Supporting Information

A Classical but New Kinetic Equation for Hydride Transfer Reactions

S Xiao-Qing Zhu,* Fei-Huang Deng,† Jin-Dong Yang,† Xiu-Tao Li, Qiang Chen, Nan-Ping Lei, Fan-Kun Meng, Xiao-Peng Zhao, Su-Hui Han, Er-Jun Hao, and Yuan-Yuan Mu

Examination of Entropy Change of Hydride Transfer Reaction with the Type of $XH + Y^+ \rightarrow X^+ + YH$ in Acetonitrile (46H + 55⁺ 10 \rightarrow 46⁺ + 55H as an Example)

S1. Determination of Gibbs Free Energy Change of Hydride Transfer from 46H to 55⁺ in Acetonitrile

Equal molar **46H** to **55**⁺ were mixed in NMR tube containing CD₃CN and then was incubated at 25 °C. The reaction progress was monitored by ¹H NMR technique. The results showed that after ca 10 hours for reaction, the reactions reached the equilibrium state. The ¹⁵ equilibrium constant K was derived from the area of peaks at $\delta = 9.884$ ppm for **55**⁺ and the area of peaks at $\delta = 9.749$ ppm for **46**⁺. The result is that K = 7.07 at 25 °C, i.e., Gibbs free energy change $\Delta G^{\circ}_{(46H/55^+)} = -1.16$ kcal/mol. (see Figures S1-S2).

Figure S1 The ¹H NMR spectra of **55H** (a), **46H** (b), **55**⁺ (c), **46**⁺ (d) in CD₃CN.

Figure S2 Change in the ¹H NMR spectra for the hydride transfer from **46H** to **55**⁺ to form **46**⁺ and **55H** in CD₃CN at 298 K with the reaction time. Conditions: the initial molar concentration ratio of **46H** and **55**⁺ is 1/1: (a) 5 min late; (b) 8 min late; (c) 19 min late; (d) 27 min late; (e) 38 min late; (f) 75 s min late; (g) 101 min late; (h) 36 h late.

S2 Determination of Enthalpy Change of Hydride Transfer from 46H to 55⁺ in Acetonitrile

 $\Delta H_{(46H/55^+)}$ was obtained from the reaction heats of BNAH and 46^+ in acetonitrile (16.9 kcal/mol) and the reaction heat of BNAH with 55^+ in acetonitrile (18.1 kcal/mol), the two reaction heats all were determined in this work. The result is that $\Delta H^0_{(46H/55^+)} = -1.2$ ¹⁰ kcal/mol. Comparing $\Delta H^0_{(46H/55^+)}$ and $\Delta G^0_{(46H/55^+)}$ clear shows that the value of $\Delta H^0_{(46H/55^+)}$ is quite close to that of $\Delta G^0_{(46H/55^+)}$ and the 5

difference is smaller than the experimental error, which means that for the hydride transfer from **46H** to **55**⁺ in acetonitrile, the entropy change, $\Delta S_{(46H/55}^+)$, may be ignored. In addition, the dependence of $\Delta G^{\circ}_{(46H/55}^+)$ on the reaction temperature was examined (Figure S3), the result showed that $\Delta G^{\circ}_{(46H/55}^+)$ was not dependent on the reaction temperature change, which also supports the suggestion that for the hydride transfer reactions with the type of $\mathbf{XH} + \mathbf{Y}^+ \rightarrow \mathbf{X}^+ + \mathbf{YH}$, $\Delta S^{\circ}_{(XH/Y}^+)$ of the reactions may be ignored.

Figure S3 The ¹H NMR spectra of the equal molar mixture of **46H** and **55⁺** in CD₃CN at 298, 318, and 338 K, which was recorded after the reaction reached the equilibrium state.