Electronic Supplementary Information

Carboxylation of alkynylsilanes with carbon dioxide mediated by cesium fluoride in DMSO

Misato Yonemoto-Kobayashi, Kiyofumi Inamoto, Yoshiyuki Tanaka and Yoshinori Kondo*

Graduate School of Pharmaceutical Sciences, Tohoku University 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan

e-mail: ykondo@m.tohoku.ac.jp

Table of Contents

1. General comments	S2	
 Representative procedure for carboxylation of alkynylsilanes with CO₂ Representative procedure for syntheses of alkynoates	S2	
		S10

1. General comments

All reactions were carried out under a CO₂ atmosphere unless otherwise noted. Anhydrous solvents were obtained from commercial suppliers and used without further purification. Commercially available materials were purchased from Tokyo Kasei Co., Aldrich Inc. and other suppliers and were used after appropriate purification (distillation or recrystallization). CsF was purchased from Aldrich and stored in a argon-filled glovebox after dried by a heat gun under vacuum. Flash column chromatography was performed with Kanto silica gel 60 N (spherical, neural, 70–230 mesh). A CO₂ gas cylinder was purchased from Taiyo Nissan Co. (G1 grade).

Melting points were measured with a Yazawa micro melting point apparatus and uncorrected. IR spectra were recorded on a SHIMADZU IRAffinity. 1H-NMR spectra were recorded on JEOL AL400 (400 MHz) or JEOL ECA600 (600MHz) spectrometer. ¹H NMR spectra were referenced to tetramethylsilane as an internal standard or to a solvent signal (CDCl₃: 7.26 ppm) or (acetone-d6: 2.09 ppm) or (CD₃OD: 3.34 ppm). ¹³C NMR spectra were referenced to a solvent signal (CDCl₃: 77.0 ppm) or (acetone-d6: 30.6 ppm) or (CD₃OD: 50.0 ppm). The following abbreviations are used: s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, m = multiplet, dd = double doublet, dt = double triplet. Mass spectra and high resolution mass spectra were measured on JEOL JMS-DX303 and JMS-700/JMS-T 100 GC spectrometer respectively. Elemental analyses were performed by Yanaco CHN CORDER MT-6.

2. Representative procedure for carboxylation of alkynylsilanes with CO₂

Reaction of 1-phenyl-2-trimethylsilylacetylene (1a) with CO₂ (Table 1, entry 6)

A dried and CO_2 (balloon) infused Schlenk-flask, equipped with a magnetic stirrer and a septum, was charged with CsF (54.7 mg, 0.36 mmol) in DMSO (0.75 mL). 1-Phenyl-2-trimethylsilylacetylene (**1a**) (52.3 mg, 0.3 mmol) was added to a reaction mixture and the reaction was stirred at room temperature for 3 h. The reaction mixture was diluted with water (30 mL) and extracted with CH_2Cl_2 (2 × 10 mL). The aqueous layer was acidified (> pH 1) with aqueous HCl (6 M) at 0 °C and then extracted with diethyl ether (4 × 20 mL). The combined organic layers were dried over Na_2SO_4 . The solvent was removed under vacuum to afford **2a** (42 mg, 96%).

3. Representative procedure for syntheses of alkynoates

Reaction of 1-phenyl-2-trimethylsilylacetylene (1a) with CO₂ followed by addition of methyl iodide (Table 2, entry 1)

A dried and CO₂ (balloon) infused Schlenk-flask, equipped with a magnetic stirrer and a septum, was charged with CsF (54.7 mg, 0.36 mmol) in DMSO (0.75 mL). 1-Phenyl-2-trimethylsilylacetylene (**1a**) (52.3 mg, 0.3

mmol) was added to a reaction mixture and the reaction was stirred at room temperature for 3 h. Methyl iodide (0.36 mmol) was added to the reaction mixture and the reaction was stirred at room temperature for 1 h. Saturated aqueous NH₄Cl (5 mL) was added and the whole mixture was extracted with AcOEt (10 mL x 3). The combined organic layers were washed with brine (10 mL) and dried over MgSO₄. The organic phase was concentrated under reduced pressure and the crude material was purified by silica gel column chromatography to give **3aa** (39 mg, 81%).

4. Characterization data

3-Penyl-2-propynoic acid (2a)

Yellow needles (recrystallized from AcOEt/hexane), mp 138–139 °C.

IR (neat): 2958, 2925, 2854, 2228, 2198, 1669, 1488, 1417, 1302, 1287, 1207, 1171, 918, 752, 738, 682 cm⁻¹.

¹H NMR (400 MHz, CDCl₃/TMS) δ (ppm): 7.37–7.42 (m, 2H), 7.46–7.50 (m, 1H), 7.60–7.62 (m, 2H).

¹³C{¹H} NMR (150 MHz, CDCl₃) δ (ppm): 80.1, 89.1, 119.0, 128.6, 131.1, 133.2, 158.8.

LRMS (EI) *m/z*: 146 (M⁺). HRMS: Calcd. For C₉H₆O₂: 146.03678, found: 146.0391.

3-(4-Methylphenyl)-2-propynoic acid (2b)

Yellow needle (recrystallized from CH₃CN), mp 153–155 °C.

IR (neat): 2195, 1669, 1507, 1142, 1295, 1179, 819 cm⁻¹.

¹H NMR (400 MHz, CDCl₃/TMS) δ (ppm): 2.39 (s, 3H), 7.20 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm): 21.7, 79.8, 89.8, 115.9, 129.4, 133.3, 142.0, 158.9

LRMS (EI) m/z: 160 (M⁺). HRMS: Calcd. For C₁₀H₈O₂: 160.0524, found: 160.0511.

Anal. Calcd. for C₁₀H₈O₂: C, 74.99; H, 5.03; O, 19.98. Found: C, 75.01; H, 5.12.

3-(4-Methoxyphenyl)-2-propynoic acid (2c)

Colorless prism (recrystallized from CH₃CN), mp 146–147 °C.

IR (neat): 2198, 1666, 1599, 1509, 1316, 1295, 1252, 1214, 1167, 832 cm⁻¹.

¹H NMR (400 MHz, CDCl₃/TMS) δ (ppm): 3.85 (s, 3H), 6.88–6.92 (m, 2H), 7.55–7.59 (d, 2H).

 13 C{ 1 H} NMR (100 MHz, acetone-d6) δ (ppm): 56.7, 81.8, 87.6, 112.8, 116.2, 136.4, 155.5, 163.5.

LRMS (EI) m/z: 176 (M⁺). HRMS: Calcd. For C₁₀H₈O₃: 176.0473, found: 176.0460.

Anal. Calcd. for C₁₀H₈O₃: C, 68.18; H, 4.58; O, 27.25, found: C, 68.31; H; 4.58.

3-(2-Methoxyphenyl)-2-propynoic acid (2d)

Colorless prism (recrystallized from AcOEt/petroleum ether), mp 132–133 °C.

IR (neat): 2201, 1740, 1669, 1491, 1419, 1252, 1229, 1200 cm⁻¹.

 1 H NMR (600 MHz, CDCl₃/TMS) δ (ppm): 3.91 (s, 3H), 6.91–6.97 (m, 2H), 7.42–7.45 (m, 1H), 7.54–7.55 (m, 1H).

¹³C{¹H} NMR (150 MHz, CDCl₃) δ (ppm): 55.8, 84.0, 86.3, 108.3, 110.9, 120.6, 132.9, 135.2, 158.8, 161.9.

LRMS (EI) m/z: 176 (M⁺). HRMS: Calcd. For C₁₀H₈O₃: 176.0473, found: 176.0462.

3-(3-Hydroxyphenyl)-2-propynoic acid (2e)

Colorless prism (recrystallized from acetone/hexane), mp 192–195 °C.

IR (neat): 3174, 2216, 1690, 1580, 1235, 980 cm⁻¹.

¹H NMR (400 MHz, acetone-d6) δ (ppm): 7.04–7.16 (m, 3H), 7.32–7.36 (m, 1H).

 13 C{ 1 H} NMR (1500 MHz, acetone-d6) δ (ppm): 82.0, 86.8, 120.0, 120.6, 122.1, 125.7, 131.8, 155.3, 159.1.

LRMS (EI) m/z: 162 (M⁺). HRMS: Calcd. For C₉H₆O₃: 162.0317, found: 162.0301.

3-(4-Fluorophenyl)-2-propynoic acid (2f)

Colorless needle (recrystallized from CH₃CN), mp 155–157 °C.

IR (neat): 2206, 1589, 1506, 1220, 1157, 834 cm⁻¹.

¹H NMR (400 MHz, acetone-d6) δ (ppm): 7.29–7.33 (m, 2H), 7.74–7.79 (m, 2H).

¹³C{¹H} NMR (150 MHz, acetone-d6) δ (ppm): 82.3, 85.6, 117.9 (d, J = 22.5 Hz), 137.0 (d, J = 10.5 Hz), 155.2 (d, J = 2.9 Hz), 164.7, 166.4.

LRMS (EI) m/z: 164 (M⁺). HRMS: Calcd. For C₉H₅FO₂: 164.0274, found: 164.0265.

Anal. Calcd. for C₉H₅FO₂: C, 65.86; H, 3.07; F, 11.57; O, 19.50. Found: C, 65.92; H, 3.23.

3-(4-Chlorophenyl)-2-propynoic acid (2g)

Colorless plate (recrystallized from CH₃CN), mp 184–185 °C.

IR (neat): 2210, 1690, 1685, 1601, 1597, 1490, 1293, 1211, 1805, 1105 cm⁻¹.

¹H NMR (400 MHz, acetone-d6) δ (ppm): 7.56–7.58 (m, 2H), 7.69–7.72 (m, 2H).

¹³C{¹H} NMR (150 MHz, CD₃OD) δ (ppm): 83.9, 86.1, 120.8, 131.3, 136.4, 139.1, 157.4.

LRMS (EI) *m/z*: 180 (M⁺). HRMS: Calcd. For C₉H₅ClO₂: 179.9978, found: 179.9964.

Anal. Calcd. for C₉H₅ClO₂: C, 59.86; H, 2.79; Cl, 19.63; O, 17.72. Found: C, 59.66; H, 2.78.

3-(4-Bromophenyl)-2-propynoic acid (2h)

Colorless plate (recrystallized from CH₃CN), mp 193–195 °C.

IR (neat): 2208, 1696, 1616, 1596, 1577, 1488, 1379, 1292, 1211, 1010 cm⁻¹.

¹H NMR (400 MHz, acetone-d6) δ (ppm): 7.61–7.65 (m, 2H), 7.71–7.74 (m, 2H).

 13 C{ 1 H} NMR (150 MHz, CD₃OD) δ (ppm): 83.8, 86.1, 121.1, 127.2, 134.2, 136.4, 157.3.

LRMS (EI) *m/z*: 224 (M⁺). HRMS: Calcd. For C₉H₅BrO₂: 223.9473, found: 223.9482.

Anal. Calcd. for C₉H₅BrO₂: C, 48.03; H, 2.24; Br, 35.51; O, 14.22. Found: C, 47.99; H, 2.39.

3-(4-Trifluoromethylphenyl)-2-propynoic acid (2i)

Colorless needle (recrystallized from hexane/acetone), mp 155–156 °C.

IR (neat): 2227, 1718, 1671, 1406, 1266, 1203, 1104, 857 cm⁻¹.

¹H NMR (400 MHz, acetone-d6) δ (ppm): 7.87–7.93 (m, 4H).

¹³C{¹H} NMR (150 MHz, acetone-d6) δ (ppm): 84.5, 84.8, 125.8, 125.9 (q, J = 271.5 Hz), 127.7 (d, J = 4.5 Hz), 133.5 (q, J = 33.0 Hz), 135.3, 155.2.

LRMS (EI) m/z: 214 (M⁺). HRMS: Calcd. For $C_{10}H_5F_3O_2$: 214.0242, found: 214.0217.

3-(4-Cyanophenyl)-2-propynoic acid (2j)

Yellow needle. Sublimination

IR (neat): 2230, 2203, 1684, 1593, 1373, 1329 cm⁻¹.

¹H NMR (600 MHz, acetone-d6) δ (ppm): 7.88–7.90 (m, 2H), 7.94–7.96 (m, 2H).

 $^{13}C\{^{1}H\}$ NMR (100 MHz, acetone-d6) δ (ppm): 84.2, 85.1, 115.5, 119.3, 125.8, 134.2, 134.9, 154.8.

LRMS (EI) m/z: 171 (M⁺). HRMS: Calcd. For C₁₀H₅NO₂: 171.0320, found: 171.0307.

Anal. Calcd. for C₁₀H₅NO₂: C, 70.18; H, 2.94; N, 8.18; O, 18.70. Found: C, 70.20; H, 3.06; N, 8.30.

3-(4-Nitrophenyl)-2-propynoic acid (2k)

$$O_2N$$

Yellow needle (recrystallized from AcOEt/hexane), mp 195-196 °C.

IR (neat): 2206, 1684, 1603, 1591, 1522, 1343, 1284, 1207, 858, 853, 748 cm⁻¹.

¹H NMR (400 MHz, acetone-d6) δ (ppm): 7.96–7.99 (m, 2H), 8.36–8.40 (m, 2H).

¹³C{¹H} NMR (100 MHz, CD₃OD) δ (ppm): 84.3, 86.3, 125.8 (d, J = 17.0 Hz), 128.5, 135.8 (d, J = 17.0 Hz), 151.0, 156.7.

LRMS (EI) m/z: 191 (M⁺). HRMS: Calcd. For C₉H₅NO₄: 191.0219, found: 191.0217.

3-(4-Ethoxycarbonylphenyl)-2-propynoic acid (2l)

Colorless plate (recrystallized from CH₃CN), mp 131–134 °C.

IR (neat): 2231, 1689, 1318, 1279, 1125, 1106, 1065, 845, 834 cm⁻¹.

¹H NMR (600 MHz, acetone-d6) δ (ppm): 1.42 (t, J = 7.2 Hz, 3H), 4.42 (d, J = 7.2 Hz, 2H), 7.81 (d, J = 8.4 Hz, 2H), 8.13 (d, J = 8.4 Hz, 2H).

 13 C{ 1 H} NMR (150 MHz, acetone-d6) δ (ppm): 15.3, 62.7, 84.4, 85.2, 125.6, 131.2, 133.9, 134.4, 154.9, 166.6.

LRMS (EI) m/z: 218 (M⁺). HRMS: Calcd. For $C_{12}H1_0O_4$: 218.0579, found: 218.0563.

Anal. Calcd. for C₁₂H₁₀O₄: C, 66.05; H, 4.62; O, 29.33. Found: C, 66.05; H, 4.62.

3-(1-naphthyl)-2-propynoic acid (2c)

Colorless prism (recrystallized from AcOEt/petroleum ether), mp 140–142 °C.

IR (neat): 2197, 1669, 1414, 1297, 1262, 1221, 1210 cm⁻¹.

¹H NMR (600 MHz, CDCl₃/TMS) δ (ppm): 7.48–7.51 (m, 1H), 7.57–7.60 (m, 1H), 7.64–7.67 (m, 1H), 7.89–7.91 (m, 2H), 7.99 (d, J = 8.2 Hz, 1H), 8.35 (d, J = 8.3 Hz, 1H).

¹³C{¹H} NMR (150 MHz, CDCl₃) δ (ppm):84.7, 87.6, 116.6, 125.1, 125.6, 127.0, 127.9, 128.5, 131.9, 133.0, 133.6, 133.7, 158.8.

LRMS (EI) *m/z*: 196 (M⁺). HRMS: Calcd. For C₁₃H₈O₃: 196.0524, found: 196.0508.

3-(2-Thienyl)-2-propynoic acid (2n)

Colorless prism (recrystallized from hexane/AcOEt), mp 138–140 °C.

IR (neat): 2198, 1663, 1399, 1276, 1222, 1176, 884, 854, 839, 711 cm⁻¹.

¹H NMR (600 MHz, CDCl₃/TMS) δ (ppm): 7.07–7.09 (m, 1H), 7.51–7.55 (m, 2H).

 13 C{ 1 H} NMR (150 MHz, acetone-d6) δ (ppm): 80.5, 86.7, 120.6, 129.6, 133.5, 138.3, 155.1..

LRMS (EI) *m/z*: 151 (M⁺). HRMS: Calcd. For C₇H₄O₂S: 151.9932, found: 151.9920.

2-nonynoic acid (2p)

Colorless oil

IR (neat): 2237, 1684, 1277 cm⁻¹.

¹H NMR (400 MHz, CDCl₃/TMS) δ (ppm): 0.89 (t, J = 6.8 Hz, 3H), 1.26–1.44 (m, 6H), 1.55–1.62 (m, 2H), 2.36 (t, J = 6.8 Hz, 2H).

¹³C{¹H} NMR (150 MHz, CDCl₃) δ (ppm): 13.9, 18.7, 22.4, 27.3, 28.5, 31.1, 72.6, 92.8, 158.6.

LRMS (EI) m/z: 153 (M⁺-1). HRMS: Calcd. For C₉H₁₃O₂: 153.0916, found: 153.0913.

4,4-Dimethyl-2-pentynoic acid (2q)

Yellow oil.

IR (neat): 2216, 1696, 1684, 1261, 1220, 1101, 947, 818 cm⁻¹.

¹H NMR (400 MHz, CDCl₃/TMS) δ (ppm): 1.30 (s, 9H).

¹³C{¹H} NMR (150 MHz, CDCl₃) δ (ppm): 29.8, 39.7, 71.6, 98.5, 157.5.

LRMS (EI) m/z: 125 (M⁺-1). HRMS: Calcd. For $C_7H_9O_2$: 125.0603, found: 126.0590.

Methyl 3-(3-pyridinyl)-2-propynoate (30)

Yellow plate (recrystallized from petroleum ether), mp 52–53 °C.

IR (neat): 2228, 1696, 1474, 1438, 1296, 1207, 1176 cm⁻¹.

¹H NMR (400 MHz, CDCl₃/TMS) δ (ppm): 3.86 (s, 3H), 7.31–7.35 (m, 1H), 7.86–7.88 (m, 1H), 8.65–8.67 (m, 1H), 8.81–8.81 (m, 1H).

¹³C{¹H} NMR (150 MHz, CDCl₃) δ (ppm): 53.0, 82.7, 83.2, 116.9, 123.2, 139.8, 150.7, 153.3, 153.9.

LRMS (EI) *m/z*: 161 (M⁺). HRMS: Calcd. For C₉H₇NO₂: 161.0477, found: 161.0465.

Methyl 3-phenyl-2-propynoate (3aa)

yellow oil

IR (neat): 2224, 1707, 1490, 1434, 1285, 1199, 1169, 756 cm⁻¹.

¹H NMR (400 MHz, CDCl₃/TMS) δ (ppm): 3.84 (s, 3H), 7.35–7.40 (m, 2H), 7.43–7.48 (m, 1H), 7.56–7.60 (m, 2H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm): 52.7, 80.3, 86.5, 119.5, 128.6, 130.7, 133.0, 154.4.

LRMS (EI) *m/z*: 160 (M⁺). HRMS: Calcd. For. C₁₀H₈O₂: 160.0524, found: 160.0535.

Allyl 3-phenyl-2-propynoate (3ab)

yellow oil

IR (neat): 2220, 1704, 1281, 1184, 1165, 755 cm⁻¹.

¹H NMR (400 MHz, CDCl₃/TMS) δ (ppm): 4.74 (dt. J = 1.2, 5.8 Hz, 2H), 5.32 (dd, J = 1.0, 10.2 Hz, 2H), 5.41 (dd, J = 1.5, 17.1 Hz, 2 H), 5.93–6.03 (m, 1H), 7.36–7.40 (m, 2H), 7.43–7.46 (m, 1H), 7.58–7.60 (m, 2H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm): 66.5, 80.4, 86.5, 119.4, 119.5, 128.6, 130.7, 131.2, 133.0, 153.7. LRMS (EI) m/z: 186 (M⁺). HRMS: Calcd. For. C₁₂H₁₀O₂: 186.0681, found: 186.0688.

Benzyl 3-phenyl-2-propynoate (3ac)

$$Ph = 0$$

$$O = 0$$

$$Ph$$

yellow oil

IR (neat): 2225, 1706, 1490, 1293, 1279, 1183, 1169, 756, 746 cm⁻¹.

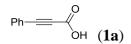
¹H NMR (400 MHz, CDCl₃/TMS) δ (ppm): 5.27 (s, 2H), 7.35–7.47 (m, 8H), 7.55–7.59 (m, 2H).

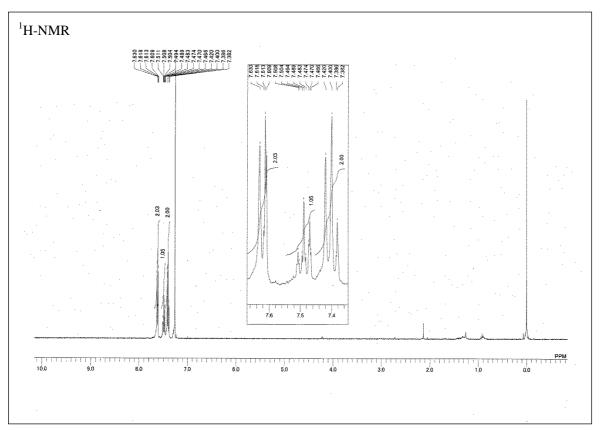
¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm): 67.7, 80.5, 86.7, 119.5, 128.5, 128.6, 128.7, 130.7, 133.0, 134.9, 153.9.

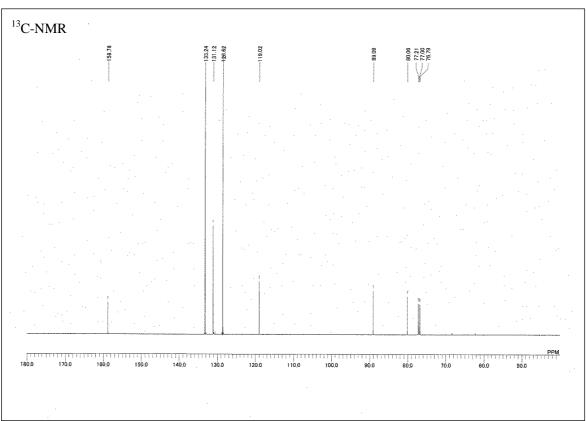
LRMS (EI) *m/z*: 236 (M⁺). HRMS: Calcd. For. C₁₆H₁₂O₂: 236.0837, found: 236.0829.

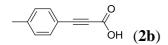
Butyl 3-phenyl-2-propynoate (3ad)

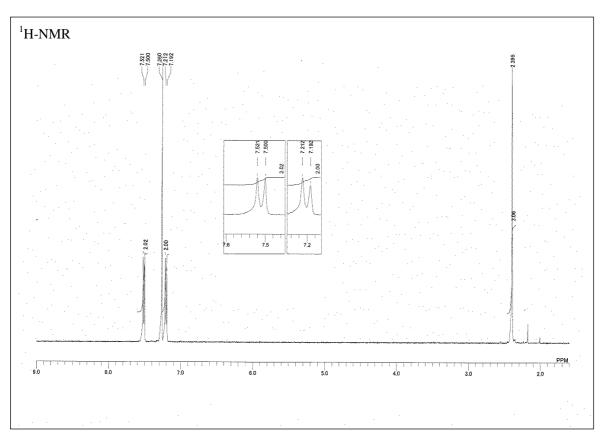
yellow oil

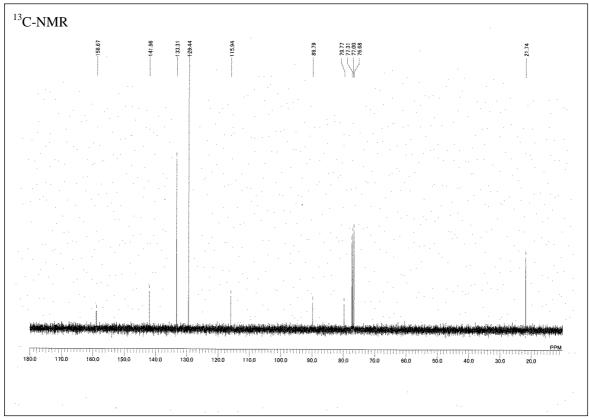

IR (neat): 2960, 2221, 1705, 1283, 1185, 1172, 756, 748 cm⁻¹

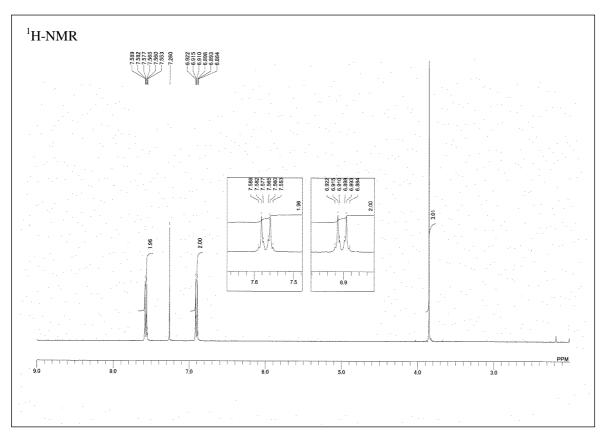

¹H NMR (400 MHz, CDCl₃) δ (ppm): 0.97 (t, J = 7.2 Hz, 3H), 1.44 (sext, J = 7.2 Hz, 2H), 1.71 (quint, J = 7.2 Hz, 2H), 4.24 (t, J = 7.2 Hz, 2H), 7.35–7.39 (m, 2H), 7.42–7.47 (m, 1H), 7.57–7.60 (m, 2H).

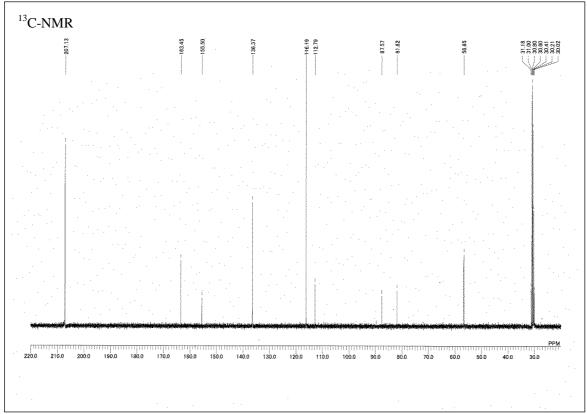

¹³C{¹H} NMR (100 MHz, CDCl₃) δ (ppm): 13.6, 19.0, 30.5, 65.9, 80.7, 86.0, 119.7, 128.5, 130.5, 132.9, 154.2.

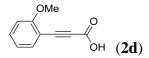

LRMS (EI) *m/z*: 202 (M⁺). HRMS: Calcd. For. C₁₃H₁₄O₂: 202.0994, found: 202.0990.

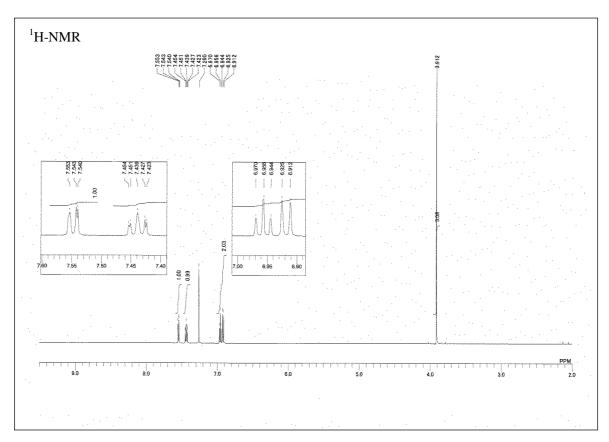

5. Copies of ¹H NMR and ¹³C NMR spectra of products

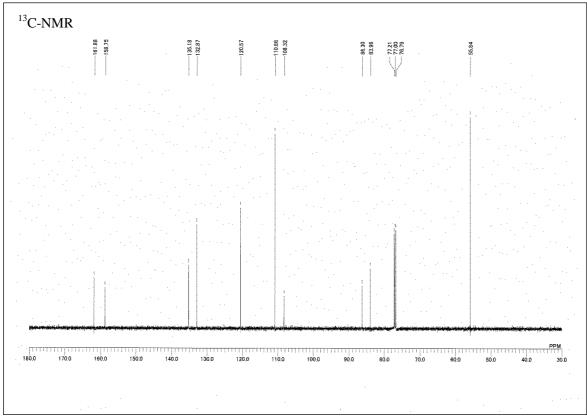











MeO
$$\stackrel{\circ}{\longrightarrow}$$
 OH $(2c)$

