L-Proline Catalyzed Reaction of N-confused Porphyrin and Active Methylene Compounds

Bin Liu,¹ Xiaofang Li^{*,¹} Jie Zhang,¹ Piotr J. Chmielewski^{*,²}

¹ Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China, E-mail: lixiaofang@iccas.ac.cn

² Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie Street, 50 383 Wrocław, Poland, E-mail: piotr.chmielewski@chem.uni.wroc.pl

*E-mail: lixiaofang@iccas.ac.cn; piotr.chmielewski@chem.uni.wroc.pl.

Supporting Information

Table of Contents

Figure S1. ¹ H NMR spectrum of 3a (298k).	S4
Figure S2. ¹ H NMR spectrum of $3a(223k)$.	S4
Figure S3. ¹³ C NMR spectrum of 3a.	S4
Figure S4. COSY spectrum of 3a (low-field part).	S5
Figure S5. COSY spectrum of 3a.	S6
Figure S6. HSQC spectrum of 3a.	S 7
Figure S7. HMBC spectrum of 3a.	S 8
Figure S8. HRMS spectrum of 3a.	S9
Figure S9. ¹ H NMR spectrum of 3b.	S10
Figure S10. ¹³ C NMR spectrum of 3b .	S10
Figure S11. HSQC spectrum of 3b.	S11
Figure S12. HRMS spectrum of 3b.	S12
Figure S13. ¹ H NMR spectrum of 3c.	S13
Figure S14. ¹³ C NMR spectrum of 3c.	S13
Figure S15. COSY spectrum of 3c (low-field part).	S14
Figure S16. HMBC spectrum of 3c.	S15
Figure S17. HSQC spectrum of 3c.	S16
Figure S18. HRMS spectrum of 3c.	S17
Figure S19. ¹ H NMR spectrum of 3d.	S18
Figure S20. ¹⁵ C NMR spectrum of 3d.	S18
Figure S21. HSQC spectrum of 3d.	S19
Figure S22. COSY spectrum of 3d (low-field part).	S20
Figure S23. HRMS spectrum of 3d.	S21
Figure S24. ¹ H NMR spectrum of 3e.	S22
Figure S25. ¹³ C NMR spectrum of 3e.	S22
Figure S26. HRMS spectrum of 3e.	S23
Figure S27. H NMR spectrum of 31.	S24
Figure S28. "C NMR spectrum of 31.	S24
Figure 829. HSQC spectrum of 3f.	S25
Figure S30. HRMS spectrum of 31.	S26
Figure S31. H NMR spectrum of $3g$.	527 527
Figure S22. C NMR spectrum of 3g.	S27
Figure 535. HSQC spectrum of 3g.	528
Figure S34. HRMS spectrum of 3g.	529 520
Figure S55. IT INVIK spectrum of 3h	S30
Figure S30. C INVIK Spectrum of 3h.	S30 S31
Figure S37. IISQC spectrum of 3h.	S31 S32
Figure S30. IIXWS spectrum of 3i	S32 S33
Figure S39. If NMR spectrum of 3i	S33
Figure \$41 HSOC spectrum of 3i	S35 S34
Figure S42 HRMS spectrum of 3i	\$34
Figure S43 1 H NMR spectrum of 3i	832
Figure S44 13 C NMR spectrum of 3i	\$36
Figure S45 HRMS spectrum of 3i	\$30
Figure S46 1 H NMR spectrum of 3k	638
Figure S47 ¹³ C NMR spectrum of 3k	638
Figure 577. C runne spectrum of 5K.	000

Figure S48. HSQC spectrum of 3k.	S39
Figure S49. COSY spectrum of 3k (low-field part).	S40
Figure S50. HRMS spectrum of 3k.	S41
Figure S51. ¹ H NMR spectrum of 31.	S42
Figure S52. ¹³ C NMR spectrum of 31.	S42
Figure S53. HSQC spectrum of 31.	S43
Figure S54. HRMS spectrum of 31.	S44
Figure S55. ¹ H NMR spectrum of 3m.	S45
Figure S56. ¹³ C NMR spectrum of 3m .	S45
Figure S57. HSQC spectrum of 3m.	S46
Figure S58. HRMS spectrum of 3m.	S47
Figure S59. NOESY spectrum and PM3 energy-optimized models of 3a.	S48
Figure S60. NOESY spectrum and PM3 energy-optimized models of 3d.	S49
Figure S61. NOESY spectrum and PM3 energy-optimized models of 3g.	S50
Figure S62. NOESY spectrum and PM3 energy-optimized models of 3h.	S51

Figure S1. ¹H NMR spectrum of **3a**, 298 K, CDCl₃.

Figure S3. ¹³C NMR spectrum of 3a, 298 K, CDCl₃.

Figure S4. COSY spectrum of 3a (low-field part).

Figure S5. COSY spectrum of 3a (CDCl₃, 298 K).

Figure S6. HMQC spectrum of 3a (CDCl₃, 298 K).

Figure S7. HMBC spectrum of 3a (CDCl₃, 298 K).

Figure S8. HRMS spectrum of 3a.

Figure S9. ¹H NMR spectrum of **3b** (298 K, CDCl₃).

Figure S10. ¹³C NMR spectrum of 3b (298 K, CDCl₃).

Figure S11. HSQC spectrum of 3b (298 K, CDCl₃).

Figure S12. HRMS spectrum of 3b.

Figure S13. ¹H NMR spectrum of 3c (298 K, CDCl₃).

Figure S14. ¹³C NMR spectrum of 3c (298 K, CDCl₃).

Figure S15. COSY spectrum of 3c (low-field part).

Figure S16. HMBC spectrum of 3c (CDCl₃, 298 K).

Figure S17. HSQC spectrum of 3c (CDCl₃, 298 K).

Figure S18. HRMS spectrum of 3c.

Figure S19. ¹H NMR spectrum of 3d (298 K, CDCl₃).

Figure S20. ¹³C NMR spectrum of 3d (298 K, CDCl₃).

Figure S21. HSQC spectrum of 3d (CDCl₃, 298 K).

Figure S22. COSY spectrum of 3d (low-field part).

Figure S23. HRMS spectrum of 3d.

Figure S24. ¹H NMR spectrum of 3e (298 K, CDCl₃).

Figure S25. ¹³C NMR spectrum of 3e (298 K, CDCl₃).

Figure S26. HRMS spectrum of 3e.

Figure S27. ¹H NMR spectrum of 3f (298 K, CDCl₃).

Figure S28. ¹³C NMR spectrum of 3f (298 K, CDCl₃).

Figure S29. HSQC spectrum of 3f (CDCl₃, 298 K).

Figure S30. HRMS spectrum of 3f.

Figure S32. ¹³C NMR spectrum of 3g (298 K, CDCl₃).

Figure S33. HSQC spectrum of 3g (CDCl₃, 298 K).

Figure S34. HRMS spectrum of 3g.

Figure S35. ¹H NMR spectrum of 3h (298 K, CDCl₃).

Figure S36. ¹³C NMR spectrum of 3h (298 K, CDCl₃).

Figure S37. HSQC spectrum of 3h (CDCl₃, 298 K).

Figure S38. HRMS spectrum of 3h.

Figure S40. ¹³C NMR spectrum of 3i (298 K, CDCl₃).

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

Figure S41. HSQC spectrum of 3i (CDCl₃, 298 K).

Figure S42. HRMS spectrum of 3i.

Figure S43. ¹H NMR spectrum of 3j (298 K, CDCl₃).

Figure S44. ¹³C NMR spectrum of 3j (298 K, CDCl₃).

Figure S45. HRMS spectrum of 3j.

Figure S47. ¹³C NMR spectrum of 3k (298 K, CDCl₃).

Figure S48. HSQC spectrum of 3k (CDCl₃, 298 K).

Figure S49. COSY spectrum of 3k (low-field part).

Figure S50. HRMS spectrum of 3k.

Figure S51. ¹H NMR spectrum of 3I.

Figure S52. ¹³C NMR spectrum of 31.

Figure S53. HSQC spectrum of 3l.

Figure S55. ¹H NMR spectrum of 3m.

Figure S56. ¹³C NMR spectrum of 3m.

Figure S57. HSQC spectrum of 3m.

Figure S58. HRMS spectrum of 3m.

Figure S59. NOESY spectrum (CDCl₃, 300 K) and PM3 energy-optimized models of **3a**. The numbers associated with green curved lines are proton-proton distances measured for the models, while red letters denote NOE interactions observed in the NOESY map.

Figure S60. NOESY spectrum (CDCl₃, 300 K) and PM3 energy-optimized models of **3d**. The numbers associated with green curved lines are proton-proton distances measured for the models, while red letters denote NOE interactions observed in the NOESY map. The extended fragments of the map in the bottom row show chemical exchange (EXSY) correlations between stereoisomers. A signal of a by-product is denoted by asterisk.

Figure S61. NOESY spectrum (CDCl₃, 300 K) and PM3 energy-optimized models of **3g**. The numbers associated with green curved lines are proton-proton distances measured for the models, while red letters denote NOE interactions observed in the NOESY map.

Figure S62. NOESY spectrum (CDCl₃, 300 K) and PM3 energy-optimized models of **3h**. The numbers associated with green curved lines are proton-proton distances measured for the models, while red letters denote NOE interactions observed in the NOESY map. The extended fragments of the map in the bottom rows show chemical exchange (EXSY) correlations between stereoisomers (blue cross-peaks).