Supporting Information

Taming Furfuryl Cations to the Synthesis of Privileged Structures and Novel Scaffolds

Seema Dhiman and S. S. V. Ramasastry*

Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manuali 140 306, Punjab, India E-mail: <u>ramsastry@iisermohali.ac.in</u>

General Methods	Page 2
Synthesis of furfuryl and thiophenyl alcohols	Page 3
General procedure for catalyst screening (Table 1)	Page 6
General procedure for solvent screening (Table-2)	Page 6
General procedure for BiCl ₃ catalyzed reactions of furfuryl alcohols with different nucleophiles (Scheme-1)	Page 6
Synthesis of the diol 38a and the cyclic ether 38 (Scheme-2).	Page 18
Synthesis of the diol 39a and the cyclic ether 39, and efforts towards the total synthesis of γ -lactone natural product 40 (Scheme-2).	Page 19
Synthesis of the diols 41a, 42a, 46a and 54a, and cyclic ethers 41, 42, 46 and 54 (Scheme-2).	Page 21
Synthesis of the triol 47e and the bicyclic ether 47 (Scheme-2).	Page 24
Synthesis of the diol 48a and the bicyclic ether 48 (Scheme-2).	Page 26
Synthesis of the triol 49a and the bicyclic ether 49 (Scheme-2).	Page 27
Crystal Structure Report of bicyclic ether 49	Page 29
Synthesis of the diol 52d and efforts towards the first total synthesis of furanopolyketide 51 (Scheme-2).	Page 37
Synthesis of the alcohol 55b, amine 55c and pyrrolidine 55 (Scheme-2).	Page 39
Elaboration of azide 33 to the triazole 33a.	Page 42
¹ H and ¹³ C-NMR data of all new compounds reported in this study	Page 43

General Methods: Essential starting materials furan, 5-methyl furan, 5-methyl furfural, benzofuran, 3-methyl benzofuran, 5-methyl thiophene, 5-methyl 2-thiophenecarboxaldehyde, nitromethane were purchased from Aldrich and were used without further purification. For thin layer chromatography (TLC), silica aluminum foils with fluorescent indicator 254 nm (from Aldrich) were used and compounds were visualized by irradiation with UV light and/or by treatment with a solution of *p*-anisaldehyde (23 mL), conc. H₂SO₄ (35 mL), and acetic acid (10 mL) in ethanol (900 mL) followed by heating. Column chromatography was performed using SD Fine silica gel 100-200 mesh (approximately 15-20 g per 1 g of the crude product). Dry THF was obtained by distillation over sodium and stored over sodium wire. Dry methylene chloride was prepared by distilling over calcium hydride. All the commercial reagents were used as such without further purification. IR spectra were recorded on a Perkin – Elmer FT IR spectrometer as thin films or KBr pellet, as indicated, with v_{max} in inverse centimetres. Melting points were recorded on a digital melting point apparatus Stuart SMP10 and were uncorrected. ¹H NMR and ¹³C NMR spectra were recorded on a 400 MHz Bruker FT-NMR spectrometer. NMR shifts are reported as delta (δ) units in parts per million (ppm) and coupling constants (J) are reported in Hertz (Hz). The following abbreviations are utilized to describe peak patterns when appropriate: br=broad, s=single, d=doublet, t=triplet, q=quartet and m=multiplet. Proton chemical shifts are given in δ relative to tetramethylsilane (δ 0.00 ppm) in CDCl₃ or to the residual proton signals of the deuterated solvent in CD₃OD (§ 3.31 ppm). Carbon chemical shifts are internally referenced to the deuterated solvent signals in CDCl₃ (δ 77.1 ppm) or CD₃OD (δ 49.00 ppm). High-resolution mass spectra were recorded on Bruker maXis mass spectrometer.

Synthesis of furfuryl and thiophenyl alcohols: Furfuryl and thiophenyl alcohols were prepared based on literature procedures,¹ either by the addition of organolithium reagents or organomagnesium reagents to aldehydes (for example: furfural, 5-methyl furan-2-carboxaldehyde, 5-methyl thiophene-2-carboxaldehyde, benzofuran-3-carboxaldehyde, etc) or by the generation of furyllithium/ thiophenyllithium/ benzofuranyllithium and addition to aldehydes (for example: isovaleraldehyde, 2-methyl pentanal, 2-octynal, benzaldehyde, acetaldehyde, propiophenone, etc) as in the following general scheme.

Some of the furfuryl and thiophenyl alcohols employed in this study are already known in the literature with complete characterization data.² Spectroscopic data of the newly synthesized alcohols is presented below. Most of the furfuryl alcohols employed in this study are found to be unstable and decompose upon storage even at 0-5 °C, they decompose even on silica gel and even in deuterated chloroform. But, benzofuranyl alcohols and thiophenyl alcohols are found to be reasonably stable upon cold storage.

1-(Benzofuran-2-yl)-3-methylbutan-1-ol (3a).

Pale yellow oil. $R_f = 0.5$ (hexane/EtOAc = 4/1). IR (thin film, neat): v_{max}/cm^{-1} 3367, 2956, 2871, 1457, 1253, 1172, 807, 745. ¹H NMR (400 MHz, CDCl₃): δ 7.46 (d, *J* =7.2 Hz, 1H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.20-7.11 (m, 2H), 6.53 (s, 1H), 4.87 (t, *J* = 7.7 Hz, 1H), 1.95 (d, *J*

For alcohol **12a**: Reference-1

¹ J. M. Winne, S. Catak, M. Waroquier and V. V. Speybroeck, Angew. Chem., Int. Ed., 2011, 50, 11990.

² For alcohol 1: M. Kusakabe, Y. Kitano, Y. Kobayashi and F. Sato, J. Org. Chem., 1989, 54, 2085.

For alcohols **5a** and **28a**: M. I. Toşa, P. V. Podea, C. Paizs and F. D. Irimie, *Tetrahedron: Asymmetry*, 2008, **19**, 2068.

For alcohol 6a: F. Schevenels and I. E. Marko, Org. Lett., 2012, 14, 1298.

For alcohol 9a: M. S. Azevedo, G. B. C. Alves, J. N. Cardoso, R. S. C. Lopes and C. C. Lopes, Synthesis, 2004, 1262.

For alcohol **11a**: A. Massa, F. R. Siniscalchi, V. Bugatti, A. Lattanzi and A. Scettri, *Tetrahedron: Asymmetry*, 2002, **13**, 1277.

For alcohol 17a: A. R. Kelly, M. H. Kerrigan and P. J. Walsh, J. Am. Chem. Soc., 2008, 130, 4097.

For alcohol **37**: A. S. K. Hashmi, T. Häffner, W. Yang, S. Pankajakshan, S. Schäfer, L. Schultes, F. Rominger and W. Frey, *Chem. Eur. J.*, 2012, **18**, 10480.

=5.9 Hz, 1H), 1.80-1.68 (m, 3H), 0.90 (d, J = 5.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): 159.7, 154.7, 128.1, 124.1, 122.7, 121.0, 111.1, 102.4, 66.0, 44.5, 24.6, 23.0, 22.1. HRMS (ESI): m/z calcd for C₁₃H₁₆O₂Na (M+Na): 204.1150. Found: 204.1148.

1-(Benzofuran-2-yl)-2-methylpentan-1-ol (4a, Major).

Pale yellow oil. $R_f = 0.5$ (hexane/EtOAc = 4/1). IR (thin film, neat): v_{max}/cm^{-1} 3408, 2960, 2872, 14543, 1380, 1253, 1171, 1151, 963, 803, 744. ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, J = 7.0 Hz, 1H), 7.36 (d, J = 7.8 Hz, 1H), 7.19-7.10 (m, 2H), 6.52 (s, 1H), 4.59 (d, J = 5.5 Hz, 1H), 2.08 (br s, 1H), 1.37- 1.05 (m, 5H), 0.89 (d, J = 6.8 Hz, 3H), 0.86–0.78 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.2, 154.6, 128.2, 123.9, 122.7, 120.9, 111.2, 103.4, 73.0, 38.3, 35.2, 20.2, 15.5, 11.4. HRMS (ESI): m/z calcd for C₁₄H₁₈O₂Na (M+Na): 241.1204. Found: 241.1206.

1-(Benzofuran-2-yl)oct-2-yn-1-ol (7a).

Pale yellow oil. $R_f = 0.6$ (hexane/EtOAc = 4/1). IR (thin film, neat): v_{max} /cm⁻¹ 3408, 2934, 2863, 1454, 1173, 1003, 746. ¹H NMR (400 MHz, CDCl₃): δ 7.17 (d, J = 8.1 Hz, 1H), 7.25 (d, J = 8.1, 1H), 7.27-7.10 (m, 2H), 6.71 (s, 1H), 5.49 (s, 1H), 2.34 (s, 1H), 2.19 (dt, J = 7.1 and 2.0 Hz, 2H), 1.51-1.44 (m, 2H), 1.32- 1.21 (m, 4H), 0.81 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 156.0, 155.2, 127.8, 124.6, 122.9, 121.3, 111.4, 104.0, 87.7, 76.4, 58.8, 31.0, 28.1, 22.2, 18.7, 13.9. HRMS (ESI): m/z calcd for C₁₆H₁₈O₂Na (M+Na): 265.1204. Found: 265.1201.

1-(5-Methylthiophen-2-yl)butan-1-ol (13a).

Colorless oil. $R_f = 0.6$ (hexane/EtOAc = 4/1). IR (thin film, neat): v_{max}/cm^{-1} 3374, 2958, 2928, 2870, 1455, 1097, 1020, 800. ¹H NMR (400 MHz, CDCl₃): δ 6.73 (d, J = 3.3 Hz, 1H), 6.61 (d, J = 3.3 Hz, 1H), 4.48 (t, J = 6.9 Hz, 1H), 2.48 (s, 3H), 1.90-1.69 (m, 2H), 1.53-1.28 (m, 2H), 0.96 (t, J = 6.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): 146.5, 139.0, 124.5, 123.6, 70.1,

41.1, 19.2, 15.4, 13.8. HRMS (ESI): *m/z* calcd for C₉H₁₄OSNa (M+Na): 193.0663. Found: 193.0662.

2-(Hydroxy(phenyl)methyl)furan-3-carbaldehyde (17a).

Pale yellow oil. $R_f = 0.6$ (hexane/EtOAc = 3/2). IR (thin film, neat): v_{max}/cm^{-1} 3323, 2972, 2927, 2874, 1680, 1579, 1457, 1359, 1254, 1027, 755. ¹H NMR (400 MHz, CDCl₃): 9.87 (s, 1H), 7.30-7.20 (m, 6H), 6.67 (s, 1H), 5.97 (s, 1H), 4.51 (br s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 187.3, 163.4, 141.6, 140.7, 129.5 (2CH), 128.4 (2CH), 125.7, 122.8, 108.6, 67.5. HRMS (ESI): *m/z* calcd for C₁₂H₁₀O₃Na (M+Na): 225.0528. Found: 225.0528.

Benzofuran-2-yl(5-methylfuran-2-yl)methanol (26a).

Pale yellow oil. $R_f = 0.6$ (hexane/EtOAc = 4/1). IR (thin film, neat): v_{max}/cm^{-1} 3390, 1614, 1557, 1451, 1220, 1020, 779, 674. ¹H NMR (400 MHz, CDCl₃): δ 7.49 (d, J = 7.2 Hz, 1H), 7.38 (d, J = 7.4 Hz, 1H), 7.20-7.12 (s, 2H), 7.14 (s, 1H), 6.17 (s, 1H), 5.88 (s, 1H), 5.87 (s, 1H), 2.53 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): 156.6, 154.9, 152.8, 150.8, 128.0, 124.4, 122.9, 111.2, 111.4, 109.2, 106.4, 104.1, 64.6, 13.6. HRMS (ESI): *m/z* calcd for C₁₄H₁₂O₂Na (M+Na): 251.0684. Found: 251.0682.

2-(Benzofuran-2-yl)-1-phenylpropan-2-ol (35).

Light yellow oil. $R_f = 0.6$ (hexane/EtOAc = 7/3). IR (thin film, neat): v_{max} /cm⁻¹ 3154, 2936, 2974, 1452, 1354, 1252, 1170, 975, 750. ¹H NMR (400 MHz, CDCl₃): δ 7.57-7.13 (m, 9H), 6.63 (s, 1H), 2.64 (s, 1H), 2.38 (q, *J* = 7.3 Hz, 1H), 2.23 (q, *J* = 7.3 Hz, 1H), 0.90 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 161.3, 154.8, 143.7, 128.2 (2C), 127.6, 127.4, 126.0 (2C), 124.2, 123.0, 121.1, 111.4, 103.2, 76.2, 29.8, 8.0. HRMS (ESI): *m/z* calcd for C₁₇H₁₆O₂Na (M+Na): 275.1048. Found: 275.1048.

General procedure for catalyst screening (Table 1). To a solution of furfuryl alcohol 1 (0.1 mmol, 1 equiv) in anhydrous dichloromethane (1 mL) were added acetylacetone (0.11 mmol, 1.1 equiv) followed by a catalyst (0.02 mmol, 0.2 equiv) at room temperature. The reaction mixture was stirred at room temperature until the alcohol was consumed as monitored by TLC. Quenched the reaction mixture with aqueous saturated sodium bicarbonate solution (1-2 mL). Diluted with dichloromethane (1-2 mL) and the layers were separated. The aqueous layer was further extracted with dichloromethane (1-2 mL). The organic layers were combined, dried over Na_2SO_4 , concentrated, and purified by silica gel column chromatography (20% hexanes/ethyl acetate) to afford product **2**.

3-(1-(Benzofuran-2-yl)ethyl)pentane-2,4-dione (2).

Pale yellow oil. $R_f = 0.6$ (hexane/EtOAc = 4/1). IR (thin film, neat): v_{max} /cm⁻¹ 2936, 2880, 1724, 1700, 1598, 1455, 1422, 1358, 1253, 1167, 1011, 942. 809. ¹H NMR (400 MHz, CDCl₃): δ 7.39 (d, J = 8.2 Hz, 1H), 7.33 (d, J = 8.2 Hz, 1H), 7.19-7.10 (m, 2H), 6.34 (s, 1H), 4.10 (d, J = 10.2 Hz, 1H), 3.77 (dq, J = 10.2 and 6.7 Hz, 1H), 2.15 (s, 3H), 1.96 (s, 3H), 1.23 (d, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 202.8, 202.6, 159.0, 154.5, 128.2, 123.8, 122.8, 120.7, 110.9, 102.7, 73.1, 33.7, 30.0, 29.3, 17.4. HRMS (ESI): *m/z* calcd for C₁₅H₁₆O₃Na (M+Na): 267.0997. Found: 267.0994.

General procedure for solvent screening (Table-2). To a solution of furfuryl alcohol **1** (0.1 mmol, 1 equiv) in an appropriate solvent (1 mL) were added acetylacetone (0.11 mmol, 1.1 equiv) followed by BiCl₃ (0.02 mmol, 0.2 equiv) at room temperature. The reaction was stirred at room temperature until the alcohol was consumed as monitored by TLC and the reaction mixture was quenched with aqueous saturated sodium bicarbonate solution (1-2 mL). Diluted the reaction mixture with ethyl acetate (1-2 mL) and the layers were separated. The aqueous layer was further extracted with ethyl acetate (1-2 mL). The organic layers were combined, dried over Na₂SO₄, concentrated, and purified by silica gel column chromatography (20% hexanes/ethyl acetate) to afford product **2**.

General procedure for BiCl₃ catalyzed reactions of furfuryl alcohols with different nucleophiles (Scheme-1). To a solution of furfuryl alcohol (0.1 mmol, 1 equiv) in

nitromethane (1 mL) were added an appropriate nucleophile (0.11 mmol, 1.1 equiv) followed by BiCl₃ (0.02 mmol, 0.2 equiv) at room temperature. The reaction mixture was stirred at room temperature until the alcohol was consumed as monitored by TLC. Quenched the reaction mixture with aqueous saturated sodium bicarbonate solution (1-2 mL). Diluted the reaction mixture with ethyl acetate (1-2 mL) and the layers were separated. The aqueous layer was further extracted with ethyl acetate (1-2 mL). The organic layers were combined, dried over Na₂SO₄, concentrated, and purified by silica gel column chromatography (hexanes/ethyl acetate) to afford product.

Note: The reaction is found to be air or moisture insensitive. This reaction can be carried out using Laboratory grade solvents. This reaction doesn't require any precautions such as working under nitrogen atmosphere.

3-(1-(Benzofuran-2-yl)-3-methylbutyl)pentane-2,4-dione (3).

Colorless oil. $R_f = 0.6$ (hexane/EtOAc = 4/1). IR (thin film, neat): v_{max}/cm^{-1} 2969, 2894, 1732, 1683, 1450, 1366, 1265, 1074, 745. ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, J = 7.1 Hz, 1H), 7.34 (d, J = 7.4 Hz, 1H), 7.18-7.07 (m, 2H), 6.40 (s, 1H), 4.16 (d, J = 10.0 Hz, 1H), 3.79 (dt, J = 11.5 and 3.3 Hz, 1H), 3.01 (s, 3H), 1.80 (s, 3H), 1.73-1.65 (m, 1H), 1.33-1.28 (m, 1H), 1.13-1.04 (m, 1H), 0.85 (d, J = 6.4 Hz, 3H), 0.72 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 202.7, 202.4, 156.9, 154.3, 128.2, 123.8, 122.8, 120.4, 111.0, 102.2, 73.2, 41.3, 37.9, 29.5, 25.4, 24.3, 23.7, 20.8. HRMS (ESI): m/z calcd for C₁₈H₂₂O₃Na (M+Na): 309.1467. Found: 309.1463.

3-((-1-(Benzofuran-2-yl)-2-methylpentyl)pentane-2,4-dione (4).

Pale yellow oil. $R_f = 0.7$ (hexane/EtOAc = 4/1). IR (thin film, neat): v_{max}/cm^{-1} 2961, 2873, 1731, 1699, 1583, 1421, 1358, 1254, 1170, 748. ¹H NMR (400 MHz, CDCl₃): δ 7.41 (d, J = 7.7 Hz, 1H), 7.34 (d, J = 7.7 Hz, 1H), 7.18-7.09 (m, 2H), 6.36 (s, 1H), 4.46 (d, J = 11.8 Hz,

1H), 3.81(dd, J = 12.0 and 3.1 Hz, 1H), 2.21 (s, 3H), 1.90 (s, 3H), 1.60-1.54 (m, 1H), 1.40-1.00 (m, 4H), 0.89 (d, J = 4.1 Hz, 3H), 0.87-0.75 (m, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 202.7, 202.5, 156.1, 154.4, 128.2, 127.6, 123.6, 120.6, 110.9, 105.4, 70.9, 45.0, 37.9, 33.8, 29.7, 28.8, 20.5, 18.6, 14.1. HRMS (ESI): *m*/*z* calcd for C₁₉H₂₄O₃Na (M+Na): 323.1623. Found: 323.1622.

3-(-1-(Benzofuran-3-yl)ethyl)pentane-2,4-dione (5).

Pale yellow oil. $R_f = 0.7$ (hexane/EtOAc = 4/1). IR (thin film, neat): v_{max}/cm^{-1} 2936, 2880, 1724, 1700, 1598, 1455, 1422, 1358, 1253, 1167, 1011, 942, 809, 752. ¹H NMR (400 MHz, CDCl₃): δ 7.61-7.06 (m, 5H), 4.12 (d, J = 11.2 Hz, 1H), 3.77 (m, 1H), 2.27 (s, 3H), 1.84 (s, 3H), 1.22 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 203.2, 203.2, 154.4, 142.2, 126.3, 124.6, 122.8, 122.0, 119.8, 111.0, 75.0, 30.4, 30.1, 29.0, 19.5. HRMS (ESI): *m/z* calcd for C₁₅H₁₆O₃Na (M+Na): 267.0997. Found: 267.0994.

3-(1-(3-Methylbenzofuran-2-yl)ethyl)pentane-2,4-dione (6).

Pale yellow oil. $R_f = 0.7$ (hexane/EtOAc = 4/1). IR (thin film, neat): v_{max}/cm^{-1} 2969, 1736, 1732, 1561, 1377, 1248, 1099, 1045, 743. ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, *J* =7.4 Hz, 1H), 7.43 (d, *J* =7.9 Hz, 1H), 7.17-7.09 (m, 2H), 4.30 (d, *J* = 12.7 Hz, 1H), 3.84, (dq, *J* = 12.7 and 7.0 Hz, 1H), 2.20 (s, 3H), 2.09 (s, 3H), 1.84 (s, 3H), 1.19 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 202.6, 202.4, 153.8, 153.2, 129.8, 123.7, 122.3, 119.2, 110.7, 110.5, 72.8, 31.8, 29.9, 29.7 17.8, 7.7. HRMS (ESI): *m*/*z* calcd for C₁₆H₁₉O₃Na (M+Na+1): 259.1256. Found: 259.1253.

Page 8 of 102

3-(1-(Benzofuran-2-yl)oct-2-ynyl)pentane-2,4-dione (7, Major).

Pale yellow oil. $R_f = 0.6$ (hexane/EtOAc = 4/1). IR (thin film, neat): v_{max}/cm^{-1} 2956, 2932, 2860, 1720, 1705, 1599, 1454, 1357, 1254, 1172, 1149, 1009, 854. ¹H NMR (400 MHz, CDCl₃): δ 7.42 (m, 1H), 7.33 (m, 1H), 7.17- 7.08 (m, 2H), 6.35 (s, 1H), 4.65 (d, *J* = 10.2, 1H), 4.22 (d, *J* = 10.2 Hz, 1H), 2.30 (s, 3H), 2.16 (s, 3H), 2.10-1.06 (m, 2H), 1.51-1.16 (m, 6H), 0.86-0.78 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 201.2, 201.1, 154.4, 154.6, 128.0, 124.2, 122.9, 120.9, 111.1, 104.3, 85.7, 84.1, 71.9, 31.5, 30.9, 30.4, 29.3, 28.2, 22.1, 18.7, 13.9. HRMS (ESI): *m/z* calcd for C₂₁H₂₄O₃Na (M+Na): 347.1618. Found: 347.1623.

3-((Benzofuran-2-yl)(2-bromophenyl)methyl)pentane-2,4-dione (9).

Yellow colored oil. $R_f = 0.6$ (hexane/EtOAc = 4/1). IR (thin film, neat): v_{max}/cm^{-1} 2932, 1723, 1703, 1471, 1358, 1252, 1172, 1022, 765. ¹H NMR (400 MHz, CDCl₃): δ 7.51-7.56 (m, 8H), 5.59 (s, 1H), 5.57 (d, *J* = 10.1 Hz, 1H), 4.83 (d, *J* = 10.1 Hz, 1H), 2.14 (s, 3H), 1.98 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): 201.6, 201.4, 155.2, 154.7, 136.9, 133.6, 129.2, 129.1, 128.1, 128.0, 124.9, 124.0, 122.9, 120.9, 111.0, 104.4, 72.1, 43.2, 30.0, 28.4. HRMS (ESI): *m/z* calcd for C₂₀H₁₇BrO₃Na (M+Na): 384.0361. Found: 384.0363.

2-(1-(Benzofuran-2-yl)ethyl)-1-phenylbutane-1,3-dione (10).

Pale yellow oil. $R_f = 0.6$ (hexane/EtOAc = 4/1). IR (thin film, neat): v_{max}/cm^{-1} 2956, 2869, 1722, 1675, 1454, 1255, 1180, 749. ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, J = 7.2 Hz, 2H), 7.43-7.27 (m, 4H), 7.20-7.00 (m, 3H), 6.30 (s, 1H), 4.93 (d, J = 10.1 Hz, 1H), 4.01 (m, 1H), 2.13 (s, 3H), 1.33 (d, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): 202.5, 194.9, 159.2, 154.6, 136.8, 134.0, 128.9 (2CH), 128.5 (2H), 128.3, 123.8, 122.7, 120.7, 110.9, 102.9, 67.7, 34.4, 28.5, 17.9. HRMS (ESI): m/z calcd for C₂₀H₁₈O₃Na (M+Na): 329.1154. Found: 329.1153.

3-(3-Methyl-1-(5-methylfuran-2-yl)butyl)pentane-2,4-dione (11).

Pale yellow oil. $R_f = 0.6$ (hexane/EtOAc = 4/1). IR (thin film, neat): v_{max}/cm^{-1} 2954, 2871, 1726, 1701, 1374, 1226, 1073, 1018, 785. ¹H NMR (400 MHz, CDCl₃): δ 5.83 (d, *J* = 3.0 Hz, 1H), 5.75-5.73 (m, 1H), 3.97 (d, *J* = 10.8 Hz, 1H), 3.49 (dt, *J* = 11.4 and 3.3 Hz, 1H), 2.14 (s, 3H), 1.86 (s, 3H), 1.49 (s, 3H), 1.30-0.95 (m, 3H), 0.80 (d, *J* = 4.8 Hz, 3H), 0.72 (d, *J* = 4.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): 203.4, 203.1, 151.9, 151.8, 108.0, 105.9, 73.8, 41.2, 37.7, 29.9, 29.5, 25.4, 23.7, 20.9, 13.5. HRMS (ESI): *m/z* calcd for C₁₅H₂₂O₃Na (M+Na): 273.1467. Found: 273.1461.

3-((5-Methylfuran-2-yl)(phenyl)methyl)pentane-2,4-dione (12)

Pale yellow oil. $R_f = 0.6$ (hexane/EtOAc = 9/1). IR (thin film, neat): v_{max}/cm^{-1} 2926, 1727, 1724, 1450, 1371, 1243, 1035, 787, 701. ¹H NMR (400 MHz, CDCl₃): δ 7.22-7.15 (m, 6H), 5.80 (d, J = 3.0 Hz, 1H), 4.71 (d, J = 12.0 Hz, 1H), 4.50 (d, J = 12.0 Hz, 1H), 2.17 (s, 3H), 2.08 (s, 3H), 1.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): 202.5, 202.4, 152.2, 151.6, 139.0, 128.8, 128.3, 128.2, 127.8, 127.3, 107.4, 106.2, 73.4, 45.1, 30.3, 28.8, 13.5. HRMS (ESI): *m/z* calcd for C₁₇H₁₈O₃Na (M+Na): 293.1154. Found: 293.1153.

3-(1-(5-Methylthiophen-2-yl)butyl)pentane-2,4-dione (13).

Colorless oil. $R_f = 0.4$ (hexane/EtOAc = 9/1). IR (thin film, neat): v_{max}/cm^{-1} 2979, 1724, 1723, 1455, 1362, 1254, 1178, 781. ¹H NMR (400 MHz, CDCl₃): δ 6.56 (d, J = 3.1 Hz, 1H), 6.50 (d, J = 3.1 Hz, 1H), 4.11 (d, J = 11.2 Hz, 1H), 3.70 (m, 1H), 2.41 (s, 3H), 2.23 (s, 3H), 1.94 (s, 3H), 1.47-1.36 (m, 2H), 1.27-1.17 (m, 2H), 0.83 (t, J = 11.2 Hz, 3H). ¹³C NMR (100

MHz, CDCl₃): 203.1, 203.1, 147.4, 141.9, 138.3, 125.6, 124.7, 41.4, 37.6, 29.7, 24.8, 20.0, 14.2, 13.6. HRMS (ESI): *m/z* calcd for C₁₄H₂₀O₂NaS (M+Na): 275.1082. Found: 275.1078.

2-Acetyl-2-(1-(benzofuran-2-yl)ethyl)cyclopentanone (14, major).

Light yellow oil. $R_f = 0.70$ (hexane/EtOAc = 4/1). IR (thin film, neat): v_{max}/cm^{-1} 3440, 2970, 1737, 1704, 1456, 1358, 1454, 1256, 1143, 1043, 815, 749, 582. ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.27 (m, 2H), 7.17-7.06 (m, 2H), 6.29 (s, 1H), 4.01 (q, *J* = 6.9 Hz, 1H), 2.53-2.54 (m, 1H), 2.2 (s, 3H), 2.19-2.06 (m, 1H), 1.96-1.71 (m, 4H), 1.62-1.41 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 214.8, 202.7, 158.7, 154.4, 128.0, 123.9, 122.8, 120.7, 111.0, 104.5, 73.4, 39.5, 37.6, 26.4, 25.5, 19.3, 15.0. HRMS (ESI): *m/z* calcd for C₁₇H₁₈O₃Na (M+Na): 293.1154. Found: 293.1153.

3-(1-(Benzofuran-2-yl)-3-methylbutyl)-3-methylpentane-2,4-dione (15).

Pale yellow oil. $R_f = 0.7$ (hexane/EtOAc = 4/1). IR (thin film, neat): v_{max}/cm^{-1} 1732, 1698, 1454, 1373, 1094, 1046, 911, 736. ¹H NMR (400 MHz, CDCl₃): δ 7.40 (d, J = 7.3 Hz, 1H), 7.32 (d, J = 7.5 Hz, 1H), 7.18-7.08 (m, 2H), 6.41 (s, 1H), 4.03 (dd, J = 1.2 and 2.3 Hz, 1H), 2.08 (s, 3H), 1.92 (s, 3H), 1.76 (m, 1H), 1.43 (s, 3H), 1.26 (m, 1H), 0.98 (m, 1H), 0.88 (d, J = 6.6, 3H), 0.75 (d, J = 6.6, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 206.0, 206.1, 157.1, 154.5, 128.1, 123.7, 122.7, 120.6, 111.0, 105.6, 71.1, 40.8, 37.9, 27.1, 26.9, 26.0, 23.9, 21.0, 14.9. HRMS (ESI): *m/z* calcd for C₁₉H₂₄O₃Na (M+Na): 323.1623. Found: 323.1623.

tert-Butyl 2-acetyl-3-(benzofuran-2-yl)butanoate (16, Major).

Colorless oil. $R_f = 0.7$ (hexane/EtOAc = 4/1). IR (thin film, neat): v_{max}/cm^{-1} 2982, 1714, 1732, 1258, 1145, 745. ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.31 (m, 2H), 7.17-7.08 (m, 2H), 6.38 (s, 1H), 3.77 (d, J = 11.2 Hz, 1H), 3.72-3.66 (m, 1H), 2.20 (s, 3H), 1.38 (s, 9H),

1.33 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 202.1, 201.9, 167.2, 159.5, 128.4, 123.6, 122.6, 120.6, 110.8, 102.6, 82.4, 65.2, 33.3, 29.9, 27.8, 17.4. HRMS (ESI): m/z calcd for C₁₈H₂₂O₄Na (M+Na): 325.1416. Found: 325.1414.

Ethyl 2-((3-formylfuran-2-yl)(phenyl)methyl)-3-oxobutanoate (17).

Pale yellow oil. $R_f = 0.5$ (hexane/EtOAc = 7/3). IR (thin film, neat): v_{max} /cm⁻¹ 2936, 2880, 1735, 1700, 1598, 1455, 1422, 1358, 1253, 1167, 1011, 942. ¹H NMR (400 MHz, CDCl₃): δ 9.98 (s, 1H), 7.30-7.24 (m, 2H), 7.23-7.10 (m, 4H), 6.65 (s, 1H), 5.24 (d, *J* = 4.2 Hz, 1H), 4.61 (d, *J* = 4.2 Hz, 1H), 3.88 (q, *J* = 7.1 Hz, 2H), 2.16 (s, 3H), 1.03 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 200.4, 184.7, 166.7, 162.4, 142.6, 137.4, 129.1, 128.2 (2CH), 127.9 (2CH), 122.3, 108.9, 63.1, 61.9, 42.7, 31.0, 14.0. HRMS (ESI): *m/z* calcd for C₁₈H₁₈O₅Na (M+Na): 337.1052. Found: 337.1050.

2-(2-Acetyl-3-oxo-1-phenylbutyl)furan-3-carbaldehyde (18).

Pale yellow oil. $R_f = 0.3$ (hexane/EtOAc = 9/1). IR (thin film, neat): v_{max}/cm^{-1} 2961, 2927, 2874, 2743, 1731, 1702, 1680, 1458, 1457, 1381, 1359, 1254, 755. ¹H NMR (400 MHz, CDCl₃): δ 9.94 (s, 1H), 7.38-7.13 (m, 6H), 6.58 (s, 1H), 5.30 (d, *J* = 11.8 Hz, 1H), 4.84 (d, *J* = 11.8 Hz, 1H), 2.08 (s, 3H), 1.92 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 201.2, 200.8, 184.7, 161.6, 142.6, 137.1, 129.2, 128.2 (2C), 128.0 (2C), 122.1, 109.1, 71.6, 43.1, 30.3, 29.4. HRMS (ESI): *m/z* calcd for C₁₇H₁₆O₄Na (M+Na): 307.0946. Found: 307.0947.

2-(1-(5-Methylfuran-2-yl)ethyl)benzofuran (19).

Pale yellow oil. $R_f = 0.6$ (hexane/EtOAc = 9/1). IR (thin film, neat): v_{max}/cm^{-1} 2933, 1454, 1245, 1120, 1168, 1019, 787, 744. ¹H NMR (400 MHz, CDCl₃): δ 7.53-7.45 (m, 2H), 7.28-7.19 (m, 2H), 6.46 (s, 1H), 6.05 (d, J = 2.9 Hz, 1H), 5.93 (d, J = 2.9 Hz, 1H), 4.33 (q, J = 7.2,

1H), 2.29 (s, 3H), 1.71 (d, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 160.0, 154.7, 153.8, 151.1, 128.6, 123.4, 122.5, 120.5, 111.0, 106.0, 106.1, 101.9, 33.5, 17.9, 13.6. HRMS (ESI): m/z calcd for C₁₅H₁₄O₂Na (M+Na): 249.0892. Found: 249.0891.

2-(1-(5-Methylthiophen-2-yl)ethyl)benzofuran (20).

Colorless oil. $R_f = 0.6$ (hexane/EtOAc = 9.5/0.5). IR (thin film, neat): v_{max}/cm^{-1} 2974, 2925, 1585, 1453, 1374, 1253, 1166, 1046, 929, 881, 800, 744. ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.38 (m, 2H), 7.16-7.06 (m, 2H), 6.66 (s, 1H), 6.56 (s, 1H), 6.62 (d, J = 3.2 Hz, 1H), 4.37 (q, J = 7.1 Hz, 1H), 2.34 (s, 3H), 1.67 (d, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 161.4, 154.7, 144.1, 138.3, 128.5, 124.6, 124.0, 123.5, 122.5, 120.6, 111.0, 101.7, 35.1, 21.0, 15.3. HRMS (ESI): m/z calcd for C₁₅H₁₄OSNa (M+Na): 265.0663. Found: 265.0658.

tert-Butyl 3-(1-(benzofuran-2-yl)-3-methylbutyl)-1*H*-pyrrole-1-carboxylate (21, Major). Colorless oil. $R_f = 0.6$ (hexane/EtOAc = 9.5/0.5). IR (thin film, neat): v_{max}/cm^{-1} 2957, 1742, 1455, 1369, 1324, 1254, 1162, 1123, 738. ¹H NMR (400 MHz, CDCl₃): δ 7.40 (m, 2H), 7.15 (m, 3H), 6.23 (s, 1H), 6.13 (s, 1H), 6.10 (t, *J* = 3.3 Hz, 1H), 5.08 (t, *J* = 7.6 Hz, 1H), 2.01-1.94 (m, 1H), 1.87-1.80 (m, 1H), 1.68-1.61 (m, 1H), 1.47 (s, 9H), 0.96 (d, *J* = 6.6 Hz, 3H), 0.93 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 161.2, 154.6, 149.3, 135.5, 128.8, 122.3, 120.3, 119.9, 111.8, 110.9, 109.9, 102.1, 83.6, 43.2, 35.7, 27.9, 27.4 (3CH₃), 25.8, 22.8, 22.4. HRMS (ESI): *m/z* calcd for C₂₂H₂₇NO₃Na (M+Na): 376.1889. Found: 376.1884.

3-(1-(Benzofuran-2-yl)-3-methylbutyl)-1*H*-indole (23).

Pale yellow oil. $R_f = 0.4$ (hexane/EtOAc = 9.5/0.5). IR (thin film, neat): v_{max} /cm⁻¹ 3376, 2963, 2927, 2852, 2874, 1597, 1455, 1254, 986. ¹H NMR (400 MHz, CDCl₃): δ 7.92 (br s, 1H), 7.57 (d, J = 7.5, 1H), 7.40-7.21 (m, 3H), 7.14-6.91 (m, 5H), 6.30 (s, 1H), 4.42 (t, J = 7.8

Hz, 1H), 2.13-2.02 (m, 1H), 2.02-1.93 (m, 1H), 1.60-1.49 (m, 1H), 0.90 (d, J = 6.7 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 161.7, 154.7, 136.4, 128.8, 126.6, 123.0, 122.3, 122.0, 121.7, 120.3, 119.4, 119.3, 117.0, 111.1, 111.0, 102.0, 43.1, 34.8, 25.8, 22.6, 22.5. HRMS (ESI): m/z calcd for C₂₁H₂₁NONa (M+Na): 326.1521. Found: 326.1520.

2-(1-(2,4-Dimethoxyphenyl)-3-methylbutyl)benzofuran (24, Major).

Pale yellow oil. $R_f = 0.7$ (hexane/EtOAc = 4/1). IR (thin film, neat): v_{max} /cm⁻¹ 2955, 1505, 1456, 1294, 1257, 1207, 1040, 940, 748. ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.04 (m, 4H), 6.45-6.34 (m, 3H), 6.31 (s, 1H), 4.56 (t, *J* = 7.8 Hz, 1H), 3.74 (s, 3H), 3.70 (s, 3H), 1.95 (m, 1H), 1.78 (m, 1H),0.93 (m, 1H), 0.83 (d, *J* = 6.56 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 162.0, 159.3, 157.8, 154.6, 129.9, 128.8, 128.6, 123.1, 122.2, 120.2, 110.9, 104.3, 102.1, 96.5, 55.6, 55.2, 43.1, 34.8, 25.8, 22.5 (2C). HRMS (ESI): *m*/*z* calcd for C₂₁H₂₄O₃Na (M+Na): 347.1623. Found: 347.1621.

2-((Benzofuran-2-yl)(5-methylfuran-2-yl)methyl)-1-methyl-1*H*-indole (26).

Pale yellow oil. $R_f = 0.6$ (hexane/EtOAc = 9.5/0.5). IR (thin film, neat): v_{max} /cm⁻¹ 2920, 1583, 1562, 1453, 1372, 1242, 1245, 1132, 1021, 784, 741. ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.37 (m, 3H), 7.24-6.97 (m, 5H), 6.99 (s, 1H), 6.38 (s, 1H), 5.94 (s, 1H), 5.84 (s, 1H), 5.72 (s, 1H), 3.71 (s, 3H), 2.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 158.2, 154.9, 152.0, 151.4, 137.1, 128.6, 127.7, 126.8, 123.5, 122.2, 121.7, 120.6, 119.5, 119.3, 112.5, 111.2, 109.3, 107.9, 106.2, 103.9, 37.0, 32.8, 13.2. HRMS (ESI): *m/z* calcd for C₂₃H₁₉O₂NNa (M+Na): 364.1314. Found: 364.1318.

2-(1-Ethoxy-3-methylbutyl)benzofuran (27).

Colorless oil. $R_f = 0.6$ (hexane/EtOAc = 9/1). IR (thin film, neat): v_{max} /cm⁻¹ 2958, 2871, 1590, 1455, 1368, 1252, 1093, 746. ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.41 (m, 2H), 7.16-1.07 (m, 2H), 6.50 (s, 1H), 4.35 (q, J = 6.2, 1H), 3.45-3.40 (m, 1H), 3.33-3.29 (m, 1H), 1.81-1.77 (m, 1H), 1.64-1.57 (m, 2H), 1.02 (t, J = 6.2 Hz, 3H), 0.85-0.81 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 158.2, 154.9, 128.1, 123.9, 122.6, 120.8, 111.3, 103.8, 73.8, 64.5, 43.4, 24.6, 22.8, 22.3, 15.3. HRMS (ESI): m/z calcd for C₁₅H₂₀O₂Na (M+Na): 255.1361. Found: 255.1364.

3-(1-(Prop-2-yn-1-yloxy)ethyl)benzo[b]thiophene (28).

Colorless oil. $R_f = 0.7$ (hexane/EtOAc = 9.5/0.5). IR (thin film, neat): v_{max}/cm^{-1} 3292, 2979, 2932, 2855, 1457, 1427, 1442, 1372, 1354, 1254, 1007, 763. ¹H NMR (400 MHz, CDCl₃): δ 8.03-8.00 (m,1H), 7.93-7.88 (m,1H), 7.43-7.56 (m, 3H), 5.14 (q, J = 6.5 Hz, 1H), 4.22 (dd, J = 15.7 and 2.4 Hz, 1H), 4.03 (dd, J = 15.6 and 2.4 Hz, 1H), 2.46 (t, J = 2.4 Hz, 1H), 1.68 (d, J = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 141.1, 37.4, 124.4, 124.1, 123.3, 122.9, 122.6, 80.0, 137.2, 74.2, 72.3, 55.6, 21.8. HRMS (ESI): m/z calcd for C₁₃H₁₂OSNa (M+Na): 239.0507. Found: 239.0502.

2-(1-(Benzylthio)-3-methylbutyl)benzofuran (29).

Colorless oil. $R_f = 0.6$ (hexane/EtOAc = 9/1). IR (thin film, neat): v_{max}/cm^{-1} 3308, 2956, 2865, 1582, 1454, 1253, 786. ¹H NMR (400 MHz, CDCl₃): δ 7.50-7.43 (m, 2H), 7.28-7.16 (m, 7H), 6.49 (s, 1H), 3.83-3.38 (m, 1H), 3.60 (s, 2H), 1.91-1.84 (m, 1H), 1.74-1.58 (m, 2H), 0.82 (d, J = 7.4 Hz, 3H), 0.76 (d, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 158.0, 138.0, 129.5, 129.0, 128.5, 128.4, 127.0, 123.9, 122.8, 120.7, 111.3, 103.0, 43.3, 42.3, 41.9, 35.6, 25.9, 22.2. HRMS (ESI): *m*/*z* calcd for C₂₀H₂₂OSNa (M+Na): 333.1289. Found: 333.1288.

2-(3-Methyl-1-(phenylthio)butyl)benzofuran (30).

Colorless oil. $R_f = 0.7$ (hexane/EtOAc = 4/1). IR (thin film, neat): v_{max}/cm^{-1} 3015, 2958, 1583, 1454, 1253, 1216, 738. ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.40 (m, 2H), 7.29-7.13 (m, 7H), 6.28 (s, 1H), 4.30 (t, *J* = 7.1 Hz, 1H), 2.03-1.92 (m, 1H), 1.85 -1.70 (m, 2H), 0.90 (d, *J* = 6.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 157.5, 154.7, 133.7, 133.4, 129.1, 128.7 (2C), 128.2, 127.5, 123.8, 122.6, 120.6, 111.1, 103.9, 45.4, 42.2, 26.0, 22.5, 22.1. HRMS (ESI): *m/z* calcd for C₁₉H₂₀OSNa (M+Na): 319.1133; Found; 319.1130.

N-(1-(Benzofuran-2-yl)ethyl)-4-nitrobenzenamine (31).

Pale yellow solid. M.P. = 137-139 °C. $R_f = 0.6$ (hexane/EtOAc = 4/1). IR (KBr): $v_{max}/cm^{-1} = 3372, 1599, 1473, 1311, 1110, 751.$ ¹H NMR (400 MHz, CDCl₃): δ 8.02-7.98 (m, 2H), 7.44-7.36 (m, 2H), 7.22-7.12 (m, 2H), 7.38-7.28 (m, 2H), 6.56-6.49 (m, 2H), 4.80-4.75 (m, 1H), 1.66 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 157.8, 154.8, 151.8, 138.6, 127.9, 126.3 (2C), 124.2, 122.9, 121.0, 111.8 (2C), 111.1, 102.7, 47.4, 20.7. HRMS (ESI): *m/z* calcd for C₁₆H₁₄N₂O₃Na (M+Na): 305.0902. Found: 305.0901.

Benzyl (benzofuran-2-yl)(cyclohex-3-enyl)methylcarbamate (32).

Colorless viscous oil. $R_f = 0.6$ (hexane/EtOAc = 1/4). IR (thin film): v_{max}/cm^{-1} 3104, 2954, 2867, 1698, 1530, 1045, 745. ¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, J = 8.4 Hz, 1H), 7.44 (d, J = 6.9 Hz, 1H), 7.20 (m, 7H), 6.62 (s, 1H), 5.73-5.64 (m, 2H), 5.21 (brs, 1H), 5.12 (ABq, J = 5.2 Hz, 2H), 4.85 (d, J = 6.6 Hz, 1H), 2.26 (m, 1H), 2.16-2.00 (m, 2H), 2.00-1.77 (m, 2H), 1.50-1.24 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 156.2, 156.1, 136.2, 128.5 (2CH), 128.2 (2C), 128.0, 128.3, 127.0, 126.9, 125.5, 124.0, 122.8, 120.9, 111.1, 103.9, 67.0, 54.3, 37.5, 28.5, 27.8, 24.9. HRMS (ESI): *m/z* calcd for C₂₃H₂₃O₃NNa (M+Na): 384.1576. Found: 384.1572.

2-(1-Azidoethyl)benzofuran (33).

Colorless oil. $R_f = 0.7$ (hexane/EtOAc = 9.5/0.5). IR (thin film, neat): v_{max} /cm⁻¹ 2929, 2106, 1454, 1153, 1043, 820, 746. ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.39 (m, 2H), 7.24-7.13 (m, 2H), 6.59 (s, 1H), 4.6 (q, *J* = 6.8 Hz, 1H), 1.59 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 155.9, 154.9, 127.7, 124.6, 123.0, 121.2, 111.3, 103.6, 54.4, 18.0. HRMS (ESI): *m/z* calcd for C₁₀H₉N₃ONa (M+Na): 210.0644. Found: 210.0644.

2-(Pent-4-en-2-yl)benzofuran (34).

Colorless oil. $R_f = 0.80$ (hexane/EtOAc = 9/1). IR (thin film, neat): v_{max} /cm⁻¹ 3072, 2928, 2977, 1587, 1454, 1253, 1170, 1123, 729. ¹H NMR (400 MHz, CDCl₃): δ 7.46- 7.44 (m, 2H), 7.39-7.37 (m, 2H), 6.34 (s, 1H), 5.79-5.64(m, 1H), 5.06-4.97 (m, 2H), 3.02-2.97 (m, 1H), 2.58-2.34 (m, 2H), 1.29 (d, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 163.1, 154.5, 136.0, 128.7, 123.1, 122.3, 120.3, 116.7, 110.8, 100.9, 39.5, 33.4, 18.2. HRMS (ESI): *m/z* calcd for C₁₃H₁₅OK (M+K+1): 226.0760. Found: 226.0876.

2-(1-Phenylprop-1-en-2-yl)benzofuran (36).

Light yellow oil. $R_f = 0.7$ (hexane/EtOAc = 9/1). IR (thin film, neat): v_{max} /cm⁻¹ 3057, 1556, 1494, 1471, 1452, 1303, 1279, 1256, 1007, 940, 801, 784, 762. ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.01 (m, 9H), 6.60 (q, J = 7.2 Hz, 1H), 5.99 (s, 1H), 2.06 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 157.5, 154.7, 132.7, 129.9, 128.2 (2C), 128.1 (2C), 127.6, 125.0, 124.2, 122.7, 120.8, 111.2, 107.3, 103.8, 15.0. HRMS (ESI): *m*/*z* calcd for C₁₇H₁₄OK (M+K): 273.0682. Found: 273.0885.

Synthesis of the diol 38a and the cyclic ether 38 (Scheme-2). The cyclic ether 38 was synthesized from diol 38a as shown in the following scheme.

Step-1: The reaction was carried out by adding furyllithium to butyrolactone (500 mg, 5.8 mmol), obtained the keto-alcohol (1.08 g crude), following literature procedure.³ Proceeded to next step without further purification.

Step-2: To a solution of crude keto-alcohol (1.08 g, 6.9 mmol) in anhydrous THF (10 mL) at 0-5 $^{\circ}$ C was added a weighed amount of LAH (697 mg, 8.39 mmol) in three portions under nitrogen atmosphere. The reaction mixture was stirred at the same temperature until the starting material was consumed as monitored by TLC and the reaction mixture was diluted carefully with ethyl acetate and subsequently quenched with saturated ammonium chloride solution (1 mL). Filtered the reaction mixture through short celite pad, concentrated and purified by silica gel column chromatography (50% hexanes/ethyl acetate) to afford an *unstable* diol **38a**⁴ (335 mg, 30% over 2 steps).

Step-3: To a solution of the diol **38a** (0.1 mmol, 1 equiv) in nitromethane (1 mL) was added BiCl₃ (0.02 mmol, 0.2 equiv) at room temperature. The reaction was stirred at room temperature until the alcohol was consumed as monitored by TLC and the reaction mixture was quenched with aqueous saturated sodium bicarbonate solution (1-2 mL). Diluted the reaction mixture with ethyl acetate (1-2 mL) and the layers were separated. The aqueous layer was further extracted with ethyl acetate (1-2 mL). The organic layers were combined, dried over Na₂SO₄, concentrated, and purified by silica gel column chromatography (2-3% hexanes/ethyl acetate) to afford the cyclic ether **38** in 80% yield.

³ H, Guo and G. A. O'Doherty, Org. Lett., 2006, **8**, 1609.

⁴ (*a*) D. Hongxun, Z. Weike and B. Junchai, *Tetrahedron Lett.*, 1987, **28**, 2599; (*b*) T. Irkinshaw, D. Cheshire and A. Mete, *PCT. Intl. Appl.*, (2001) WO20011062713.

1-(Furan-2-yl)butane-1,4-diol (38a).

Pale yellow oil. $R_f = 0.5$ (hexane/EtOAc = 5/5). IR (thin film, neat): v_{max}/cm^{-1} 3626, 2931, 1427, 1374, 1131, 849, 745. ¹H NMR (400 MHz, CDCl₃): δ 7.27 (s, 1H), 6.24 (s, 1H), 6.17 (s, 1H), 4.62 (t, *J* = 6.5 Hz, 1H), 3.56 (t, *J* = 6.9 Hz, 2H), 3.14 (br s, 2H), 1.80 (m, 2H), 1.58 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 156.7, 141.7, 110.1, 105.7, 67.5, 62.4, 32.6, 28.7. HRMS (ESI): *m/z* calcd for C₈H₁₂O₃Na (M+Na): 179.0684. Found: 179.0682.

2-(Tetrahydrofuran-2-yl)furan (38).

Colorless oil. $R_f = 0.4$ (hexane/EtOAc = 9.5/0.5). IR (thin film, neat): v_{max}/cm^{-1} 2970, 2932, 2876, 1454, 1381, 1254, 1219, 1078, 1020, 751. ¹H NMR (400 MHz, CDCl₃+CCl₄): δ 7.30 (s, 1H), 6.25 (s, 1H), 6.18 (s, 1H), 4.84 (t, J = 6.5 Hz, 1H), 3.90 (q, J = 6.8 Hz, 1H), 3.83-3.81 (m, 1H), 2.17-1.85 (m, 4H). ¹³C NMR (100 MHz, CDCl₃+CCl₄): δ 155.1, 142.2, 110.0, 106.5, 73.8, 68.2, 30.3, 25.9. HRMS (ESI): m/z calcd for C₈H₁₀O₂Na (M +Na): 161.0578. Found: 161.0577.

Synthesis of the diol 39a and the cyclic ether 39, and efforts towards the total synthesis of γ -lactone natural product 40 (Scheme-2). The cyclic ether 6 was synthesized from diol 1at as shown in the following scheme.

Step-1: The reaction was carried out by adding furyllithium to butyrolactone (500 mg, 5.8 mmol), obtained the keto-alcohol (660 mg crude), following literature procedure.⁴ Proceeded to next step without further purification.

Step-2: To a solution of crude keto-alcohol (660 mg, 3.92 mmol) in anhydrous THF (7 mL) at 0 °C under nitrogen atmosphere was added slowly methylmagnesium bromide solution (1.4 M in THF:toluene (1:3), 9.3 mL, 13.1 mmol). The reaction mixture was stirred at the same temperature until the starting material was consumed as monitored by TLC and the reaction mixture was carefully quenched with saturated ammonium chloride solution (~10 mL) at 0-5 °C. Layers were separated and the aqueous layer was further extracted with ethyl acetate (2 x 5 mL). The combined organic phase was dried (Na₂SO₄) and concentrated under reduced pressure. Crude was purified by silica gel column chromatography (50% hexanes/ethyl acetate) to afford rather an *unstable* diol **39a** (265 mg, 55% over 2 steps).

Step-3: Following the procedure described for the synthesis of the cyclic ether 38, the diol39a afforded the cyclic ether 39 in 83% yield.

Step-4: All our efforts⁵ to convert the cyclic ether **39** to butyrolactone natural product **40** were unsuccessful.

4-(5-Methylfuran-2-yl)pentane-1,4-diol (39a).

Pale yellow oil. $R_f = 0.60$ (hexane/EtOAc = 1/1). IR (thin film, neat): v_{max}/cm^{-1} 3351, 2929, 2919, 1454, 1254, 1171, 958, 754. ¹H NMR (400 MHz, CDCl₃): δ 6.07 (s, 1H), 5.90 (s, 1H), 3.94 (t, *J* = 6.12 Hz, 2H), 2.28 (s, 3H), 1.91 (m, 2H), 1.73 (m, 2H), 1.58 (m, 2H) 1.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): 157.9, 156.9, 119.4, 108.9, 79.8, 62.3, 29.7, 27.0, 20.0, 13.4. HRMS (ESI): *m/z* calcd for C₁₀H₁₆O₃Na (M+Na): 193.0841. Found: 193.0839.

2-(Tetrahydro-2-methylfuran-2-yl)-5-methylfuran (39).

Colorless oil. $R_f = 0.80$ (hexane/EtOAc = 9.5/0.5); IR (thin film, neat): v_{max}/cm^{-1} 2956, 2925, 2624, 1686, 1536, 1467, 1220, 969, 771, 750. ¹H NMR (400 MHz, CDCl₃): δ 5.97 (s, 1H), 5.78 (s, 1H), 3.91-3.72 (m, 1H), 2.29-2.20 (m, 1H), 2.18 (s, 6H), 1.97-1.86 (m, 2H), 1.79-1.71 (m, 2H). ¹³C NMR (100 MHz, CDCl₃ +CCl₄): δ 156.8, 151.3, 105.7, 105.3, 79.3, 67.8,

⁵ Co(acac)₂: (a) E. Hata, T. Takai and T. Mukaiyama, *Chem. Lett.*, 1993, 1513; (b) M. T. Reetz and K. Ttillner, *Tetrahedron Lett.*, 1995, **36**, 9461.

CoCl₂: P. Li and H. Alper, J. Mol. Catal., 1992, 72, 143.

CrO₂(OAc)₂: H. Frauenrath and T. Philipps, *Tetrahedron*, 1986, 42, 1135.

TMSONO₂-CrO₃: S. P. Shahi, A. Gupta, S. V. Pitre, M. V. R. Reddy, R. Kumareswaran and Y. D. Vankar, *J. Org. Chem.*, 1999, **64**, 4509.

ZnCr₂O₇: H. Firouzabadi, A. R. Sardarian, H. Moosavipour and G. M. Afshari, *Synthesis*, 1985, 285.

37.0, 26.0 (2C), 13.6. HRMS (ESI): m/z calcd for C₁₀H₁₄O₂Na (M +Na): 189.0891. Found: 189.0891.

Synthesis of the diols 41a, 42a, 46a and 54a, and cyclic ethers 41, 42, 46 and 54 (Scheme-2). The cyclic ethers 41, 42, 46 and 54 were synthesized from the respective diols 41a, 42a, 46a and 54a as shown in the following scheme.

Step-1: Followed literature procedure⁴ by adding benzofuranyllithium to the respective lactone at 0-5 °C to obtain keto-alcohols. Proceeded to next step without further purification.

Step-2: The diols **41a**, **42a**, **46a** and **54a** were obtained by following the procedure as described for the synthesis of diol **38a** in 50-60% yield range over two steps. These diols are found to be *unstable* upon storage.

Step-3: Following the procedure described for the synthesis of the cyclic ether 38, the diols 41a, 42a, 46a and 54a afforded the cyclic ethers 41, 42, 46 and 54.

1-(Benzofuran-2-yl)butane-1,4-diol (41a).

Pale yellow oil. $R_f = 0.6$ (hexane/EtOAc = 3/7). IR (thin film, neat): v_{max}/cm^{-1} 3336, 2938, 1453, 1253, 1054, 745. ¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, J = 7.2 Hz, 1H), 7.28 (d, J = 7.4 Hz, 1H), 7.21-7.11 (m, 2H), 6.55 (s, 1H), 4.30 (dd, J = 7.6 and 3.0 Hz, 1H), 3.65 (dt, J = 6.1 and 2.4 Hz, 2H), 2.07-1.09 (m, 2H), 1.71-1.63 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): 159.4, 154.7, 128.1, 124.0, 122.7, 121.0, 111.1, 102.5, 68.1, 62.6, 32.8, 28.6. HRMS (ESI): m/z calcd for C₁₂H₁₄O₃Na (M+Na): 229.0841. Found: 229.0839.

1-(Benzofuran-2-yl)pentane-1,4-diol (42a).

Pale yellow oil. $R_f = 0.6$ (hexane/EtOAc = 1/4). IR (thin film, neat): v_{max}/cm^{-1} 3324, 2924, 1563, 1260, 1021, 765, 561. ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, *J* =7.4 Hz, 1H), 7.56 (d, *J* = 7.5 Hz, 1H), 7.29-7.18 (m, 2H), 6.61 (s, 1H), 4.86 (t, *J* = 5.9 Hz, 1H), 3.49 (m, 1H), 2.13-1.94 (m, 2H), 1.70-1.48 (m, 2H), 1.19 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): 159.6, 154.7, 128.2, 123.9, 122.7, 121.0, 111.1, 102.3, 68.3, 67.8, 35.3, 32.5, 23.5. HRMS (ESI): *m/z* calcd for C₁₃H₁₆O₃Na (M+Na): 243.0997. Found: 243.0996.

Benzofuran-2-yl(2-(hydroxymethyl)phenyl)methanol (46a).

Pale yellow oil. $R_f = 0.6$ (hexane/EtOAc = 3/7). IR (thin film, neat): v_{max}/cm^{-1} 3332, 2927, 1453, 1253 745. ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, J = 7.0 Hz, 1H), 7.37 (d, J = 7.3 Hz, 1H), 7.35-7.12 (m, 6H), 6.57 (s, 1H), 6.09 (s, 1H), 4.63 (AB q, J = 12.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): 157.9, 155.0, 139.1, 138.3, 130.1, 128.5 (2CH), 128.0, 124.2, 122.9 (2CH), 121.1, 111.3, 104.0, 69.3, 63.8. HRMS (ESI): m/z calcd for C₁₆H₁₄O₃Na (M+Na): 277.0841. Found: 277.0836.

1-(Benzofuran-2-yl)pentane-1,5-diol (54a).

Pale yellow oil. $R_f = 0.60$ (hexane/EtOAc = 2/3). IR (thin film, neat): v_{max}/cm^{-1} 3338, 2938, 1453, 1253, 1173, 1069. ¹H NMR (400 MHz, CDCl₃): δ 7.35 (d, *J* = 7.1 Hz, 1H), 7.29 (d, *J* = 7.4 Hz , 1H), 7.13-7.02 (m, 2H), 6.42 (s, 1H), 4.65 (t, *J* = 6.8 Hz, 1H), 3.43 (t, *J* = 5.8 Hz, 2H), 2.79 (br s, 2H), 1.77-1.72 (m, 2H), 1.48-1.20 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): 159.6, 154.7, 126.1, 124.0, 122.7, 121.0, 111.1, 102.3, 67.9, 62.2, 35.0, 31.9, 21.6. HRMS (ESI): *m/z* calcd for C₁₃H₁₆O₃Na (M+Na): 243.0997. Found: 243.0993.

2-(Tetrahydrofuran-2-yl)benzofuran (41).

Pale yellow oil. $R_f = 0.60$ (hexane/EtOAc = 9/1). IR (thin film, neat): v_{max} /cm⁻¹ 2938, 1453, 1340, 1533, 1054, 1130, 745. ¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, *J* = 7.8 Hz, 1H), 7.37 (d, *J* = 7.8 Hz, 1H), 7.19-7.08 (m, 2H), 6.53 (s, 1H), 4.93 (t, *J* = 6.6 Hz, 1H), 3.98 (q, *J* = 8.12 Hz, 1H), 3.88 (q, 8.12 Hz, 1H), 2.28-1.71 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 158.1, 155.0, 128.1, 124.0, 122.6, 120.9, 111.2, 103.0, 74.3, 68.7, 31.6, 25.9. HRMS (ESI): *m/z* calcd for C₁₂H₁₂O₂Na (M+Na): 211.0735. Found: 211.0732.

2-(Tetrahydro-5-methylfuran-2-yl)benzofuran (42).

Light yellow Colored liquid. $R_f = 0.6$ (hexane/EtOAc = 4/1). IR (thin film, neat): v_{max}/cm^{-1} 2924, 2855, 1563, 1434, 1260, 1218, 1021, 959, 784, 765, 561. ¹H NMR (400 MHz, CDCl₃): δ 7.46 (d, J = 7.4 Hz, 1H), 7.40 (d, J = 8.1 Hz,1H), 7.20-7.10 (m, 2H), 6.57 (s, 1H), 5.13 (t, J = 6.6 Hz, 1H), 4.31-4.23 (m, 1H), 1.69-1.54 (m, 4H), 1.36 (d, J = 6.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 158.5, 155.0, 128.7, 123.9, 122.6, 120.9, 110.1, 103.0, 75.8, 74.5, 33.7, 31.0, 21.0. HRMS (ESI): m/z calcd for C₁₃H₁₄O₂Na (M+Na): 225.0891; Found: 225.0891.

2,3-Dihydro-2,2'-bibenzofuran (46).

Pale yellow oil. $R_f = 0.6$ (hexane/EtOAc = 9/1). IR (thin film, neat): v_{max}/cm^{-1} 3050, 2858, 1602, 1456, 1353, 1254, 1172, 1030, 854. ¹H NMR (400 MHz, CDCl₃): δ 7.46 (d, J = 7.4 Hz, 1H), 7.38 (d, J = 7.8 Hz, 1H), 7.31-7.11 (m, 5H), 6.85 (s, 1H), 6.30 (s, 1H), 5.28 (dd, J = 12.1 and 2.5 Hz, 1H), 5.16 (d, J = 12.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 156.8, 155.4, 139.5, 138.4, 128.3, 128.0, 127.6, 124.4, 122.8, 122.4, 121.2 (2CH), 111.5, 104.5, 79.5, 73.3. HRMS (ESI): m/z calcd for C₁₆H₁₂O₂Na (M+Na): 259.0735. Found: 259.0732.

2-(Tetrahydro-2*H*-pyran-2-yl)benzofuran (54).

Pale yellow oil. $R_f = 0.70$ (hexane/EtOAc = 9/1). IR (thin film, neat): v_{max}/cm^{-1} 2941, 2851, 1371, 1453, 1173, 1086, 1046, 1010, 784. ¹H NMR (400 MHz, CDCl₃): δ 7.48 (d, J = 7.4 Hz, 1H), 7.37 (d, J = 7.04, Hz, 1H), 7.18-7.07 (m, 2H), 6.52 (s, 1H), 4.45 (dd, J = 10.6 and

2.0 Hz, 1H), 4.06-4.00 (m, 1H), 3.55 (dt, *J* = 11.3 and 1.36 Hz, 1H), 1.94-1.79 (m, 3H), 1.65-1.48 (m, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 157.8, 154.7, 128.1, 124.1, 122.6, 121.0, 111.3, 102.7, 73.4, 68.8, 29.8, 25.7, 23.1. HRMS (ESI): *m*/*z* calcd for C₁₃H₁₄O₂Na (M +Na): 225.0891. Found: 225.0895.

Synthesis of the triol 47e and the bicyclic ether 47 (Scheme-2). The bicyclic ether 47 was synthesized from triol 47e as shown in the following scheme.

Step-1: To a solution of the acid **47a** (500 mg, 4 mmol) in THF-DCM (5:1, 12 mL) at RT were added EDC.HCl (1.15 g, 6 mmol) and HOBt (811 mg, 6 mmol) under nitrogen atmosphere. The reaction mixture was stirred at the same temperature until the starting material was consumed as monitored by TLC (15 h). Decanted the reaction mixture from the solids. Washed the solids with ethyl acetate (2 x 5 mL). The combined organic phase was concentrated and purified by column chromatography (50% hexanes/ethyl acetate) to afford the amide **47b** as colorless viscous oil (650 mg, 84%).

Step-2: Addition of furyllithium to amide **47b** (208 mg, 2.4 mmol), obtained ketone **47c** (146 mg, 86% yield) following literature procedure.⁶

Step-3: The alcohol **47d** was obtained as described for the synthesis of diol **38a**. Ketone **47c** (310 mg, 1.9 mmol) was reduced using LAH to obtain alcohol **47d** (266 mg, 85% yield).

Step-4: To a solution of alcohol **47d** (30 mg, 018 mmol) in acetone-water (1 mL, 9:1) were added NMO (31.6 mg, 027 mmol) followed by OsO_4 (1 mg, 2 mol%) at RT and stirred the reaction mixture until the starting material was consumed as monitored by TLC (20 h). Slurry of sodium thiosulfate in 1 mL water was added to the reaction mixture. Stirred for 1 h at RT, filtered through celite and the residue was washed with ethyl acetate. The aqueous phase was

⁶ M. O'Brien, A. Leach, R. J. Armstrong, K. Chonga and R. Sheridanb, Org. Biomol. Chem., 2012, 10, 2392.

separated and extracted with ethyl acetate (2 x 2 mL). The combined organic phase was dried (Na₂SO₄) and concentrated under reduced pressure. Crude product was purified by column chromatography (ethyl acetate) to afford the triol **47e** (30 mg, 85%).

Step-5: Following the procedure described for the synthesis of the cyclic ether **38**, the triol **47e** afforded the bicyclic ether **47**.

(Cyclohex-3-enyl)(morpholino)methanone (47b).

Colorless viscous oil. $R_f = 0.6$ (hexane/EtOAc = 2/3). IR (thin film): v_{max}/cm^{-1} 3369, 2855, 1621, 1436, 1234, 1053, 994. ¹H NMR (400 MHz, CDCl₃): δ 5.62 (br s, 2H), 3.60 (t, *J* = 4.1 Hz, 4H), 3.50 (br s, 4H), 2.68-2.57 (tt, *J* = 10.9 and 4.1 Hz, 1H), 2.33 (m, 1H), 2.12-1.92 (m, 3H), 1.77-1.6 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 174.4, 126.5, 125.6, 66.9 (4CH₂), 36.2, 28.0, 25.5, 24.8. HRMS (ESI): *m/z* calcd for C₁₁H₁₇O₂NNa (M+Na): 218.1157. Found: 218.1156.

(Cyclohex-3-enyl)(furan-2-yl)methanone (47c).

Pale yellow oil. $R_f = 0.6$ (hexane/EtOAc = 9/1). IR (thin film, neat): v_{max}/cm^{-1} 2938, 2878, 1667, 1453, 1373, 1051, 954, 754. ¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, J = 3.9 Hz, 1H), 7.14 (d, J = 3.5 Hz, 1H), 6.46 (dd, J = 3.9 and 3.5 Hz, 1H), 5.67 (m, 2H), 3.21-3.19 (m, 1H), 2.34-2.23 (m, 1H), 2.17-2.06 (m, 2H), 1.94-1.87 (m, 1H), 1.71-1.60 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 192.5, 152.3, 146.3, 126.5, 125.5, 117.2, 112.1, 42.2, 27.3, 25.3, 24.8. HRMS (ESI): m/z calcd for C₁₁H₁₂O₂Na (M+Na): 199.0735. Found: 199.0727.

(Cyclohex-3-enyl)(furan-2-yl)methanol (47d).

Pale yellow oil. $R_f = 0.6$ (hexane/EtOAc = 7/3). IR (thin film, neat): v_{max}/cm^{-1} 3425, 2938, 288, 1453, 1373, 1254, 1109, 1051, 954, 867, 754. ¹H NMR (400 MHz, CDCl₃): 7.30 (s, 1H), 6.26 (s, 1H), 6.17 (s, 1H), 5.66-5.50 (m, 2H), 4.39 (d, J = 7.6 Hz, 1H), 2.09- 1.99 (m, 2H), 1.97-1.83 (m, 2H), 1.76-1.62 (m, 1H), 1.36-1.21 (m, 2H). ¹³C NMR (100 MHz, CDCl₃):

δ 155.0, 141.8, 127.1, 126.0, 110.7, 106.5, 77.3, 72.0, 38.4, 27.5, 24.9, 24.7, 24.5. HRMS (ESI): *m/z* calcd for C₁₁H₁₄O₂Na (M+Na): 217.0631. Found: 217.0832.

4-(Furan-2-yl(hydroxy)methyl)cyclohexane-1,2-diol (47e).

Pale yellow oil. $R_f = 0.6$ (EtOAc). IR (thin film, neat): v_{max}/cm^{-1} 3324, 2924, 1563, 1260, 1021, 765, 561. ¹H NMR (400 MHz, CDCl₃): δ 7.42 (s, 1H), 6.31 (s, 1H), 6.2 (s, 1H), 4.34 (dt, J = 9.5 and 2.8 Hz, 1H), 3.98 (s, 1H), 3.63-3.47 (m, 2H), 1.96-1.81 (m, 2H), 1.51-1.32 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 156.3, 141.4, 109.5, 106.1, 71.5, 71.3, 68.6, 41.3, 29.3, 27.8, 21.3. HRMS (ESI): *m/z* calcd for C₁₁H₁₆O₄K (M+K): 251.0686. Found: 251.0654.

7-(Furan-2-yl)-6-oxabicyclo[3.2.1]octan-4-ol (47).

Colorless oil. $R_f = 0.5$ (hexane/EtOAc = 3/2). IR (thin film, neat): $v_{max}/cm^{-1} 2924$, 2855, 1563, 1434, 1260, 1218, 1021, 959, 784, 765, 561. ¹H NMR (400 MHz, CDCl₃): δ 7.30 (s, 1H), 6.39 (s, 1H), 6.20 (s, 1H), 4.88 (s, 1H), 4.40 (d, J = 6.7 Hz, 1H), 4.15 (q, J = 7.0 Hz, 2H), 3.54 (t, J = 7.8 Hz, 1H), 2.53 (s, 1H), 2.35-1.90 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 155.7, 141.9, 106.1 (2C), 81.5, 77.9, 71.9, 38.3, 34.2, 29.2, 28.1. HRMS (ESI): *m/z* calcd for C₁₁H₁₄O₃Na (M+Na): 217.0841. Found: 217.0860.

Synthesis of the diol 48a and the bicyclic ether 48 (Scheme-2). The bicyclic ether 48 was synthesized from diol 48a as shown in the following scheme.

Step-1: The diol **48a** was synthesized in a procedure described for the diols **41a**, **42a**, **46a** and **54a** using 2 equivalents of benzofuranyllithium.

Step-2: Following the procedure described for the synthesis of the cyclic ether **38**, the diol **48a** afforded the bicyclic ether **48** in 83% yield.

1,1-Di(benzofuran-2-yl)butane-1,4-diol (48a).

Pale yellow oil. $R_f = 0.6$ (hexane/EtOAc = 1/1). IR (thin film, neat): v_{max}/cm^{-1} 3334, 2927, 1453, 1253 745, 542. ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, J = 7.2 Hz, 2H), 7.38 (d, J = 7.6 Hz, 2H), 7.31-7.20 (m, 4H), 6.79 (s, 2H), 3.74 (t, J = 5.8 Hz, 2H), 2.62 (t, J = 7.0 Hz, 2H), 1.77-1.68 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): 158.7 (2C), 154.8 (2C), 128.0 (2C), 124.2 (2CH), 122.9 (2CH), 121.2 (2CH), 111.3 (2CH), 103.8 (2CH), 72.7, 62.7, 36.0, 26.6. HRMS (ESI): m/z calcd for C₂₀H₁₈O₄Na (M+Na): 345.1103. Found: 345.1102.

2,2'-(Tetrahydrofuran-2,2-diyl)bis(benzofuran) (48).

Pale yellow Colored oil; $R_f = 0.60$ (hexane/EtOAc = 9/1); IR (thin film, neat): vmax /cm⁻¹ 3050, 2858, 1602, 1456, 1353, 1254, 1172, 1030, 854; ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, J = 7.3 Hz, 2H), 7.44 (d, J = 7.48 Hz, 2H), 7.16-7.17 (m, 4H), 6.70 (s, 2H), 4.17 (t, J = 6.84 Hz, 2H), 2.74 (t, J = 6.9 Hz, 2H), 2.17- 21.0 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 157.5 (2C), 155.16 (2C), 128.0 (2CH), 124.0 (2CH), 122.8 (2CH), 121.1 (2CH), 111.4 (2CH), 104.3 (2CH), 80.8 , 69.3, 35.6, 26.0. HRMS (ESI): m/z calcd for C₂₀H₁₆O₃Na (M+Na): 327.0997. Found: 327.0996.

Synthesis of the triol 49a and the bicyclic ether 49 (Scheme-2). The bicyclic ether 49 was synthesized from the triol 49a as shown in the following scheme.

Step-1: Addition of benzofuranyllithium to ester **49a** (500 mg, 3.2 mmol) by following the procedure as described for the diol **48a**, obtained the tertiary alcohol **49b** (312 mg, 55%).

Step-2: Dihydroxylation of the tertiary alcohol **49b** (200 mg, 0.58 mmol) afforded the triol **49c** (209 mg, 85%) following the procedure as described for the triol **47e**.

Step-3: Following the procedure described for the synthesis of the cyclic ether **38**, the triol **49c** afforded the bicyclic ether **49**.

Di(benzofuran-2-yl)(cyclohex-3-enyl)methanol (49b).

Pale yellow oil. $R_f = 0.6$ (hexane/EtOAc = 1/1). IR (thin film, neat): v_{max}/cm^{-1} 3025, 2929, 2840, 1672, 1567, 1467, 1396, 1256, 1012, 883, 792. ¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, J = 7.6 Hz, 2H), 7.42-7.37 (m, 2H), 7.22-7.11 (m, 4H), 6.73 (s, 1H), 6.72 (s, 1H), 5.57 (2dt, J = 4.2 and 1.4 Hz, 2H), 2.88 (s, 1H), 2.71 (tt, J = 11.1, 9.9 and 2.3 Hz, 1H), 2.15-1.99 (m, 2H), 1.83 (dt, J = 12.5 and 2.4 Hz, 1H), 1.78 (dt, J = 12.5 and 2.4 Hz, 1H), 1.45-1.32 (m, 1H), 1.29-1.13 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): 157.9 (2C), 154.7 (2C), 128.0 (2C), 126.8, 126.2, 124.2 (2CH), 122.9 (2CH), 121.1 (2CH), 111.1 (2CH), 103.9 (2CH), 76.1, 41.9, 25.9, 25.8, 23.3. HRMS (ESI): m/z calcd for C₂₃H₂₀O₃Na (M+Na): 367.1310. Found: 367.1299.

4-(Di(benzofuran-2-yl)(hydroxy)methyl)cyclohexane-1,2-diol (49c).

Pale yellow viscous oil. $R_f = 0.6$ (hexane/EtOAc = 1/4). IR (thin film, neat): v_{max}/cm^{-1} 3385, 2926, 2853, 1454, 1252, 1158, 791. ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.36 (m, 4H), 7.19-7.06 (m, 4H), 6.70 (s, 2H), 3.89 (s, 2H), 3.80 (s, 1H), 3.36 (s, 1H), 3.21 (s, 1H), 2.80 (tt, J = 12.4 and 3.8 Hz, 1H), 1.73-1.19 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): 158.0, 157.9, 154.7 (2C), 128.0 (2C), 124.2 (2CH), 122.9 (2CH), 121.7 (2CH), 111.4 (2CH), 103.8 (2CH), 76.0, 71.6, 69.4, 42.5, 31.5, 24.6, 19.7. HRMS (ESI): m/z calcd for $C_{23}H_{22}O_5Na$ (M+Na): 401.1362. Found: 401.1363.

7,7-Di(benzofuran-2-yl)-6-oxa-bicyclo[3.2.1]octan-4-ol (49).

Colorless solid. M. P. = 161-163 °C. $R_f = 0.6$ (hexane/EtOAc = 3/2). IR (KBr): v_{max}/cm^{-1} 3386, 2929, 145, 1248, 1166, 1094, 1093, 1010, 750, 462. ¹H NMR (400 MHz, CDCl₃): δ 7.59-7.46 (m, 4H), 7.32-7.16 (m, 4H), 6.90 (s, 1H), 6.74 (s, 1H), 4.67 (d, J = 7.8 Hz, 1H), 3.64 (t, J = 6.6 Hz, 1H), 3.27 (s, 1H), 2.55-2.45 (m, 1H), 1.94-1.81 (m, 3H), 1.70-1.60 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 158.8, 157.7, 154.9, 154.9, 128.0, 124.1, 124.0, 122.9, 122.8, 127.9, 121.1, 121.0, 111.5, 111.4, 103.9, 102.9, 84.1, 82.6, 72.1, 41.1, 35.3, 29.7, 25.8. HRMS (ESI): m/z calcd for C₂₃H₂₀O₃Na (M+Na): 383.1259. Found: 383. 1269.

Crystal Structure Report of bicyclic ether 49 (CCDC 931682)

Structure of the bicyclic ether **49** was further confirmed by single crystal X-ray diffraction analysis. Following are the details.

A colorless rectangular-like specimen of $C_{23}H_{18}O_4$, approximate dimensions 0.25 mm x 0.25 mm x 0.30 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

Table 1: Data collection details for SCI125_SE106.

Axis	dx/ mm	20/°	ω/°	φ/°	χ/°	Width /°	Frame s	Time /s	Wavelength /Å	Voltage/ kV	Current/m A	Temperature /K
Phi	59.1 95	27.5 0	10.4 0	- 13.87	- 31.8 5	0.50	646	20.00	0.71073	50	30.0	n/a
Phi	59.1 95	- 12.5 0	- 23.3 8	- 313.0 5	82.0 4	0.50	739	20.00	0.71073	50	30.0	n/a

A total of 1385 frames were collected. The total exposure time was 7.69 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 11037 reflections to a maximum θ angle of 25.35° (0.83 Å resolution), of which 3149 were independent (average redundancy 3.505, completeness = 99.1%, R_{int} = 5.12%, R_{sig} = 9.81%) and 1449 (46.01%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 10.594(7) Å, <u>b</u> = 12.392(8) Å, <u>c</u> = 13.698(9) Å, β = 105.41(2)°, volume = 1734.(2) Å³, are based upon the refinement of the XYZ-centroids of 1466 reflections above 20 $\sigma(I)$ with 4.507° < 2 θ < 40.20°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.914.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P 1 21/n 1, with Z = 4 for the formula unit, $C_{23}H_{18}O_4$. The final anisotropic full-matrix least-squares refinement on F² with 244 variables converged at R1 = 5.69%, for the observed data and wR2 = 15.34% for all data. The goodness-of-fit was 0.933. The largest peak in the final difference electron density synthesis was 0.303 e⁻/Å³ and the

largest hole was -0.208 e⁻/Å³ with an RMS deviation of 0.048 e⁻/Å³. On the basis of the final model, the calculated density was 1.373 g/cm³ and F(000), 752 e⁻.

Identification code	SCI125_	SE106		
Chemical formula	C ₂₃ H	₁₈ O ₄		
Formula weight	358.	37		
Temperature	270(2	2) K		
Wavelength	0.71073 Å			
Crystal size	0.25 x 0.25 x 0.30 mm			
Crystal habit	colorless rectangular			
Crystal system	monoclinic			
Space group	P 1 21/n 1			
Unit cell dimensions	a = 10.594(7) Å	$\alpha = 90^{\circ}$		
	b = 12.392(8) Å	$\beta = 105.41(2)^{\circ}$		
	c = 13.698(9) Å	$\gamma = 90^{\circ}$		
Volume	1734.(2) Å ³			
Z	4			
Density (calculated)	1.373 Mg/cm ³			
Absorption coefficient	0.094 1	mm ⁻¹		
F(000)	75	2		

Table 2. Sample and crystal data for SCI125_SE106.

Table 3. Data collection and structure refinement for SCI125_SE106.

Theta range for data collection	2.17 to 25.35°
Index ranges	-10<=h<=12, -11<=k<=14, -14<=l<=16
Reflections collected	11037
Independent reflections	3149 [R(int) = 0.0512]
Coverage of independent reflections	99.1%
Absorption correction	multi-scan
Structure solution technique	direct methods
Structure solution program	SHELXS-97 (Sheldrick, 2008)
Refinement method	Full-matrix least-squares on F ²

Refinement program	SHELXL-97 (Sheldrick, 2008)				
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$				
Data / restraints / parameters	3149 / 0 / 244				
Goodness-of-fit on F ²	0.933				
Final R indices	1449 data; $I > 2\sigma(I)$ $R1 = 0.0569, wR2 = 0.1176$				
	all data	R1 = 0.1540, wR2 = 0.1534			
Weighting scheme	$w=1/[\sigma^2(F_o^2)+where I$	$(0.0708P)^{2}+0.0000P]$ $P=(F_{o}^{2}+2F_{c}^{2})/3$			
Largest diff. peak and hole	0.303 and -0.208 eÅ ⁻³				
R.M.S. deviation from mean	0.048 eÅ ⁻³				

Table 4. Atomic coordinates and equivalent isotropic atomic displacement parameters ($Å^2$) for SCI125_SE106.

 $U(\mbox{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
01	0.4844(2)	0.97676(18)	0.85050(14)	0.0602(7)
02	0.35822(19)	0.04261(16)	0.58827(14)	0.0510(6)
03	0.3612(3)	0.2620(3)	0.4447(2)	0.1216(12)
04	0.19821(19)	0.04400(16)	0.78775(14)	0.0501(6)
C1	0.8256(3)	0.9447(3)	0.7326(3)	0.0690(11)
C2	0.8894(3)	0.9431(3)	0.6592(3)	0.0611(10)
C3	0.0169(3)	0.9785(2)	0.6824(2)	0.0428(8)
C4	0.1146(3)	0.9871(2)	0.6299(2)	0.0453(8)
C5	0.2195(3)	0.0265(2)	0.6952(2)	0.0411(8)
C6	0.3553(3)	0.0483(2)	0.6919(2)	0.0435(8)
C7	0.4430(3)	0.9618(3)	0.7478(2)	0.0434(8)
C8	0.5603(3)	0.8888(3)	0.8873(2)	0.0501(9)
C9	0.6241(3)	0.8716(3)	0.9861(2)	0.0704(11)
C10	0.6956(3)	0.7800(3)	0.0069(3)	0.0709(11)
C11	0.4876(3)	0.8709(3)	0.7207(2)	0.0457(8)
C12	0.5648(3)	0.8211(3)	0.8101(2)	0.0446(8)
C13	0.6389(3)	0.7285(3)	0.8331(2)	0.0576(9)

	x/a	y/b	z/c	U(eq)
C14	0.7026(3)	0.7094(3)	0.9321(3)	0.0635(10)
C15	0.4390(4)	0.1288(3)	0.5686(3)	0.0684(10)
C16	0.3509(4)	0.2178(3)	0.5191(3)	0.0841(13)
C17	0.2516(4)	0.2515(3)	0.5731(3)	0.0752(11)
C18	0.3040(3)	0.2471(3)	0.6856(3)	0.0656(10)
C19	0.4047(3)	0.1611(2)	0.7252(2)	0.0558(9)
C20	0.5146(3)	0.1695(3)	0.6723(3)	0.0685(10)
C21	0.0716(3)	0.0140(2)	0.7783(2)	0.0452(8)
C22	0.0087(4)	0.0184(3)	0.8525(2)	0.0634(10)
C23	0.8835(4)	0.9820(3)	0.8275(3)	0.0705(10)

Table 5. Bond lengths (Å) for SCI125_SE106.

O1-C8	1.369(3)	O1-C7	1.370(3)
O2-C6	1.430(3)	O2-C15	1.438(4)
O3-C16	1.188(4)	O4-C5	1.363(3)
O4-C21	1.364(3)	C1-C2	1.352(4)
C1-C23	1.363(5)	С1-Н1	0.93
C2-C3	1.375(4)	С2-Н2	0.93
C3-C21	1.361(4)	C3-C4	1.412(4)
C4-C5	1.321(4)	С4-Н4	0.93
C5-C6	1.476(4)	C6-C7	1.490(4)
C6-C19	1.520(4)	C7-C11	1.313(4)
C8-C9	1.359(4)	C8-C12	1.360(4)
C9-C10	1.352(4)	С9-Н9	0.93
C10-C14	1.364(4)	С10-Н10	0.93
C11-C12	1.421(4)	C11-H11	0.93
C12-C13	1.379(4)	C13-C14	1.366(4)
С13-Н13	0.93	C14-H14	0.93
C15-C16	1.487(5)	C15-C20	1.519(4)
С15-Н15	0.98	C16-C17	1.496(5)
C17-C18	1.494(4)	C17-H17A	0.97
С17-Н17В	0.97	C18-C19	1.503(4)
C18-H18A	0.97	C18-H18B	0.97
C19-C20	1.530(4)	С19-Н19	0.98
C20-H20A	0.97	C20-H20B	0.97

C21-C22	1.357(4)	C22-C23	1.356(5)
С22-Н22	0.93	С23-Н23	0.93

Table 6. Bond angles (°) for SCI125_SE106.

C8-O1-C7	105.5(2)	C6-O2-C15	108.7(2)
C5-O4-C21	105.7(2)	C2-C1-C23	121.8(3)
С2-С1-Н1	119.1	С23-С1-Н1	119.1
C1-C2-C3	118.6(3)	С1-С2-Н2	120.7
С3-С2-Н2	120.7	C21-C3-C2	117.8(3)
C21-C3-C4	106.6(3)	C2-C3-C4	135.6(3)
C5-C4-C3	106.4(3)	С5-С4-Н4	126.8
С3-С4-Н4	126.8	C4-C5-O4	111.8(3)
C4-C5-C6	134.3(3)	04-C5-C6	113.8(2)
O2-C6-C5	107.4(2)	O2-C6-C7	107.4(2)
C5-C6-C7	109.5(2)	O2-C6-C19	104.2(2)
C5-C6-C19	114.8(3)	C7-C6-C19	112.9(2)
C11-C7-O1	111.5(3)	C11-C7-C6	133.9(3)
01-C7-C6	114.6(3)	C9-C8-C12	124.5(3)
C9-C8-O1	125.4(3)	C12-C8-O1	110.1(3)
С10-С9-С8	116.4(3)	С10-С9-Н9	121.8
С8-С9-Н9	121.8	C9-C10-C14	121.3(3)
С9-С10-Н10	119.4	С14-С10-Н10	119.4
C7-C11-C12	107.2(3)	С7-С11-Н11	126.4
C12-C11-H11	126.4	C8-C12-C13	118.1(3)
C8-C12-C11	105.8(3)	C13-C12-C11	136.1(3)
C14-C13-C12	118.2(3)	С14-С13-Н13	120.9
С12-С13-Н13	120.9	C10-C14-C13	121.6(3)
C10-C14-H14	119.2	С13-С14-Н14	119.2
O2-C15-C16	107.6(3)	O2-C15-C20	105.3(3)
C16-C15-C20	106.9(3)	O2-C15-H15	112.2
С16-С15-Н15	112.2	С20-С15-Н15	112.2
O3-C16-C15	122.9(5)	O3-C16-C17	122.2(5)
C15-C16-C17	114.9(4)	C18-C17-C16	112.5(3)
С18-С17-Н17А	109.1	С16-С17-Н17А	109.1
С18-С17-Н17В	109.1	С16-С17-Н17В	109.1
H17A-C17-H17B	107.8	C17-C18-C19	115.6(3)

C17-C18-H18A	108.4	C19-C18-H18A	108.4
C17-C18-H18B	108.4	C19-C18-H18B	108.4
H18A-C18-H18B	107.5	C18-C19-C6	112.9(3)
C18-C19-C20	109.7(3)	C6-C19-C20	99.5(3)
С18-С19-Н19	111.4	С6-С19-Н19	111.4
С20-С19-Н19	111.4	C15-C20-C19	98.2(3)
С15-С20-Н20А	112.1	С19-С20-Н20А	112.1
С15-С20-Н20В	112.1	С19-С20-Н20В	112.1
H20A-C20-H20B	109.8	C22-C21-C3	124.7(3)
C22-C21-O4	125.7(3)	C3-C21-O4	109.6(3)
C23-C22-C21	116.1(3)	С23-С22-Н22	122.0
С21-С22-Н22	122.0	C22-C23-C1	121.1(3)
С22-С23-Н23	119.5	С1-С23-Н23	119.5

Table 7. Anisotropic atomic displacement parameters (Å²) for SCI125_SE106.

The	anisotror	oic atomi	c displaceme	nt factor exp	onent takes	the form:	$-2\pi^{2}$ [h ²]	$a^{*2} U_{11} +$	$ + 2 h k a^*$	b* U12]
	··· ··· · · · · · · · · · · · · · · ·		· · · · · · · · · · ·	· · · · · · ·			· · · L	11		- 12 1

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	0.0603(14)	0.0724(17)	0.0439(14)	-0.0087(12)	0.0069(11)	0.0184(13)
02	0.0546(14)	0.0564(15)	0.0446(13)	-0.0021(11)	0.0179(10)	-0.0129(11)
03	0.169(3)	0.109(3)	0.098(2)	0.016(2)	0.056(2)	-0.024(2)
04	0.0440(14)	0.0633(15)	0.0423(13)	-0.0066(11)	0.0104(10)	-0.0034(11)
C1	0.047(2)	0.075(3)	0.087(3)	0.016(2)	0.022(2)	-0.0056(19)
C2	0.051(2)	0.065(2)	0.065(2)	0.0033(19)	0.0105(19)	-0.0095(18)
C3	0.0375(19)	0.0430(19)	0.046(2)	0.0044(15)	0.0079(15)	0.0003(16)
C4	0.0433(19)	0.051(2)	0.0408(18)	-0.0015(15)	0.0092(16)	-0.0045(16)
C5	0.0447(19)	0.0412(19)	0.0384(18)	-0.0020(15)	0.0126(15)	-0.0008(15)
C6	0.0424(19)	0.052(2)	0.0367(18)	-0.0067(16)	0.0118(14)	-0.0068(16)
C7	0.0359(18)	0.057(2)	0.0369(19)	-0.0067(16)	0.0092(14)	-0.0053(16)

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C8	0.045(2)	0.058(2)	0.047(2)	-0.0044(18)	0.0127(16)	0.0101(18)
C9	0.079(3)	0.084(3)	0.046(2)	-0.006(2)	0.0119(19)	0.025(2)
C10	0.070(3)	0.083(3)	0.056(2)	0.002(2)	0.0101(19)	0.018(2)
C11	0.0438(19)	0.052(2)	0.0430(19)	-0.0118(16)	0.0148(16)	-0.0079(16)
C12	0.0370(18)	0.052(2)	0.047(2)	-0.0057(18)	0.0157(15)	-0.0076(16)
C13	0.052(2)	0.056(2)	0.064(3)	-0.0101(18)	0.0153(18)	-0.0048(18)
C14	0.058(2)	0.060(2)	0.071(3)	0.002(2)	0.015(2)	0.0085(18)
C15	0.067(2)	0.071(3)	0.076(3)	0.001(2)	0.035(2)	-0.011(2)
C16	0.104(3)	0.083(3)	0.069(3)	0.006(3)	0.030(3)	-0.032(3)
C17	0.089(3)	0.062(3)	0.077(3)	0.005(2)	0.026(2)	0.000(2)
C18	0.077(3)	0.048(2)	0.076(3)	-0.0103(19)	0.028(2)	-0.008(2)
C19	0.056(2)	0.051(2)	0.061(2)	-0.0084(18)	0.0159(17)	-0.0135(18)
C20	0.057(2)	0.065(2)	0.085(3)	-0.007(2)	0.021(2)	-0.0202(19)
C21	0.040(2)	0.047(2)	0.051(2)	0.0054(16)	0.0159(16)	0.0018(16)
C22	0.062(3)	0.080(3)	0.053(2)	0.0007(19)	0.0240(18)	0.005(2)
C23	0.064(3)	0.083(3)	0.077(3)	0.017(2)	0.041(2)	0.006(2)

Table 8. Hydrogen atomic coordinates and isotropic atomic displacement parameters ($Å^2$) for SCI125_SE106.

	x/a	y/b	z/c	U(eq)
H1	-0.2602	-0.0803	0.7178	0.083
H2	-0.1520	-0.0815	0.5945	0.073
H4	0.1067	-0.0314	0.5628	0.054
H9	0.6190	-0.0798	1.0366	0.085
H10	0.7407	-0.2352	1.0735	0.085
H11	0.4716	-0.1559	0.6551	0.055
H13	0.6453	-0.3196	0.7825	0.069
H14	0.7520	-0.3532	0.9490	0.076
H15	0.4971	0.1049	0.5279	0.082
	x/a	y/b	z/c	U(eq)
------	---------	---------	--------	-------
H17A	0.2232	0.3245	0.5531	0.09
H17B	0.1758	0.2046	0.5527	0.09
H18A	0.2312	0.2359	0.7150	0.079
H18B	0.3423	0.3166	0.7089	0.079
H19	0.4390	0.1656	0.7989	0.067
H20A	0.5445	0.2432	0.6699	0.082
H20B	0.5883	0.1233	0.7033	0.082
H22	0.0491	0.0447	0.9168	0.076
H23	-0.1636	-0.0175	0.8760	0.085

Synthesis of the diol 52d and efforts towards the first total synthesis of furanopolyketide 51 (Scheme-2). The diol 52d required for the BiCl₃ catalyzed cyclization is prepared as shown in the following scheme starting from acetylfuran 52a.

Steps-1, 2&3: To a solution of acetylfuran **52a** (1 g, 9.1 mmol) in dry diethyl ether at 0-5 °C was added LAH (1.13 g, 13.6 mmol) in portions under nitrogen atmosphere. After 30 min, diluted the reaction mixture with diethyl ether and subsequently quenched with saturated ammonium chloride solution (1-2 mL). Filtered the reaction mixture through short celite pad,

washed the contents with diethyl ether. Concentrated the ether layer on a rotary evaporator at 35-40 °C (without applying vacuum) and proceeded to next step without further purification.

The crude alcohol obtained above was converted to methoxy ether **52b** in a procedure that was reported earlier,⁷ obtained after distillation 500 mg of methoxy ether **52b**.

Following the procedure reported for the synthesis of diol **38a**, the methoxy ether **52b** (500 mg, 3.96 mmol) was converted to the keto-alcohol **52c** (631 mg, 33% over three steps). **Step-4:** The keto-alcohol **52c** (200 mg, 0.94 mmol) was converted to the diol **52d** (193 mg, 97%) following the procedure described for the diol **38a**.

Step-5: General procedure (described for the synthesis of the cyclic ether **38**) was followed for the conversion of **52d** to **52**, but surprisingly the yield was poor (16%). When the reaction was performed in dichloromethane as solvent, the cyclic ether **52** was obtained in 82% yield. **Step-6:** At this stage, our task is reduced to converting the tetrahydrofuran moiety in **52** to butyrolactone as in the natural product **51**. The bisether **52** is found to be very sensitive to oxidative conditions. All our efforts⁶ to convert the tetrahydrofuran **52** to the lactone **51** were unsuccessful, most likely because of the presence of competing methoxy ether functionality and a sensitive furan moiety. IR of the crude reaction mixture shows carbonyl stretch at 1770 cm⁻¹, but ¹H NMR of shows the absence of OMe group and furan moiety.

4-Hydroxy-1-(5-(1-methoxyethyl)furan-2-yl)butan-1-one (52c).

Pale yellow oil. $R_f = 0.6$ (hexane/EtOAc = 3/7). IR (thin film, neat): v_{max}/cm^{-1} 3325, 2954, 2874, 1674, 1458, 1256, 1109, 754, 567. ¹H NMR (400 MHz, CDCl₃): δ 7.17 (d, *J* = 3.5 Hz, 1H), 6.41 (d, *J* = 3.5 Hz, 1H), 4.42 (q, *J* = 6.6 Hz, 1H), 3.70 (dt, *J* = 6.0 and 0.88 Hz, 2H), 3.32 (s, 3H), 2.96 (t, *J* = 7.0 Hz, 2H), 1.97 (m, 2H), 1.51 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 189.5, 160.6, 151.8, 118.1, 108.9, 72.4, 62.0, 56.8, 35.0, 26.8, 19.7. HRMS (ESI): *m/z* calcd for C₁₁H₁₆O₄Na (M+Na): 235.0947. Found: 235.0950.

1-(5-(1-Methoxyethyl)furan-2-yl)butane-1,4-diol (52d).

⁷ L. Wang, S. K. Meegalla, C. –L. Fang, N. Taylor and R. Rodrigo, *Can. J. Chem.*, 2002, **80**, 728.

Pale yellow oil. $R_f = 0.6$ (EtOAc/MeOH = 9/1). IR (thin film, neat): v_{max}/cm^{-1} 3354, 2954, 2874, 1253, 1108, 1098, 854, 763. ¹H NMR (400 MHz, CD₃OD): δ 6.28 (d, J = 2.7 Hz, 1H), 6.23 (d, J = 2.7 Hz, 1H), 4.62 (t, J = 6.5 Hz, 1H), 4.38 (q, J = 6.5 Hz, 1H), 3.57 (t, J = 6.5 Hz, 2H), 3.26 (s, 3H), 1.92-1.79 (m, 2H), 1.72-1.51 (m, 2H), 1.47 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CD₃OD): δ 156.0, 153.0, 107.0, 105.8, 71.0, 66.8, 61.3, 54.8, 31.7, 28.3, 18.0. HRMS (ESI): m/z calcd for C₁₁H₁₈O₄Na (M+Na): 237.1103. Found: 237.1117.

2-(Tetrahydrofuran-2-yl)-5-(1-methoxyethyl)furan (52).

Colorless oil. $R_f = 0.5$ (hexane/EtOAc = 4/1). IR (thin film, neat): $v_{max}/cm^{-1}2924$, 2855, 1564, 1340, 240, 1174, 1110, 784, 543. ¹H NMR (400 MHz, C₃D₆O): δ 6.25 (s, 2H), 4.83 (t, *J* = 6.4 Hz, 1H), 4.32 (q, *J* = 6.6 Hz, 1H), 3.87 (t, *J* = 6.8 Hz, 1H), 3.78 (t, *J* = 6.8 Hz, 1H), 3.20 (s, 3H), 2.23 (m, 1H), 2.08 (m, 3H), 1.42 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (100 MHz, C₃D₆O): δ 155.2, 155.0, 107.4, 106.6, 73.5, 71.6, 67.5, 55.1, 30.1, 25.6, 18.8. HRMS (ESI): *m/z* calcd for C₁₁H₁₆O₃Na (M+Na): 219.0997. Found: 219.0995.

Synthesis of the alcohol 55b, amine 55c and pyrrolidine 55 (Scheme-2). Pyrrolidine 55 was synthesized as shown in the following scheme.

Step-1: 4-Bromobutanoyl chloride (400 mg, 2.1 mmol) was dissolved in dry chloroform (3 mL) under an atmosphere of nitrogen and $AlCl_3$ (1.4 g, 10.7 mmol) was added at 0-5 °C. The reaction mixture was stirred for 2 h when a solution of 2-methylfuran (236 mg, 3.4 mmol) in chloroform (2 mL) was added drop wise over 15 minutes. The reaction mixture was stirred for a further 1 h when it was poured carefully onto ice. The organic layer was separated, washed sequentially with water and saturated sodium bicarbonate solution, dried (Na₂SO₄)

and evaporated to dryness. Purification by column chromatography (hexanes/ethyl acetate: 15/1) afforded pale brown viscous oil **55a** (440 mg, 50%).

Step-2: To a solution of crude bromoketone **55a** (150 g, 0.65 mmol) in methanol (2 mL) at 0-5 $^{\circ}$ C was added a weighed amount of sodium borohydride (28 mg, 0.78 mmol) under nitrogen atmosphere. The reaction mixture was stirred at the same temperature until the starting material was consumed as monitored by TLC (20 min) and the reaction mixture was diluted carefully with saturated ammonium chloride solution (1 mL). Solvent (methanol) was removed under reduced pressure. Diluted with water (2 mL) and extracted with ethyl acetate (2 x 5 mL). Combined the organic layers, concentrated and purified by alumina column chromatography (20% hexanes/ethyl acetate) to afford an *unstable* bromoalcohol **55b** (125 mg, 83%).

Step-3: Following the procedure described for the synthesis of the cyclic ether 38, the bromoalcohol 55b afforded the amine 55c.

Step-4: The amine **55c** was converted to cyclic amine **55** following sodium hydride mediated cyclization procedure described in literature.⁸

4-Bromo-1-(5-methylfuran-2-yl)butan-1-one (55a).

Brown viscous oil. M.P. = 54-56 °C. $R_f = 0.6$ (hexane/EtOAc = 4/1). IR (thin film, neat): v_{max}/cm^{-1} 2945, 2854, 1687, 1545, 1098, 754. ¹H NMR (400 MHz, CDCl₃): δ 7.05 (s, 1H), 6.07 (s, 1H), 3.41 (t, *J* = 6.3 Hz, 2H), 2.86 (t, *J* = 7.0 Hz, 2H), 2.29 (s, 3H), 2.16 (q, *J* = 6.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 187.2, 157.9, 151.2, 119.4, 109.0, 36.6, 32.3, 27.3, 14.1. HRMS (ESI): *m/z* calcd for C₉H₁₁BrO₂K (M+K): 268.9579. Found: 268.9573.

4-Bromo-1-(5-methylfuran-2-yl)butan-1-ol (55b).

Pale yellow oil, rapidly decomposes at room temperature. $R_f = 0.6$ (hexanes/EtOAc = 4/1). IR (thin film, neat): v_{max}/cm^{-1} 3439, 2923, 2977, 2871, 1449, 1384, 1052, 1019, 793. ¹H NMR (400 MHz, CD₃OD): δ 6.22 (s, 1H), 5.93 (s, 1H), 4.17 (t, *J* = 5.9 Hz, 1H), 3.29 (t, *J* = 1.6 Hz,

⁸ J. –I. Yamaguchi and M. Ueki, Chem Lett., 1996, 621.

2H), 2.28 (s, 3H), 2.05-1.79 (m, 4H). ¹³C NMR (100 MHz, CD₃OD): δ 152.9, 152.2, 109.1, 105.5, 75.5, 32.7, 32.1, 28.9, 12.0.

Benzyl 4-bromo-1-(5-methylfuran-2-yl)butylcarbamate (55c).

Pale yellow oil. $R_f = 0.5$ (hexane/EtOAc = 4/1). IR (thin film, neat): v_{max} /cm⁻¹ 3320, 1698, 1567, 1434, 1301, 1246, 1038, 746, 698. ¹H NMR (400 MHz, CDCl₃): 7.44-7.31 (m, 5H), 6.08 (s, 1H), 5.89 (s, 1H), 5.19 (s, 2H), 4.79 (dd, J = 6.4 and 1.3 Hz, 1H), 3.42 (t, J = 6.0 Hz, 2H), 2.27 (s, 3H), 2.06-1.84 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 155.6, 151.7, 136.3, 128.5 (4CH), 128.2, 128.1, 107.0, 106.0, 66.9, 48.6, 32.2, 32.9, 29.15, 13.6. HRMS (ESI): *m/z* calcd for C₁₇H₁₉BrNnaO₃ (M+Na-1): 387.0446. Found: 387.0525.

Benzyl 2-(5-methylfuran-2-yl)pyrrolidine-1-carboxylate (55).

Pale yellow oil. $R_f = 0.5$ (hexane/EtOAc = 4/1). IR (thin film, neat): v_{max} /cm⁻¹ 2984 1698, 1567, 1434, 1301, 1246, 1038, 746. ¹H NMR (400 MHz, CDCl₃): 7.41-7.17 (m, 5H), 5.85 (s, 1H), 5.86 (s, 1H), 5.10 (m, 2H), 4.94 (t, J = 6.3 Hz, 1H), 3.54-3.42 (m, 2H), 2.63 (s, 3H), 2.13-2.03 (m, 2H), 1.96-1.88 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 157.8, 154.4, 153.5, 145.3, 122.5 (2CH), 122.3, 122.2 (2CH), 106.3, 103.6, 66.9, 54.9, 46.6, 32.0, 22.9, 13.6. HRMS (ESI): *m/z* calcd for C₁₇H₁₉NO₃K (M+K): 324.1002. Found: 324.1889.

Elaboration of azide 33 to the triazole 33a. Azide 33 was elaborated to the triazole 33a *via* Cu-catalyzed click reaction.⁹ This class of products could be medicinally significant and amenable to further synthetic elaborations.¹⁰ Furanyl azides can also be converted to α -amino acid derivatives¹¹ as in the following scheme.

1-(1-(Benzofuran-2-yl)ethyl)-4-phenyl-1H-1,2,3-triazole (33a).

Colorless solid. M. P. = 130-132°C. $R_f = 0.6$ (hexane/EtOAc = 4/1). IR (KBr): v_{max}/cm^{-1} 3010, 1608, 1454, 1357, 1218, 1177, 1078, 754. ¹H NMR (400 MHz, CDCl₃): 7.71-7.70 (m, 3H), 7.50 (d, J = 7.2 Hz, 1H), 7.40 (d, J = 8.2 Hz, 1H), 7.33 (tt, J = 7.5 and 1.6 Hz, 2H), 7.24 (tt, J = 8.6 and 2.1 Hz, 2H), 7.18 (dt, J = 7.56 and 1.04 Hz, 1H), 6.71 (s, 1H), 6.04 (q, J = 7.0 Hz, 1H), 2.07 (d, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 155.0, 154.0, 147.9, 130.5, 128.8 (2C), 128.2, 127.5 (2C), 125.7, 125.1, 123.3, 121.4, 118.0, 111.5, 105.0, 54.4, 19.6. HRMS (ESI): m/z calcd for C₁₈H₁₅ON₃Na (M+Na): 312.1113. Found: 312.1113.

⁹ J. E. Moses and A. D. Moorhouse, Chem. Soc. Rev., 2007, 36, 1249.

¹⁰ S. Chuprakov, S. W. Kwok and V. V. Fokin, J. Am. Chem. Soc., 2013, **135**, 4652 and references cited therein.

¹¹ J. –N. Desrosiers, A. Côté and A. B. Charette, *Tetrahedron*, 2005, **61**, 6186.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

