 162.2, 145.7, 137.7, 137.3, 135.4, 134.9, 128.1, 125.5, 121.9, 117.6, 114.4, 105.6, 55.8, 20.8. HRMS [M-OTs]+ Calc'd. for C₁₄H₁₁OIN: 335.9885, Found: 335.9876.

4.4 (2-Methylphenyl)(4'-methoxyphenyl)iodonium tosylate (7).

The method described for **4** was used with iodotoluene (0.53 g, 2 mmol) to give **7** as a white solid (0.43 g, 43%). mp 157–159 °C; ¹H-NMR (CDCl₃) δ 8.01 (1 H, dd, J = 8.0 and 1.2 Hz, ArH), 7.79 (2 H, d, J = 9.2 Hz, ArH), 7.54 (2 H, d, J = 8.0 Hz, ArH), 7.46 (1 H, dt, J = 7.6 and 0.8 Hz, ArH), 7.37 (1 H, dd, J = 7.6 and 0.8 Hz, ArH), 7.17 (1 H, dt, J = 8.0 and 1.2 Hz, ArH), 7.04 (2 H, d, J = 8.0 Hz, ArH), 6.85 (2 H, d, J = 9.2 Hz, ArH), 3.76 (3 H, s, OMe), 2.55 (3 H, s, Me), 2.30 (3 H, s, Me); ¹³C-NMR (CDCl₃) δ 162.0, 142.8, 141.1, 139.1, 137.3, 136.5, 132.5, 131.4, 129.1, 128.4, 126.0, 120.8, 117.3, 103.3, 55.6, 25.6, 21.3; LCMS (ESI, m/z) [M-OTs]⁺ Calc'd. for C₁₄H₁₄OI: 325.0089, Found: 325.0089

4.5 (4-(4"-Bromophenylcarbonyl)phenyl)(4'-methoxyphenyl) tosylate (8).

m-CPBA (0.26 g, 1.5 mmol, 77% max. content) was added in portions to a solution of 4-bromo-4'-iodobenzophenone (0.58 g, 1.5 mmol) in CHCl₃ (20 mL). The mixture was stirred until it became a pale yellow solution (~ 15 min). *p*-TsOH'H₂O (0.29 g, 1.5 mmol) was added, followed by anisole (1.08 g, 10 mmol). The resulting mixture was gradually heated to 40 °C and held at this temperature for about 2 h while the mixture became a yellow solution. Full consumption of the *in situ* generated [hydroxy(tosyl)iodo]arene was verified with KI starch paper. Reaction solvent was then removed *in vacuo* and the residual yellow oil was triturated with Et₂O. The generated solid was washed with Et₂O and recrystallized

from MeOH-Et₂O to give **8** as a white solid (0.53 g, 53%). mp = 165–167 °C; ¹H-NMR (MeOD- d_4) δ 8.19 (4 H, dd, J = 8.4, 28.4 Hz, ArH), 7.81 (2 H, d, J = 8.4 Hz, ArH), 7.72–7.65 (6 H, m, ArH), 7.21 (2 H, d, J = 7.6 Hz, ArH), 7.08 (2 H, d, J = 8.8 Hz, ArH), 3.85 (3 H s, OMe), 2.35 (3 H, s, Me); ¹³C-NMR (MeOD- d_4) δ 195.5, 164.9, 143.8, 141.9, 141.8, 139.1, 136.7, 136.2, 133.7, 133.3, 133.0, 130.0, 129.6, 127.2, 120.4, 119.2, 104.6, 56.5, 21.5; HRMS [M-OTs]⁺ Calc'd. for C₂₀H₁₅O₂BrI: 492.9300, Found: 492.9298.

4.6 (4-Biphenyl)(4'-methoxyphenyl)iodonium tosylate (12).

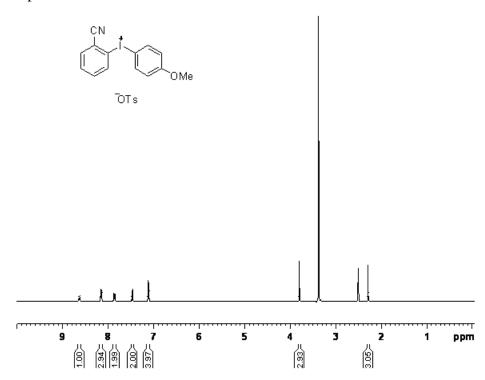
p-TsOH·H₂O (0.12 g, 0.6 mmol), was added to a suspension of **D** (0.26 g, 0.6 mmol) in MeCN (3 mL). A bright yellow solution developed instantly. Anisole (0.21 g, 2.0 mmol) in CHCl₃ (20 mL) was added and the reaction mixture was refluxed for 4 h. Consumption of in situ generated 4-[hydroxy(tosyloxy)iodo]biphenyl was monitored with KI starch paper. The reaction mixture was cooled to rt and concentrated under reduced pressure. The residual yellow oil was triturated with Et₂O and the solid filtered off, washed with Et₂O (20 mL x 3), and dried *in vacuo* for 6 h to give **12** as a white solid (0.19 g, 56%); mp 178–181 °C; ¹H-NMR (MeOD- d_4) δ 8.17 (2 H d, J = 8.4 Hz, ArH), 8.11 (2 H d, J = 9.2 Hz, ArH), 7.74 (2 H, d, J = 8.4 Hz, ArH), 7.69 (2 H, d, J = 8.0 Hz, ArH), 7.62 (2 H, d, J = 7.2 Hz, ArH), 7.49–7.41 (3 H, m, ArH), 7.21 (2 H, d, J = 7.6 Hz, ArH), 7.06 (2 H, d, J = 8.8 Hz, ArH), 3.85 (3 H, s, OMe), 2.35 (3 H, s, Me); ¹³C-NMR (MeOD- d_4) δ 164.6, 146.7, 143.6, 141.7, 140.0, 138.6, 136.5, 131.4, 130.2, 129.9, 128.3, 127.0, 118.9, 114.8, 104.7, 56.4, 21.3; HRMS [M–OTs]⁺ Calc'd. for C₁₉H₁₆OI: 387.0246, Found: 387.0236.

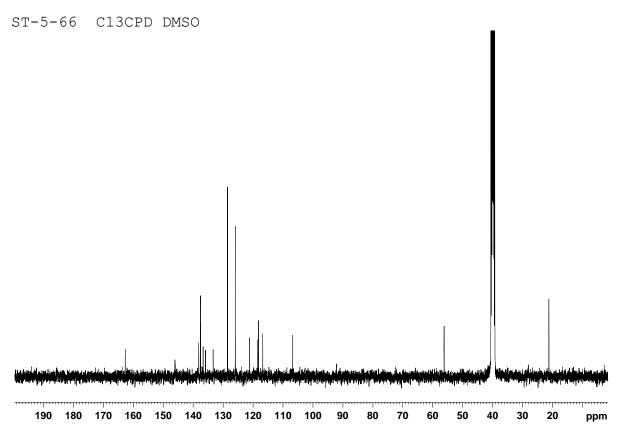
4.7 (4-Fluorophenyl)(4'-methoxyphenyl)iodonium tosylate (14).

Anisole (0.86 g, 8 mmol) was added to a suspension of C (0.67 g, 1.6 mmol) in $CHCl_3$ (20 mL) and mixture was refluxed for 2 h. Solvent was removed under reduced pressure and the crude oil was triturated with Et_2O (20 mL). The resultant solid was filtered off, washed

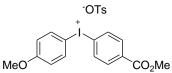
with Et₂O (20 mL × 2), and dried *in vacuo* for 4 h to give **14** as a white solid (0.55 g, 68%); mp 138–140 °C; ¹H-NMR (CDCl₃) δ 8.01–7.93 (2 H, m) 7.90 (2 H, d, J = 8.8 Hz, ArH), 7.39 (2 H, d, J = 7.6 Hz, ArH), 6.98 (2 H, d, J = 7.6 Hz, ArH), 6.93 (2 H, t, J = 8.8 Hz, ArH), 6.77 (2 H, d, J = 8.8 Hz, ArH), 3.76 (3 H, s, OMe), 2.30 (3 H, s, Me); ¹³C-NMR (CDCl₃) δ 165.1, 163.0, 162.2, 142.4, 139.5, 128.5, 125.9, 118.7 (d, J_{C-F} = 24.1 Hz), 117.3, 109.7, 104.7, 55.5, 21.2; ¹⁹F-NMR (decoupled, CDCl₃) δ –107.0; HRMS [M–OTs]⁺ Calc'd. for C₁₃H₁₁OIF: 328.9839, Found: 328.9839.

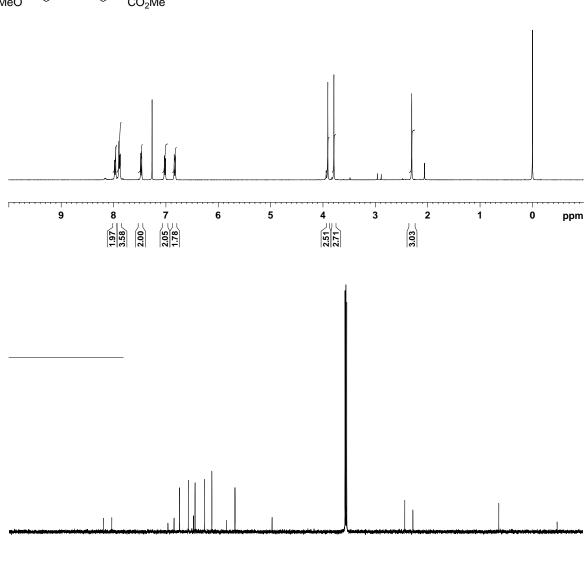
4.8 Bis(4-methoxyphenyl)iodonium tosylate (15).


m-CPBA (0.74 g, 3.3 mmol, 77% max. content) was added to a solution of 4-iodoanisole (0.33 g, 3.0 mmol) in CHCl₃ (30 mL). *p*-TsOHH₂O (0.63 g, 3.3 mmol) was added to the pale yellow solution, followed by anisole (1.62 g, 15 mmol). The resultant mixture was heated to 40 °C and held at this temperature for 4 h. Solvent was removed *in vacuo* and the resultant yellow oil was triturated with Et₂O. The obtained solid was washed with Et₂O and recrystallized from MeOH-Et₂O to give **15** as a white solid (1.14 g, 74%). mp 158–160 °C; 1 H-NMR (CDCl₃) δ 7.86 (4 H, d, J = 8.8 Hz, ArH), 7.51 (2 H, d, J = 8 Hz, ArH), 7.01 (2 H, d, J = 8 Hz, ArH), 6.79 (4 H, d, J = 9.2 Hz, ArH), 3.76 (6 H, s, OMe), 2.30 (3 H, s, Me); 13 C-NMR (CDCl₃) δ 162.4, 143.2, n139.4, 137.1, 128.6, 126.2, 117.5, 104.7, 55.8, 21.4. HRMS [M-OTs] $^{+}$ Calc'd. for C₁₄H₁₄O₂I: 341.0039, Found: 325.0038

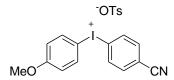

References

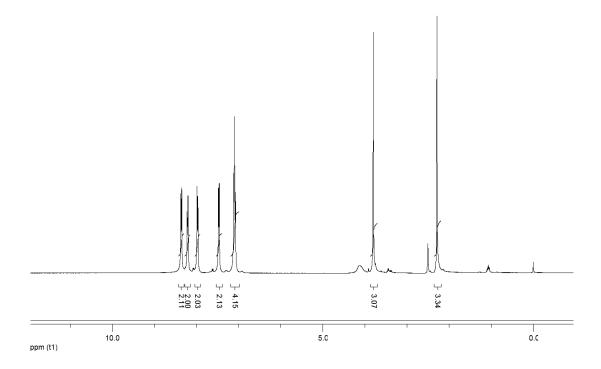
- 1 J.-H. Chun, S. Lu, Y.-S. Lee and V. W. Pike, *J. Org. Chem.*, 2010, **75**, 3332–3338.
- 2 J.-H. Chun and V. W. Pike, J. Org. Chem., 2012, 77, 1931–1938.
- 3 J.-H. Chun, S. Lu and V. W. Pike, *Eur. J. Org. Chem.*, 2011, 4439–4447.

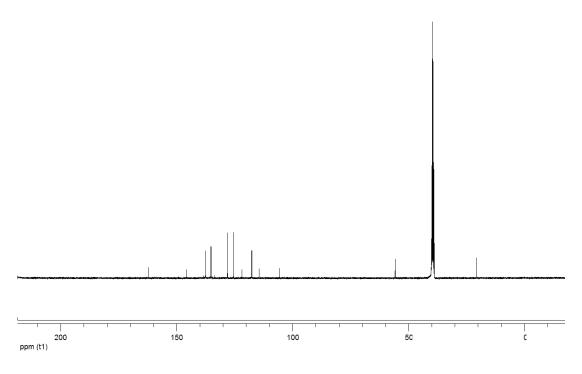

Appendix 1. 1 H (400 MHz), 13 C (100 MHz) and 19 F (376 MHz) NMR spectra of diaryliodonium tosylates


1.1 Compound 4

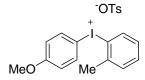
1.2 Compound **5**

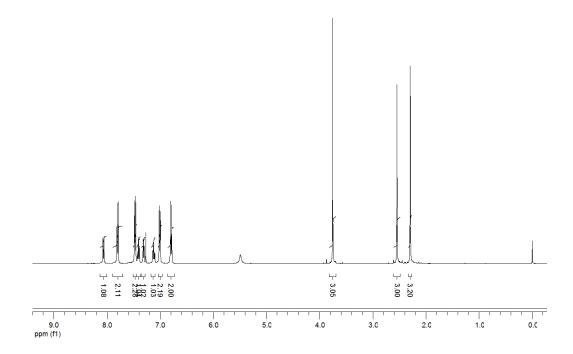


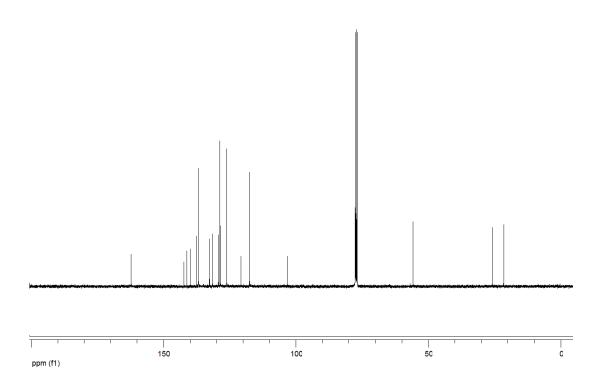

50 40

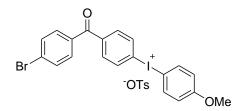

30 20

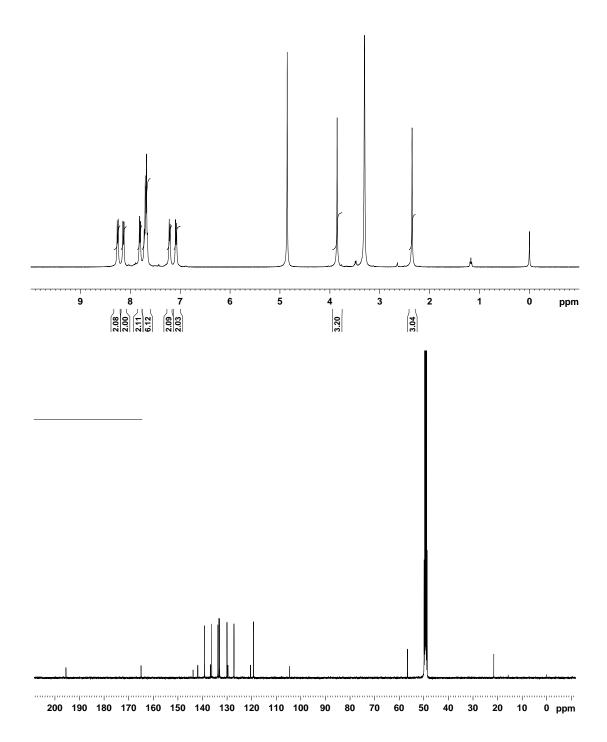
190 180 170 160 150 140 130 120 110 100 90 80 70 60

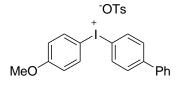

1.3 Compound 6

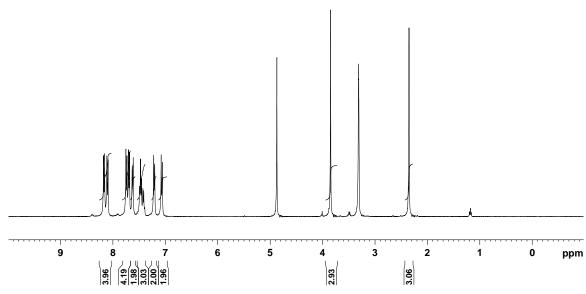


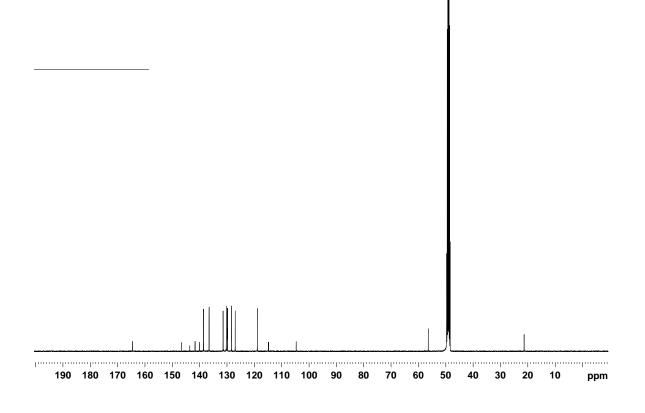



1.4 Compound **7**

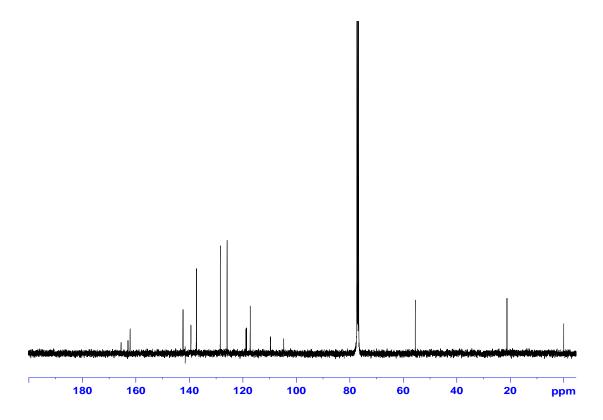


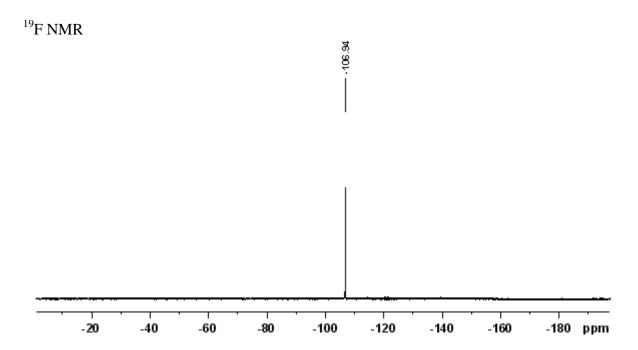



1.5 Compound 8

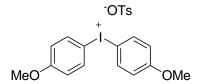


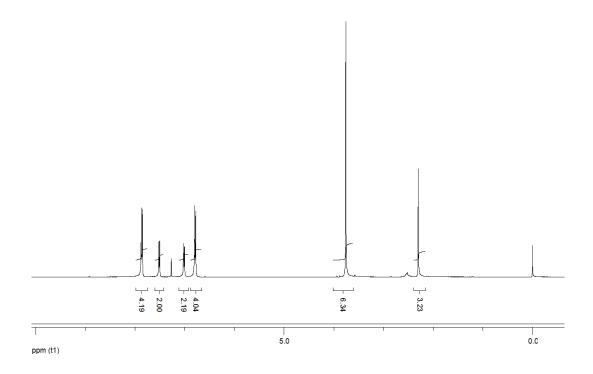
1.6 Compound **12**

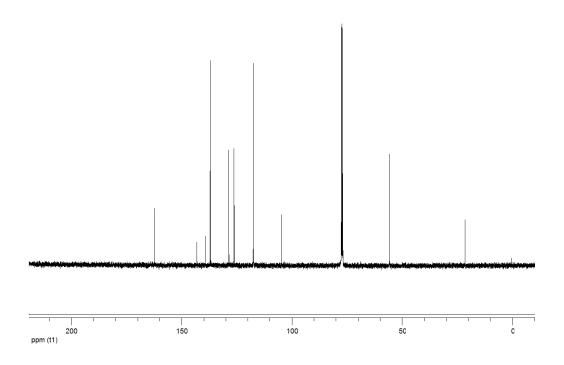




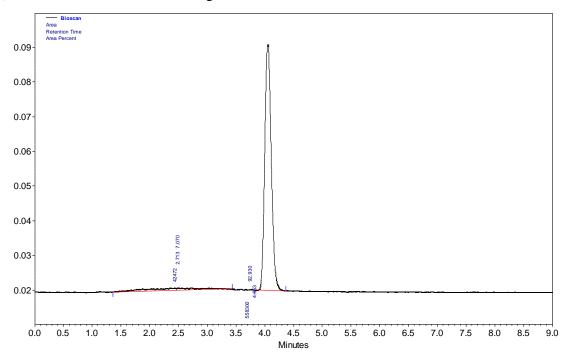
1.7 Compound **14**




JC0596 C13CPD CDC13



1.8 Compound **15**

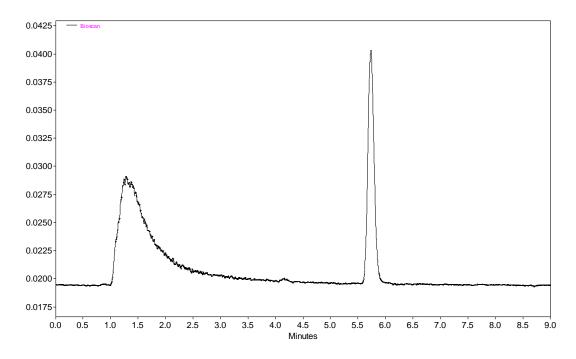


Appendix 2. Selected radio-HPLC chromatograms

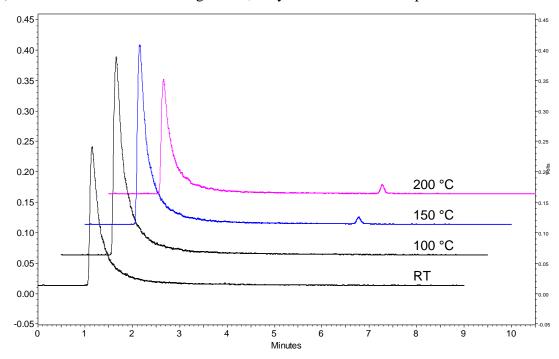
(Volts represent output of radioactivity detector, and this is proportional to radioactivity detected)

2.1 Example of high yield radiofluorination of **5** in micro-reactor

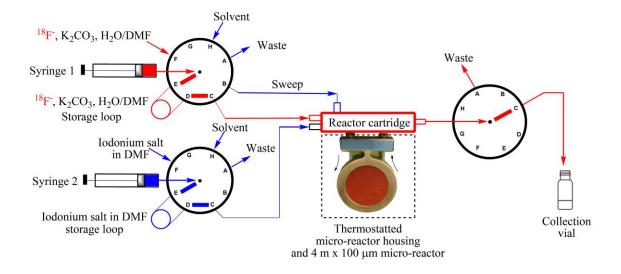
(A) in DMF-0.25% H₂O containing K 2.2.2-K₂CO₃ at 150 °C



(B) in DMF-28% H₂O containing K₂CO₃ only and at different temperatures



2.2 Example of low yield radioflourination of 10 in micro-reactor


(A) in DMF-0.25% H_2O containing K 2.2.2- K_2CO_3 at 150 °C

(B) in DMF-28% H₂O containing K₂CO₃ only and at different temperatures

Appendix 3. Configuration of the microfluidic apparatus

