Synergistic effect of additives on cyclopropanation of olefins

Donghao Cheng,^a Deshun Huang^a and Yian Shi*^{a,b}

^a Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

^b Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States

Supporting Information

Table of Contents

General methods	S-2
Experimental procedures and characterization data	S-2
NMR spectra	S-15

General Methods. All commercially available reagents were used without further purification. 1,2-Dimethoxyethane was distilled from sodium-benzophenone. Dichloromethane was distilled from CaH₂. Column chromatography was performed on silica gel (200-300 mesh). ¹H NMR spectra were recorded on a 400 MHz NMR spectrometer and ¹³C NMR spectra were recorded on a 100 MHz NMR spectrometer. IR spectra were recorded on a FT-IR spectrometer. Melting points were uncorrected.

Representative procedure for cyclopropanation of *trans*-stilbene with Zn(CH₂I)₂ (2.0 equiv), CCl₃CO₂H (0.2 equiv), and DME (1.0 equiv) (Figure 1, curve E). To a flame-dried schlenk tube equipped with a stir bar, septum stopper, and nitrogen inlet was added freshly distilled CH₂Cl₂ (1.0 mL), followed by ZnEt₂ (1.0 mL, 1.0 mmol) (1.0 M in *n*-hexane) at rt. After cooling at -40 °C for 5 min, a solution of CH₂I₂ (0.540 g, 2.0 mmol) in CH₂Cl₂ (0.5 mL) was added dropwise. After the reaction mixture was stirred at -40 °C for 1 h, a solution of CCl₃CO₂H (0.0163 g, 0.10 mmol) and DME (0.045 g, 0.50 mmol) in freshly distilled CH₂Cl₂ (0.5 mL) was added. The reaction mixture was warmed to -15 °C and stirred at this temperature for 1 h. A solution of trans-stilbene (0.092 g, 0.50 mmol) in CH₂Cl₂ (0.5 mL) was then added dropwise at -15 ^oC. The resulting mixture was moved to a 30 ^oC oil bath and stirred at this temperature for 24 h. Small aliquots (0.1 mL) of the reaction mixture were taken with a syringe successively at 2 h, 4 h, 6 h, 16 h, 18 h, and 24 h. The crude sample mixture was diluted with CH₂Cl₂ (1.5 mL) and passed through a pad of silica gel. The conversion was analyzed on a GC instrument with an FID detector using a capillary B-DM column (T = 150 °C, P = 30 psi); Retention time: 10.42 min for the product, 11.48 min for the starting material.

Representative procedure for cyclopropanantion of olefins (Table 2, entry 4). To a flame-dried schlenk tube equipped with a stir bar, septum stopper, and nitrogen inlet was added freshly distilled CH_2Cl_2 (1.0 mL), followed by $ZnEt_2$ (1.0 mL, 1.0 mmol) (1.0 M in *n*-hexane) at rt. After cooling at -40 °C for 5 min, a solution of CH_2I_2 (0.540 g, 2.0 mmol) in CH_2Cl_2 (0.5 mL) was added dropwise. After the reaction mixture was stirred at -40 °C for 1 h, a solution of CCl₃CO₂H (0.0163 g, 0.10 mmol) and DME (0.045 g, 0.50 mmol) in freshly distilled CH₂Cl₂ (0.5 mL) was added. The reaction mixture was warmed to -15 °C and stirred at this temperature for 1 h. A solution of olefin **1d** (0.124 g, 0.50 mmol) in CH₂Cl₂ (0.5 mL) was then added dropwise at -15 °C. Upon moving to a 25 °C oil bath and stirring at this temperature for 18 h, the reaction mixture was quenched with saturated aqueous NH₄Cl (10 mL) [or aqueous 0.1N HCl (5 mL)], extracted with CH₂Cl₂ (10 mL x 3), washed with brine, dried over Na₂SO₄, filtered, concentrated, and purified by flash chromatography (silica gel, eluent: pentane/CH₂Cl₂ = 10/1) to give cyclopropane **2d** as colorless oil (0.1251 g, 95%).

For acid-sensitive products such as 2c, 2j, 2t, 2u, 2v and 2w, the reaction mixture was quenched with saturated aqueous NaHCO₃ (5 mL). Upon stirring at rt for 20 min, the reaction mixture was diluted with H₂O (10 mL), extracted with CH₂Cl₂(15 mL x 2), washed with saturated aqueous NH₄Cl (10 mL), saturated aqueous Na₂SO₃ (10 mL), saturated aqueous NaHCO₃ (10 mL x 2), and brine. The organic layer was dried over Na₂SO₄, filtered, concentrated, and purified by flash chromatography.

Table 2, entry 1

Ph Ph 2a

Colorless oil; IR (film) 3028, 1603, 1498, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.26 (m, 4H), 7.18 (t, J = 7.2 Hz, 2H), 7.14 (d, J = 7.2 Hz, 4H), 2.17 (dd, J = 7.6, 7.2 Hz, 2H), 1.45 (dd, J = 7.6, 7.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 142.7, 128.6, 125.9, 28.3, 18.5.

S.-M. Zhou, M.-Z. Deng, L.-J. Xia and M.-H. Tang, *Angew. Chem., Int. Ed.*, 1998, 37, 2845; 2) J. C. Lorenz, J. Long, Z. Yang, S. Xue, Y. Xie and Y. Shi, *J. Org. Chem.*, 2004, 69, 327.

Table 2, entry 2

Ph 2b

Colorless oil; IR (film) 2924, 1459 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.19 (m, 2H), 7.11 (t, *J* = 7.2 Hz, 1H), 7.02 (d, *J* = 7.2 Hz, 2H), 1.56 (dt, *J* = 8.8, 4.8 Hz, 1H),

1.17 (d, J = 6.0 Hz, 3H), 1.10-0.99 (m, 1H), 0.91-0.82 (m, 1H), 0.76-0.69 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 128.4, 125.6, 125.3, 24.5, 19.3, 18.2, 17.8.

H. E. Simmons and R. D. Smith, J. Am. Chem. Soc., 1959, 81, 4256; 2) S. E.
 Denmark and J. P. Edwards, J. Org. Chem., 1991, 56, 6974; 3) J. C. Lorenz, J. Long, Z.
 Yang, S. Xue, Y. Xie and Y. Shi, J. Org. Chem., 2004, 69, 327.

Table 2, entry 3

Ph OH 2c

Colorless oil; IR (film) 3331, 1604, 1020, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.25 (t, J = 7.2 Hz, 2H), 7.15 (t, J = 7.2 Hz, 1H), 7.06 (d, J = 7.2 Hz, 2H), 3.66-3.53 (m, 2H), 1.81 (dt, J = 9.2, 4.8 Hz, 1H), 1.74 (br s, 1H), 1.50-1.39 (m, 1H), 1.01-0.86 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 142.6, 128.5, 126.0, 125.8, 66.7, 25.5, 21.5, 14.1. 1) S. E. Denmark and S. P. O'Connor, *J. Org. Chem.*, 1997, **62**, 584; 2) J. C. Lorenz, J. Long, Z. Yang, S. Xue, Y. Xie and Y. Shi, *J. Org. Chem.*, 2004, **69**, 327.

Table 2, entry 4

Ph OTBS 2d

Colorless oil; IR (film) 2929, 1462, 1097 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.21 (m, 2H), 7.14 (t, J = 7.2 Hz, 1H), 7.07 (d, J = 7.2 Hz, 2H), 3.72 (dd, J = 10.8, 5.6 Hz, 1H), 3.62 (dd, J = 10.8, 6.0 Hz, 1H), 1.80 (dt, J = 8.4, 4.0 Hz, 1H), 1.41-1.31 (m, 1H), 0.97-0.88 (m, 2H), 0.90 (s, 9H), 0.07 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 143.3, 128.5, 126.1, 125.6, 66.1, 26.2, 25.5, 21.0, 18.7, 13.9, -4.9.

J. C. Lorenz, J. Long, Z. Yang, S. Xue, Y. Xie and Y. Shi, J. Org. Chem., 2004, 69, 327.

Table 2, entry 5

leo Ph

White solid; mp. 70-71 °C; IR (film) 1515, 1247 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.28 (t, *J* = 7.6 Hz, 2H), 7.17 (t, *J* = 7.2 Hz, 1H), 7.13 (d, *J* = 7.2 Hz, 2H), 7.08

(d, J = 8.4 Hz, 2H), 6.84 (d, J = 8.8 Hz, 2H), 3.79 (s, 3H), 2.17-2.04 (m, 2H), 1.39 (dd, J = 7.6, 6.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 142.9, 134.7, 128.6, 127.1, 125.9, 125.8, 114.0, 55.5, 27.7, 27.6, 18.1; HRMS Calcd for C₁₆H₁₇O (M+H): 225.1274; Found: 225.1270.

1) M. Yasuda, R. Kojima, H. Tsutsui, D. Utsunomiya, K. Ishii, K. Jinnouchi and T. Shiragami, *J. Org. Chem.*, 2003, **68**, 7618; 2) C. R. Solorio-Alvarado and A. Echavarren, *J. Am. Chem. Soc.*, 2010, **132**, 11881.

Table 2, entry 6

n-C₅H₁₁ OEt 2f

Colorless oil; IR (film) 1739 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.12 (q, J = 7.2 Hz, 2H), 2.36 (t, J = 7.6 Hz, 2H), 1.61-1.42 (m, 2H), 1.38-1.16 (m, 10H), 1.15-1.05 (m, 1H), 0.87 (dd, J = 7.2, 6.4 Hz, 3H), 0.47-0.37 (m, 2H), 0.23-0.15 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 174.0, 60.4, 34.7, 34.3, 31.9, 29.9, 29.5, 22.9, 19.0, 18.4, 14.5, 14.3, 12.0; HRMS Calcd for C₁₃H₂₅O₂ (M+H): 213.1849; Found: 213.1853.

Table 2, entry 7

n-C₈H₁₇ OMe **2g**

Colorless oil; IR (film) 1744 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.66 (s, 3H), 2.30 (t, *J* = 7.6 Hz, 2H), 1.64-1.57 (m, 2H), 1.42-1.04 (m, 24H), 0.87 (t, *J* = 6.8 Hz, 3H), 0.40-0.30 (m, 2H), 0.16-0.09 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 174.6, 51.7, 34.6, 34.5, 34.3, 32.1, 29.9, 29.82, 29.75, 29.6, 29.5, 29.4, 25.2, 22.9, 19.0, 18.9, 14.4, 12.0; HRMS Calcd for C₂₀H₃₉O₂ (M+H): 311.2945; Found: 311.2946.

Table 2, entry 8

^{-h}

Colorless oil; IR (film) 3063, 1497, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ

7.28-7.22 (m, 2H), 7.20-7.12 (m, 3H), 2.06 (td, J = 8.8, 6.0 Hz, 1H), 1.18-1.06 (m, 1H),
0.95 (td, J = 8.4, 5.2 Hz, 1H), 0.77 (d, J = 6.4 Hz, 3H), 0.56 (q, J = 5.6 Hz, 1H); ¹³C
NMR (100 MHz, CDCl₃) δ 139.7, 129.5, 128.0, 125.7, 21.3, 13.8, 12.9, 11.0.
1) C. P. Casey, S. W. Polichnowski, A. J. Shusterman and C. R. Jones, *J. Am. Chem. Soc.*, 1979, **101**, 7282; 2) J. C. Lorenz, J. Long, Z. Yang, S. Xue, Y. Xie and Y. Shi, *J. Org. Chem.*, 2004, **69**, 327.

Table 2, entry 9

Colorless oil; IR (film) 3026, 1603, 1497, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.17-7.04 (m, 6H), 6.98 (d, J = 7.6 Hz, 4H), 2.52 (dd, J = 8.4, 6.4 Hz, 2H), 1.50 (td, J = 8.8, 5.6 Hz, 1H), 1.41 (td, J = 6.4, 5.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.6, 129.2, 127.8, 125.8, 24.5, 11.6.

N. Kawabata, I. Kamemura and M. Naka, *J. Am. Chem. Soc.*, 1979, **101**, 2139; 2) J. C.
 Lorenz, J. Long, Z. Yang, S. Xue, Y. Xie and Y. Shi, *J. Org. Chem.*, 2004, **69**, 327.

Table 2, entry 10

Colorless oil; IR (film) 3330, 1467, 1032 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.63 (dd, J = 10.8, 7.2 Hz, 1H), 3.57 (dd, J = 10.8, 8.4 Hz, 1H), 1.49-1.15 (m, 11H), 1.15-1.03 (m, 1H), 0.90-0.80 (m, 1H), 0.87 (t, J = 6.8 Hz, 3H), 0.69 (td, J = 8.4, 4.8 Hz, 1H), -0.05 (q, J = 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 63.5, 32.1, 30.3, 29.4, 28.8, 22.9, 18.3, 16.4, 14.3, 9.7.

G. D. Coxon, J. R. Al-Dulayymi, M. S. Baird, S. Knobl, E. Roberts and D. E. Minnikin, *Tetrahedron: Asymmetry*, 2003, **14**, 1211.

Table 2, entry 11

Colorless oil; IR (film) 3330, 1457, 1059 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.68 (t, *J* = 6.8 Hz, 2H), 1.68 (quintet, *J* = 6.8 Hz, 2H), 1.53-1.10 (m, 11H), 0.88 (t, *J* = 6.8 Hz, 3H), 0.73-0.55 (m, 3H), -0.30 (td, *J* = 5.2, 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 63.2, 33.5, 32.1, 30.1, 28.8, 25.1, 22.9, 16.1, 15.6, 14.3, 11.2; HRMS Calcd for C₁₁H₂₃O (M+H): 171.1743; Found: 171.1740.

Table 2, entry 12

Colorless oil; IR (film) 2925, 1492, 739 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.28 (m, 1H), 7.18-7.05 (m, 3H), 3.19 (dd, J = 16.8, 6.8 Hz, 1H), 2.94 (d, J = 16.8 Hz, 1H), 2.40-2.33 (m, 1H), 1.90-1.81 (m, 1H), 1.06 (td, J = 8.0, 4.4 Hz, 1H), 0.07 (td, J = 4.4, 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 142.2, 126.1, 125.7, 125.5, 123.6, 35.7, 24.1, 16.9, 16.2.

J. C. Lorenz, J. Long, Z. Yang, S. Xue, Y. Xie and Y. Shi, J. Org. Chem., 2004, 69, 327.

Table 2, entry 13

2m

Colorless oil; IR (film) 3002, 1515, 1247 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.04 (d, J = 8.4 Hz, 2H), 6.84 (d, J = 8.4 Hz, 2H), 3.80 (s, 3H), 1.93-1.83 (m, 1H), 0.96-0.89 (m, 2H), 0.68-0.61 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.7, 136.0, 127.0, 113.9, 55.5, 14.8, 8.7.

L. Ackermann, A. R. Kapdi and C. Schulzke, *Org. Lett.*, 2010, **12**, 2298; 2) M. Arndt,
 G. Hilt, A. F. Khlebnikov, S. I. Kozhushkov and A. de Meijere, *Eur. J. Org. Chem.*, 2012, 3112.

Table 2, entry 14

Colorless oil; IR (film) 3081, 1490, 813 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 8.4 Hz, 2H), 1.90-1.81 (m, 1H), 1.10-0.94 (m, 2H), 0.70-0.63 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.3, 131.4, 127.6, 119.0, 15.2, 9.6.

1) M. Salamone, M. Bietti, A. Calcagni and G. Gente, Org. Lett., 2009, 11, 2453; 2) O.

B. Bondarenko, A. Y. Gavrilova, M. A. Kazantseva, V. N. Tikhanushkina, E. E. Nifantev, L. G. Saginova and N. V. Zyk, *Russ. J. Org. Chem.*, 2006, **42**, 249.

Table 2, entry 15

Ph 20

Colorless oil; IR (film) 3076, 1497, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.22 (m, 4H), 7.18-7.12 (m, 1H), 1.40 (s, 3H), 0.88-0.84 (m, 2H), 0.75-0.70 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 128.4, 126.9, 125.6, 25.9, 19.9, 15.9. A. B. Charette, S. Francoeur, J. Martel and N. Wilb, *Angew. Chem., Int. Ed.*, 2000, **39**, 4539.

Table 2, entry 16

Ph Ph 2p

Colorless oil; IR (film) 3082, 1496, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.13 (m, 10H), 1.30 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 145.9, 128.6, 128.5, 126.1, 30.1, 16.7.

S. S. Hixson and L. A. Franke, *J. Org. Chem.*, 1988, **53**, 2706; 2) A. Oku, Y. Ose, T. Kamada and T. Yoshida, *Chem. Lett.*, 1993, **22**, 573.

Table 2, entry 17

Colorless oil; IR (film) 2927, 1601, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.22 (m, 4H), 7.18-7.11 (m, 1H), 2.14-2.00 (m, 2H), 1.98-1.89 (m, 1H), 1.73-1.61 (m, 1H), 1.52-1.17 (m, 5H), 0.94 (dd, J = 9.2, 4.4 Hz, 1H), 0.63 (t, J = 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 128.4, 127.6, 125.6, 31.7, 24.7, 24.2, 21.88, 21.87, 19.2, 18.5.

A. Balsamo, C. Battistini, P. Crotti, B. Macchia and F. Macchia, *J. Org. Chem.*, 1975,
 40, 3233; 2) J. C. Lorenz, J. Long, Z. Yang, S. Xue, Y. Xie and Y. Shi, *J. Org. Chem.*,
 2004, 69, 327.

Table 2, entry 18

Colorless oil; IR (film) 3022, 1477, 753 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.20 (m, 1H), 7.14-7.01 (m, 3H), 3.02 (d, J = 16.8 Hz, 1H), 2.95 (d, J = 16.8 Hz, 1H), 2.11-2.05 (m, 1H), 1.39 (s, 3H), 0.96 (dd, J = 7.6, 4.0 Hz, 1H), 0.24 (dd, J = 4.0, 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 148.1, 142.8, 126.0, 125.4, 125.2, 123.2, 41.8, 31.1, 24.1, 24.0, 21.9.

1) M. A. O'Leary and D. Wege, *Tetrahedron*, 1981, **37**, 801; 2) J. C. Lorenz, J. Long, Z. Yang, S. Xue, Y. Xie and Y. Shi, *J. Org. Chem.*, 2004, **69**, 327.

Table 2, entry 19

Colorless oil; IR (film) 2924, 1450, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.23 (m, 2H), 7.19-7.12 (m, 3H), 1.88 (dd, J = 8.4, 6.0 Hz, 1H), 1.22 (s, 3H), 0.83-0.74 (m, 2H), 0.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.5, 129.1, 128.0, 125.7, 29.9, 27.7, 20.5, 19.2, 18.5. I. Fleming and C. J. Urch, *J. Organomet. Chem.*, 1985, **285**, 173; 2) J. E. Argüello, A.
 B. Peñéñory and R. A. Rossi, *J. Org. Chem.*, 1999, **64**, 6115.

Table 2, entry 20

Colorless oil; IR (film) 3062, 1450 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.25 (m, 4H), 7.25-7.17 (m, 1H), 1.38 (dd, J = 9.6, 6.0 Hz, 1H), 1.29 (d, J = 6.0 Hz, 3H), 1.08-0.97 (m, 1H), 0.80 (t, J = 6.4 Hz, 1H), 0.14 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 146.1, 128.2, 126.0, 124.8, 61.1, 23.1, 22.4, 13.1, 1.3.

J. C. Lorenz, J. Long, Z. Yang, S. Xue, Y. Xie and Y. Shi, J. Org. Chem., 2004, 69, 327.

Table 2, entry 21

Colorless oil; IR (film) 2957, 1488, 1275, 750 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 7.6 Hz, 1H), 7.24 (t, J = 7.2 Hz, 1H), 7.09 (t, J = 7.6 Hz, 1H), 7.04 (d, J = 7.2 Hz, 1H), 2.62 (dd, J = 16.4, 4.8 Hz, 1H), 2.45-2.30 (m, 1H), 2.08-1.96 (m, 1H), 1.85-1.72 (m, 2H), 1.18 (dd, J = 10.0, 6.0 Hz, 1H), 1.01 (t, J = 6.0 Hz, 1H), 0.15 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 141.3, 132.5, 128.3, 126.3, 125.4, 125.2, 56.2, 26.3, 23.9, 18.6, 16.4, 1.4.

H. Du, J. Long and Y. Shi, Org. Lett., 2006, 8, 2827.

Scheme 3

Colorless oil; IR (film) 3331, 3065, 1507, 1018 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.44-3.32 (m, 2H), 1.75 (br s, 1H), 0.96 (d, J = 5.6 Hz, 3H), 0.89-0.75 (m, 1H), 0.73-0.64 (m, 1H), 0.53-0.38 (m, 2H), 0.33-0.22 (m, 2H), 0.21-0.13 (m, 1H), 0.11-0.02 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) (major isomer) δ 67.1, 20.9, 19.7, 19.0, 18.8, 11.7, 11.3, 8.7. HRMS Calcd for C₈H₁₃ (M-OH): 109.1012; Found: 109.1013.
A. G. M. Barrett, W. W. Doubleday and G. J. Tustin, *Tetrahedron*, 1996, **52**, 15325.

Scheme 4

Colorless oil; IR (film) 3345, 3055, 1455, 1025 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.73-3.64 (m, 1H), 3.56-3.46 (m, 1H), 1.44-1.14 (m, 5H), 1.07 (s, 3H), 1.02 (s, 3H), 1.00 (s, 3H), 0.94-0.83 (m, 1H), 0.53-0.47 (m, 1H), 0.46-0.38 (m, 1H), 0.36-0.30 (m, 1H), 0.11 (t, *J* = 4.8 Hz, 1H), -0.16 (t, *J* = 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 64.2, 41.81, 41.79, 27.8, 27.3, 26.4, 26.3, 24.81, 24.78, 20.3, 20.2, 20.0, 19.91, 19.87, 18.00, 17.95, 17.34, 17.32, 15.6. HRMS Calcd for C₁₂H₂₂NaO (M+Na): 205.1563; Found: 205.1567.

1) H. Sakauchi, H. Asao, T. Hasaba, S. Kuwahara and H. Kiyota, *Chemistry & Biodiversity*, 2006, **3**, 544; 2) G. Brunner, L. Eberhard, J. Oetiker and F. Schröder, *J. Org. Chem.*, 2008, **73**, 7543.

Scheme 4

ОН 2w,

Colorless oil; IR (film) 3331, 3056, 1452, 1028 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.13-5.05 (m, 1H), 3.70 (dd, J = 11.2, 6.4 Hz, 1H), 3.48 (dd, J = 11.2, 8.8 Hz, 1H), 2.11-1.99 (m, 2H), 1.67 (s, 3H), 1.60 (s, 3H), 1.43-1.31 (m, 2H), 1.18-1.10 (m, 1H), 1.08 (s, 3H), 0.95-0.83 (m, 1H), 0.49 (dd, J = 8.8, 4.4 Hz, 1H), 0.11 (t, J = 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 131.5, 124.8, 64.1, 41.3, 26.4, 25.9, 25.7, 20.1, 17.84, 17.78, 17.2. HRMS Calcd for C₁₁H₂₀NaO (M+Na): 191.1406; Found: 191.1405. 1) H. Sakauchi, H. Asao, T. Hasaba, S. Kuwahara and H. Kiyota, *Chemistry & Biodiversity*, 2006, **3**, 544; 2) G. Brunner, L. Eberhard, J. Oetiker and F. Schröder, *J. Org. Chem.*, 2008, **73**, 7543.

Preparation of a key intermediate for Roflumilast (Scheme 5)

To a stirred solution of 3,4-dihydroxybenzoic acid (3.08 g, 20.0 mmol) in MeOH (50 mL) was added SOCl₂ (9.52 g, 80.0 mmol) dropwise at 0 °C over 30 min. Upon stirring at 50 °C for 8 h, the reaction mixture was cooled to rt, concentrated, and dissolved in dry acetone (30 mL), followed by the addition of K₂CO₃ (13.80 g, 100.0 mmol). After stirring at rt for 10 min, allyl bromide (7.26 g, 60.0 mmol) was added. The reaction mixture was stirred at rt overnight, concentrated, brought to pH = 7 with aqueous 1N HCl, extracted with EtOAc (30 mL x 3), washed with brine, dried over Na₂SO₄, filtered, concentrated, and purified by flash column chromatography (silica gel, eluent: Petroleum ether/EtOAc = 20/1) to give compound 4 as colorless oil (4.76 g, IR (film) 3083, 1717, 1294 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (dd, J = 96%). 8.8, 2.0 Hz, 1H), 7.56 (d, J = 2.0 Hz, 1H), 6.89 (d, J = 8.8 Hz, 1H), 6.15-6.01 (m, 2H), 5.48-5.39 (m, 2H), 5.34-5.27 (m, 2H), 4.69-4.63 (m, 4H), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 152.6, 148.1, 133.1, 132.9, 123.9, 122.9, 118.3, 118.2, 114.7, 112.5, 70.0, 69.8, 52.2; HRMS Calcd for C₁₄H₁₇O₄ (M+H): 249.1121; Found: 249.1123.

F. L. Monte, T. Kramer, J. Gu, U. R. Anumala, L. Marinelli, V. L. Pietra, E. Novellino,
B. Franco, D. Demedts, F. V. Leuven, A. Fuertes, J. M. Dominguez, B. Plotkin, H.
Eldar-Finkelman and B. Schmidt, *J. Med. Chem.*, 2012, 55, 4407.

S-12

A mixture of compound 4 (4.60 g, 18.5 mmol), 10% Pd/C (0.64 g), and K₂CO₃ (20.0 g) in MeOH (228 mL) was stirred at 50 °C for 5 h, filtered through a Celite pad, washed with DCM (20 mL), concentrated to remove MeOH, brought to pH = 7 with aqueous 1N HCl (~150 mL), extracted with DCM (30 mL x 2), washed with water and brine, dried over Na₂SO₄, filtered, concentrated, and purified by flash column chromatography (silica gel, eluent: Petroleum ether/EtOAc = 20/1) to give compound **5** as white solid (2.64 g, 69%). mp. 36-38 °C; IR (film) 3399, 1713, 1285 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.54 (d, *J* = 1.6 Hz, 1H), 6.94 (d, *J* = 8.4 Hz, 1H), 6.25 (s, 1H), 6.10-5.97 (m, 1H), 5.47-5.39 (m, 1H), 5.32 (d, *J* = 10.4 Hz, 1H), 4.63 (d, *J* = 5.2 Hz, 2H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 150.4, 145.3, 132.5, 124.5, 122.4, 119.0, 114.5, 113.3, 70.1, 52.2; HRMS Calcd for C₁₁H₁₃O₄ (M+H): 209.0808; Found: 209.0803.

J. Li, D. Zhang, X. Zhu, Z. He, S. Liu, M. Li, J. Pang and Y. Lin, *Mar. Drugs*, 2011, 9, 1887.

To a flame-dried flask equipped with a stir bar, septum stopper, and nitrogen inlet was added freshly distilled CH₂Cl₂ (14.0 mL), followed by ZnEt₂ (14.0 mL, 14.0 mmol) (1.0 M in *n*-hexane) at rt. After cooling at -40 °C for 10 min, a solution of CH₂I₂ (7.50 g, 28.0 mmol) in CH₂Cl₂ (7.0 mL) was added dropwise. After the reaction mixture was stirred at -40 °C for 1 h, a solution of CCl₃CO₂H (0.228 g, 1.4 mmol) and DME (0.631 g, 7.0 mmol) in freshly distilled CH₂Cl₂ (7.0 mL) was added. The reaction mixture was warmed to -15 °C and stirred at this temperature for 1 h. A solution of olefin **5** (1.46 g, 7.0 mmol) in CH₂Cl₂ (7.0 mL) was then added dropwise at -15 °C. Upon moving to a 25 °C oil bath and stirring at this temperature for 24 h, the reaction mixture was quenched with aqueous 0.1N HCl (100 mL), extracted with CH₂Cl₂ (20 mL x 4), washed with brine, dried over Na₂SO₄, filtered, concentrated, and purified by flash chromatography (silica gel, eluent: Petroleum ether/EtOAc = 20/1) to give compound **6** as white solid (1.39 g, 89%). mp. 50 °C; IR (film) 3400, 1713, 1287 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.50 (d, *J* = 1.6 Hz, 1H), 6.94 (d, *J* = 8.4 Hz, 1H), 6.16 (s, 1H), 3.92 (d, *J* = 6.8 Hz, 2H), 3.87 (s, 3H), 1.35-1.22 (m,

1H), 0.71-0.61 (m, 2H), 0.40-0.31 (m, 2H); 13 C NMR (100 MHz, CDCl₃) δ 167.1, 150.4, 145.7, 124.2, 122.2, 114.2, 113.0, 74.3, 52.1, 10.3, 3.5; HRMS Calcd for C₁₂H₁₅O₄ (M+H): 223.0965; Found: 223.0962.

1) P. Bose, Y. P. Sachdeva, R. S. Rathore and Y. Kumar, PCT Int. Appl. WO 2005026095, 2005; 2) F. Ni and J. Li, *Synthesis*, 2012, **44**, 3598.

