Supporting Information

Bu₄NI-catalyzed decarboxylative acyloxylation of sp³ C-H bond adjacent to heteroatom with α -oxocarboxylic acids

Shuai Zhang, Li-Na Guo, * Hua Wang and Xin-Hua Duan*

Department of Chemistry, School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China

duanxh@mail.xjtu.edu.cn; guoln81@mail.xjtu.edu.cn

Table of Contents

General Information	S2
Starting Materials General Procedure for the Decarboxylative Acyloxylation of Formamide Characterization of Products 3	S2
	S3
	S4
General Procedure for the Decarboxylative Acyloxylation of 1,4-Dioxane	S8
Characterization of Products 5	S9
References	S13
¹ H NMR and ¹³ C NMR Spectra of the Products	S14

General Information

All Reactions were carried out under an atmosphere of nitrogen with the strict exclusion of moisture. The dry DMF were distilled from CaH₂ under nitrogen and stored over molecular sieves under nitrogen. Column chromatography was carried out on silica gel. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Advance III-400 in solvents as indicate. Chemical shift are reported in ppm from CDCl₃ using TMS as internal standard. IR spectra were recorded on a Bruker Tensor 27 spectrometer and only major peaks are reported in cm⁻¹. HRMS were obtained on a Q-TOF micro spectrometer. Melting points were determined on a microscopic apparatus and were uncorrected.

Starting Materials

N-formylpiperidine, and *N*,*N*-dimethylacetamide were purchased from Sigma-Aldrich. Phenylglyoxylic acid **1a** was purchased from Sigma-Aldrich. Other α -oxocarboxylic acids were prepared from the corresponding methyl ketones according to the reported procedure.¹

General Procedure for the Decarboxylative Acyloxylation of Formamides

A 10 mL oven-dried Schlenk-tube was charged with TBAI (14.8 mg, 20 mol %). The tube was evacuated and backfilled with nitrogen (three times). α -Oxocarboxylic acids (1, 0.2 mmol, 1.0 equiv) and *tert*-butyl hydroperoxide (TBHP, 0.4 mmol, 2.0 equiv) in substituted formamides (2 mL) were added by syringe under nitrogen. The tube was then sealed and the mixture was stirred for 3 h at 80 °C. Upon completion of the reaction (monitored by TLC), the mixture was diluted with EtOAc, filtered through a pad of Celite, and the filtrate was washed with water, dried over Na₂SO₄. After the solvent was removed, the residue was purified with chromatography column on silica gel (gradient eluent of EtOAc/petroleum ether: 1/10 to 1/5) to give the corresponding products **3** in yields listed in Table 2.

Characterization of Products 3

N-Benzoyloxymethyl-*N*-methylformamide (3a): A pale yellow oil, R_f 0.3 (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, CDCl₃): δ = 8.43 (s, 1H), 8.04-8.02 (d, *J* = 7.2 Hz, 2H), 7.62-7.58 (t, *J* = 7.2 Hz, 1H), 7.48-7.44 (t, *J* = 7.6 Hz, 2H), 5.55 (s, 2H), 3.03 (s, 3H); The ¹H NMR spectrum also displayed a minor set of signals due to amide rotamers. ¹³C NMR (100 MHz, CDCl₃): δ = 166.1, 164.0, 133.6, 129.8, 129.1, 128.5, 74.2, 29.8 ppm; IR (KBr): v_{max} 1724, 1689, 1396, 1262, 1067 cm⁻¹; HRMS (ESI) calcd for C₁₀H₁₁NNaO₃ [M+Na]⁺ 216.0631, found 216.0638.

4-Methyl-*N***-benzoyloxymethyl-***N***-methylformamide** (**3b**): A pale yellow oil, R_f 0.3 (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, CDCl₃): δ = 8.42 (s, 1H), 7.92-7.90 (d, *J* = 8.0 Hz, 2H), 7.26-7.24 (d, *J* = 8.0 Hz, 2H), 5.53 (s, 2H), 3.02 (s, 3H), 2.41 (s, 3H); The ¹H NMR spectrum also displayed a minor set of signals due to amide rotamers. ¹³C NMR (100 MHz, CDCl₃): δ = 166.1, 164.1, 144.5, 129.7, 129.2, 126.3, 74.0, 29.8, 21.7 ppm; IR (KBr): v_{max} 1722, 1691, 1398, 1264, 1069 cm⁻¹; HRMS (ESI) calcd for C₁₁H₁₃NNaO₃ [M+Na]⁺ 230.0788, found 230.0780.

MeO

4-Methoxyl-*N***-benzoyloxymethyl-***N***-methylformamide** (**3c**): A pale yellow solid, R_f 0.1 (EtOAc/petroleum ether = 1:5), mp = 38-39 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.41 (s, 1H), 7.98-7.96 (d, *J* = 8.8 Hz, 2H), 6.93-6.91 (d, *J* = 8.4 Hz, 2H), 5.51 (s, 2H), 3.86 (s, 3H), 3.01 (s, 3H); The ¹H NMR spectrum also displayed a minor set of signals due to amide rotamers. ¹³C NMR (100 MHz, CDCl₃): δ = 165.7, 164.1, 163.9, 131.8, 121.4, 113.7, 73.9, 55.5, 29.8 ppm; IR (KBr): υ_{max} 1710, 1691, 1425, 1261, 1070 cm⁻¹; HRMS (ESI) calcd for C₁₁H₁₃NNaO₄ [M+Na]⁺ 246.0737, found 246.0730.

4-Fluoro-*N***-benzoyloxymethyl-***N***-methylformamide** (**3d**): A pale yellow oil, R_f 0.3 (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, CDCl₃): δ = 8.42 (s, 1H), 8.05-8.03 (m, 2H), 7.15-7.11 (t, *J* = 8.4 Hz, 2H), 5.54 (s, 2H), 3.02 (s, 3H); The ¹H NMR spectrum also displayed a minor set of signals due to amide rotamers. ¹³C NMR (100 MHz, CDCl₃): δ = 166.1 (d, *J*_{C, F} = 253.8 Hz), 165.1, 164.0, 132.4 (d, *J*_{C, F} = 9.5 Hz), 125.3, 115.8 (d, *J*_{C, F} = 20.9 Hz), 74.3, 29.9 ppm; IR (KBr): ν_{max} 1726, 1683, 1397, 1263, 1072 cm⁻¹; HRMS (ESI) calcd for C₁₀H₁₀FNNaO₃ [M+Na]⁺ 234.0537, found 234.0532.

4-Chloro-*N***-benzoyloxymethyl-***N***-methylformamide** (**3e**): A pale yellow solid, R_f 0.3 (EtOAc/petroleum ether = 1:5), mp = 34-35 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.41 (s, 1H), 7.97-7.94 (d, *J* = 8.4 Hz, 2H), 7.44-7.42 (t, *J* = 8.8 Hz, 2H), 5.54 (s, 2H), 3.02 (s, 3H); The ¹H NMR spectrum also displayed a minor set of signals due to amide rotamers. ¹³C NMR (100 MHz, CDCl₃): δ = 165.2, 164.0, 140.2, 131.1, 128.9, 127.5, 74.4, 29.9 ppm; IR (KBr): v_{max} 1725, 1672, 1400, 1265, 1096 cm⁻¹; HRMS (ESI) calcd for C₁₀H₁₀ClNNaO₃ [M+Na]⁺ 250.0241, found 250.0236.

4-Bromo-*N***-benzoyloxymethyl-***N***-methylformamide** (**3f**): A pale yellow solid, R_f 0.3 (EtOAc/petroleum ether = 1:5), mp = 45-46 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.42 (s, 1H), 7.89-7.87 (d, *J* = 8.4 Hz, 2H), 7.61-7.59 (d, *J* = 8.4 Hz, 2H), 5.54 (s, 2H), 3.02 (s, 3H); The ¹H NMR spectrum also displayed a minor set of signals due to amide rotamers. ¹³C NMR (100 MHz, CDCl₃): δ = 165.4, 164.0, 131.9, 131.2, 128.9, 128.0, 74.4, 29.9 ppm; IR (KBr): v_{max} 1724, 1671, 1398, 1262, 1074 cm⁻¹; HRMS (ESI) calcd for C₁₀H₁₀BrNNaO₃ [M+Na]⁺ 293.9736, found 293.9735.

4-Iodo-*N***-benzoyloxymethyl***-N***-methylformamide** (**3g**): A pale yellow solid, R_f 0.3 (EtOAc/petroleum ether = 1:5), mp = 50-51 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.42 (s, 1H), 7.84-7.82 (d, *J* = 8.4 Hz, 2H), 7.73-7.71 (d, *J* = 8.4 Hz, 2H), 5.54 (s, 2H), 3.02 (s, 3H); The ¹H NMR spectrum also displayed a minor set of signals due to amide rotamers. ¹³C NMR (100 MHz, CDCl₃): δ = 165.6, 164.0, 138.0, 131.1, 128.6, 101.7, 74.4, 29.9 ppm; IR (KBr): ν_{max} 1719, 1673, 1395, 1262, 1072 cm⁻¹; HRMS (ESI) calcd for C₁₀H₁₀INNaO₃ [M+Na]⁺ 341.9598, found 341.9591.

N-2-naphthoyloxymethyl-*N*-methylformamide (3i): A pale yellow solid, R_f 0.15 (EtOAc/petroleum ether = 1:5), mp = 92-93 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.60 (s, 1H), 8.48 (s, 1H), 8.04-8.03 (d, *J* = 1.2 Hz, 1H), 8.02-8.01 (d, *J* = 1.6 Hz, 1H), 7.97-7.88 (m, 2H), 7.64-7.55 (m, 2H), 5.61 (s, 2H), 3.07 (s, 3H); The ¹H NMR spectrum also displayed a minor set of signals due to amide rotamers. ¹³C NMR (100 MHz, CDCl₃): δ = 166.2, 164.1, 135.7, 132.3, 131.5, 129.4, 128.7, 128.4, 127.8, 126.9, 126.2, 124.9, 74.3, 29.9 ppm; IR (KBr): υ_{max} 1720, 1676, 1397, 1270, 1070 cm⁻¹; HRMS (ESI) calcd for C₁₄H₁₃NNaO₃ [M+Na]⁺ 266.0788, found 266.0785.

N-furoyloxymethyl-*N*-methylformamide (**3j**): A pale yellow oil, R_f 0.1 (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, CDCl₃): δ = 8.42 (s, 1H), 7.64 (s, 1H), 7.25 (m, 1H), 6.56 (m, 1H), 5.54 (s, 2H), 3.03 (s, 3H); The ¹H NMR spectrum also displayed a minor set of signals due to amide rotamers. ¹³C NMR (100 MHz, CDCl₃): δ = 164.0, 158.0, 147.1, 143.5, 119.2, 112.1, 74.0, 29.9 ppm; IR (KBr): v_{max} 1733, 1686, 1397, 1299, 1072 cm⁻¹; HRMS (ESI) calcd for C₈H₉NNaO₄ [M+Na]⁺ 206.0424, found 206.0424.

N-Benzoyloxymethyl-*N*-methylacetamide (31): A pale yellow oil, R_f 0.3 (EtOAc/petroleum ether = 1:5); ¹H NMR (400 MHz, CDCl₃): δ = 8.01-8.00 (d, *J* = 6.8 Hz, 2H), 7.59-7.52 (m, 1H), 7.45-7.38 (m, 2H), 5.59 (s, 2H), 3.07 (s, 3H), 2.27 (s, 3H); The ¹H NMR spectrum also displayed a minor set of signals due to amide rotamers. ¹³C NMR (100 MHz, CDCl₃): δ = 171.8, 165.9, 133.5, 129.7, 129.1, 128.4, 75.3, 33.7, 21.1 ppm; IR (KBr): v_{max} 1722, 1675, 1397, 1267, 1095 cm⁻¹; HRMS (ESI) calcd for C₁₁H₁₃NNaO₃ [M+Na]⁺ 230.0788, found 230.0786.

General Procedure for the Decarboxylative Acyloxylation of 1,4-Dioxane

A 10 mL oven-dried Schlenk-tube was charged with TBAI (14.8 mg, 20 mol %). The tube was evacuated and backfilled with nitrogen (three times). α -Oxocarboxylic acids (1, 0.2 mmol, 1.0 equiv) and *tert*-butyl hydroperoxide (TBHP, 0.4 mmol, 2.0 equiv) in 1,4-dioxane (1 mL) were added by syringe under nitrogen. The tube was then sealed and the mixture was stirred for 4 h at 80 °C. Upon completion of the reaction (monitored by TLC), the mixture was diluted with EtOAc, filtered through a pad of Celite. After the solvent was removed, the residue was purified with chromatography column on silica gel (gradient eluent of EtOAc/petroleum ether: 1/15 to 1/6) to give the corresponding products **5** in yields listed in Table 3.

Characterization of Products 5

Benzoic acid [1,4]dioxan-2-yl ester (**5a**):^{2a} R_f 0.3 (EtOAc/petroleum ether = 1:6); ¹H NMR (400 MHz, CDCl₃): δ = 8.14-8.12 (d, *J* = 7.6 Hz, 2H), 7.60-7.57 (t, *J* = 7.2 Hz, 1H), 7.48-7.44 (t, *J* = 7.6 Hz, 2H), 6.10 (s, 1H), 4.25-4.19 (m, 1H), 3.89 (s, 2H), 3.84-3.82 (m, 2H), 3.70-3.66 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 165.2, 133.4, 129.9, 129.7, 128.4, 89.8, 67.8, 66.1, 61.7 ppm.

4-Methyl-benzoic acid [1,4]dioxan-2-yl ester (5b):^{2b} R_f 0.3 (EtOAc/petroleum ether = 1:6); ¹H NMR (400 MHz, CDCl₃): δ = 8.02-8.00 (d, *J* = 8.0 Hz, 2H), 7.26-7.24 (d, *J* = 8.4 Hz, 2H), 6.08 (s, 1H), 4.24-4.18 (m, 1H), 3.88 (s, 2H), 3.83-3.81 (m, 2H), 3.69-3.65 (m, 1H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 165.2, 144.1, 129.9, 129.1, 126.9, 89.5, 67.8, 66.1, 61.7, 21.6 ppm.

4-Methoxy-benzoic acid [1,4]dioxan-2-yl ester (**5c**):^{2a} R_f 0.1 (EtOAc/petroleum ether = 1:6); ¹H NMR (400 MHz, CDCl₃): δ = 8.09-8.68 (m, 2H), 6.95-6.92 (m, 2H), 6.07 (s, 1H), 4.24-4.18 (m, 1H), 3.89-3.87 (m, 5H), 3.83-3.81 (m, 2H), 3.69-3.65 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 164.9, 163.7, 132.0, 122.0, 113.7, 89.4, 67.9, 66.1, 61.8, 55.4 ppm.

4-Chloro-benzoic acid [1,4]dioxan-2-yl ester (**5d**):^{2a} R_f 0.2 (EtOAc/petroleum ether = 1:6); ¹H NMR (400 MHz, CDCl₃): δ = 8.07-8.04(d, *J* = 8.8 Hz, 2H), 7.44-7.42 (d, *J*

= 8.8 Hz, 2H), 6.09-6.08 (t, J = 1.6 Hz, 1H), 4.23-4.17 (m, 1H), 3.89 (s, 2H), 3.84-3.82 (m, 2H), 3.70-3.66 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 164.4, 139.9, 131.3, 128.8, 128.1, 90.0, 67.7, 66.1, 61.7 ppm.

4-Bromo-benzoic acid [1,4]dioxan-2-yl ester (5e):^{2a} R_f 0.2 (EtOAc/petroleum ether = 1:6); ¹H NMR (400 MHz, CDCl₃): δ = 7.98-7.96(d, *J* = 8.0 Hz, 2H), 7.60-7.58 (d, *J* = 8.0 Hz, 2H), 6.07 (s, 1H), 4.22-4.16 (m, 1H), 3.88 (s, 2H), 3.83-3.81 (m, 2H), 3.68-3.65 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 164.5, 131.8, 131.3, 128.6, 90.0, 67.7, 66.0, 61.7 ppm.

4-Iodo-benzoic acid [1,4]dioxan-2-yl ester (5f): A pale yellow solid, $R_f 0.3$ (EtOAc/petroleum ether = 1:6); mp = 115-117 °C; ¹H NMR (400 MHz, CDCl₃): δ = 7.82 (s, 4H), 6.08 (s, 1H), 4.21-4.16 (m, 1H), 3.88 (s, 2H), 3.83-3.82 (m, 2H), 3.69-3.66 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 164.8, 137.8, 131.3, 129.1, 101.4, 90.0, 67.7, 66.1, 61.7 ppm; IR (KBr): v_{max} 2967, 2855, 1725, 1585, 1258 cm⁻¹; HRMS (ESI) calcd for C₁₁H₁₁INaO₄ [M+Na]⁺ 356.9594, found 356.9588.

2-Chloro-benzoic acid [1,4]dioxan-2-yl ester (**5**g): A pale yellow oil, R_f 0.2 (EtOAc/petroleum ether = 1:6); ¹H NMR (400 MHz, CDCl₃): δ = 7.94-7.92 (m, 1H), 7.47-7.42 (m, 2H), 7.35-7.31 (m, 1H), 6.11 (s, 1H), 4.28-4.21 (m, 1H), 3.89 (s, 2H), 3.83-3.81 (m, 2H), 3.70-3.66 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 164.3, 134.0, 132.9, 131.8, 131.2, 129.4, 126.6, 90.4, 67.6, 66.0, 61.8 ppm; IR (KBr): ν_{max} 2975, 2857, 1737, 1571, 1249 cm⁻¹; HRMS (ESI) calcd for C₁₁H₁₁ClNaO₄ [M+Na]⁺ 265.0238, found 265.0243.

2-Fluoro-benzoic acid [1,4]dioxan-2-yl ester (5h): A pale yellow oil, R_f 0.2 (EtOAc/petroleum ether = 1:6); ¹H NMR (400 MHz, CDCl₃): δ = 8.03-7.99 (t, *J* = 7.6 Hz, 1H), 7.58-7.53 (m, 1H), 7.26-7.14 (m, 2H), 6.12 (s, 1H), 4.28-4.22 (m, 1H), 3.89 (s, 2H), 3.84-3.83 (m, 2H), 3.70-3.67 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 163.0 (d, *J*_{C, F} = 4.0 Hz), 162.2 (d, *J*_{C, F} = 260.0 Hz), 134.9 (d, *J*_{C, F} = 9.0 Hz), 132.3, 124.0 (d, *J*_{C, F} = 4.0 Hz), 118.3 (d, *J*_{C, F} = 10.0 Hz), 117.1 (d, *J*_{C, F} = 22.0 Hz), 90.2, 67.7, 66.1, 61.7 ppm; IR (KBr): v_{max} 2975, 2859, 1736, 1584, 1296 cm⁻¹; HRMS (ESI) calcd for C₁₁H₁₁FNaO₄ [M+Na]⁺ 249.0534, found 249.0543.

Naphthalene-2-carboxylic acid [1,4]dioxan-2-yl ester (5i): A pale yellow solid, R_f 0.2 (EtOAc/petroleum ether = 1:6); mp = 88-90 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.71 (s, 1H), 8.15-8.12 (d, J = 8.8 Hz, 1H), 7.99-7.97 (d, J = 8.0 Hz, 1H), 7.91-7.87 (m, 2H), 7.62-7.53 (m, 2H), 6.18 (s, 1H), 4.32-4.26 (m, 1H), 3.95 (s, 2H), 3.87-3.86 (m, 2H), 3.73-3.70 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 165.4, 135.7, 132.4, 131.5, 129.4, 128.4, 128.2, 127.7, 126.9, 126.7, 125.3, 89.8, 67.9, 66.1, 61.8 ppm; IR (KBr): v_{max} 2974, 2857, 1724, 1582, 1263 cm⁻¹; HRMS (ESI) calcd for C₁₅H₁₄NaO₄ [M+Na]⁺ 281.0784, found 281.0787.

Naphthalene-1-carboxylic acid [1,4]dioxan-2-yl ester (5j):^{2b} R_f 0.2 (EtOAc/petroleum ether = 1:6); ¹H NMR (400 MHz, CDCl₃): δ = 9.04-9.02 (d, *J* = 7.6 Hz, 1H), 8.37-8.35 (d, *J* = 7.2 Hz, 1H), 8.07-8.05 (d, *J* = 8.0 Hz, 1H), 7.91-7.89 (d, *J* = 8.4 Hz, 1H), 7.66-7.62 (t, *J* = 7.6 Hz, 1H), 7.57-7.51 (m, 2H), 6.22 (s, 1H), 4.31-4.25 (m, 1H), 3.97 (s, 2H), 3.87-3.85 (m, 2H), 3.75-3.70 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 165.9, 134.0, 133.8, 131.5, 130.9, 128.6, 128.0, 126.3, 126.1,

125.7, 124.4, 89.8, 67.9, 66.1, 61.9 ppm.

Furan-2-carboxylic acid [1,4]dioxan-2-yl ester (5k):^{2a} R_f 0.1 (EtOAc/petroleum ether = 1:6); ¹H NMR (400 MHz, CDCl₃): δ = 7.62 (s, 1H), 7.30-7.29 (d, *J* = 3.6 Hz, 1H), 6.54-6.52 (q, *J* = 1.6 Hz, 1H), 6.06 (s, 1H), 4.23-4.16 (m, 1H), 3.86 (s, 2H), 3.82-3.80 (m, 2H), 3.68-3.64 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 157.2, 146.9, 144.0, 118.9, 111.9, 89.7, 67.7, 66.0, 61.7 ppm.

Thiophene-2-carboxylic acid [1,4]dioxan-2-yl ester (**5l**):^{2a} R_f 0.1 (EtOAc/petroleum ether = 1:6); ¹H NMR (400 MHz, CDCl₃): δ = 7.90-7.89 (m, 1H), 7.61-7.60 (q, *J* = 1.2 Hz, 1H), 7.13-7.11 (t, *J* = 4.0 Hz, 1H), 6.05 (s, 1H), 4.23-4.17 (m, 1H), 3.86 (s, 2H), 3.82-3.80 (m, 2H), 3.68-3.64 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 160.8, 134.1, 133.2, 127.8, 89.9, 67.7, 66.0, 61.7 ppm.

References

1. K. Wadhwa, C. Yang, P. R. West, K. C. Deming, S. R. Chemburkar and R. E. Reddy, *Synth. Commun.*, 2008, **38**, 4434.

2. (a) L. Chen, E. Shi, Z. Liu, S. Chen, W. Wei, H. Li, K. Xu and X. Wan, Chem. Eur.

J., 2011, **17**, 4085. (b) Z.-Q. Liu, L. Zhao, X. Shang and Z. Cui, *Org. Lett.*, 2012, **14**, 3218.

H: H: S€

us us K se

¹H NMR and ¹³C NMR Spectra of the Products

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

