Supporting Information

Pyridinium-based tripodal chemosensor in visual sensing of AMP in water by indicator displacement assay (IDA)

Kumaresh Ghosh^{*},^a Sk. Sarfaraj Ali,^a Avik Ranjan Sarkar,^a Asmita Samadder^b, Anisur Rahman Khuda-Bukhsh,^b Ioannis D. Petsalakis^c and Giannoula Theodorakopoulos^c

^aDepartment of Chemistry, University of Kalyani, Kalyani-741235, India. Email: ghosh_k2003@yahoo.co.in, Fax: +913325828282; Tel: +913325828750.

^bDepartment of Zoology, University of Kalyani, Kalyani-741235, India.

^c Theoretical and Physical Chemistry Institute, The National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece.

1. UV-vis titration curve of receptor 1 in H₂O (pH = 6.43, 10 mM TrisHCl Buffer).

2. Job plots for 1 with ATP, ADP and AMP

3. Fluorescence titration curve of receptor 1 in H₂O (pH = 6.43, 10 mM TrisHCl Buffer).

4. Fluorescence titration spectra for 1 with AMP in H_2O (pH = 6.4, 10 mM TrisHCl Buffer) on excitation at 285 nm.

5. Dilution Experiments of receptor 1 in H₂O containing TrisHCl buffer pH= 6.4.

6. DFT calculations.

7. Indicator displacement experiments on 1 with Uranine dye (2).

8. MTT assay.

9. Quantitative analysis of fluorescence by using Fluorescence activated cell sorter (FACS).

10. Change in absorbance of 1 with pH in H₂O.

11. Spectral data.

1. UV-vis titration curve of receptor 1 in H₂O (pH = 6.4, 10 mM TrisHCl Buffer)

Figure S1: UV-vis titration curves of **1** ($c = 6.7 \times 10^{-5} \text{ M}$) with Na salt of (a) ATP, (b) ADP, (c) H₂PO₄⁻, (d) HPO₄²⁻, (e) PO₄³⁻ and (f) pyrophosphate in H₂O (pH = 6.4, 10 mM TrisHCl Buffer). [G] = 1.35 x 10⁻³ M.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

2. Job plots for 1 with ATP, ADP and AMP

 X_{G} Figure S2. UV-vis job plots of 1 with (a) ATP, (b) AMP and (c) ADP at 295 nm in H₂O containing TrisHCl buffer pH= 6.4. { [G] = [H] = 5.0 x 10⁻⁵ M at 25 °C}.

3. Fluorescence titration spectra for 1 in H₂O (pH = 6.4, 10 mM TrisHCl Buffer)

Figure S3: Fluorescence titration curves of **1** ($c = 6.7 \times 10^{-5} \text{ M}$) with Na salt of (a) ATP, (b) ADP, (c) AMP, (d) $H_2PO_4^{-}$, (e) HPO_4^{-2-} , (f) PO_4^{-3-} and (g) pyrophosphate in H_2O (pH = 6.43, 10 mM TrisHCl Buffer). [G] = 1.35 x 10^{-3} M.

4. Fluorescence titration spectra for 1 with AMP in H_2O (pH = 6.4, 10 mM TrisHCl Buffer)

Figure S4. Fluorescence titration spectra of 1with AMP on excitation at 285 nm ($[H] = 6.75 \times 10^{-5} M$, $[G] = 1.35 \times 10^{-3} M$).

5. Dilution Experiments of receptor 1 in H₂O containing TrisHCl buffer pH= 6.4

Figure S5. Change in emission and absorption intensity due to addition of AMP and solvent (H_2O) to the solution of receptor **1** in H_2O containing TrisHCl buffer pH= 6.4.

6. DFT calculation

Figure S6: Three views of the optimum geometry of the complex formed by receptor 1 (shown as sticks) with AMP.

Figure S7: Lower energy absorption spectra of (a) AMP, (b) receptor **1** and (c) the complex of receptor **1** (shown as sticks) with AMP.

7. Indicator displacement experiments on 1 with Uranine dye (2):

a) UV-vis experiment

Figure S8: Addition of **1** (c = 1.6×10^{-3} M) into the solution of **2** (c = 4.2×10^{-5} M) causes a decrease in the absorption intensity of **2** at 485 nm in H₂O (pH = 6.4, 10 mM Tris/HCl buffer) at 25 ⁰C.

Figure S9. Change in absorbance due to gradual addition of ATP ($c = 1.56 \times 10^{-3}$ M) to the ensemble of dye **2/1** (1:1). All titration are performed at 25 ⁰C in H₂O (pH = 6.4, 10 mM TrisHCl buffer).

Figure S10: Change in absorbance due to gradual addition of AMP (c = 1.56×10^{-3} M) to the ensemble of dye **2/1** (1:1). All titration are performed at 25 ^oC in H₂O (pH = 6.4, 10 mM TrisHCl buffer).

Figure S11. Change in absorbance due to gradual addition of ADP (c = 1.56×10^{-3} M) to the ensemble of dye 2/1 (1:1). All titration are performed at 25 0 C in H₂O (pH = 6.4, 10 mM TrisHCl buffer).

Figure S12: Change in absorbance due to gradual addition of monohydrogenphosphate (c = 1.56×10^{-3} M) to the ensemble of dye **2/1** (1:1). All titration are performed at 25 0 C in H₂O (pH = 6.4, 10 mM TrisHCl buffer).

Figure S13: Change in absorbance due to gradual addition of phosphate (c = 1.56×10^{-3} M) to the ensemble of dye **2/1** (1:1). All titration are performed at 25 $^{\circ}$ C in H₂O (pH = 6.4, 10 mM TrisHCl buffer).

Figure S14: Change in absorbance due to gradual addition of pyrophosphate (c = 1.56×10^{-3} M) to the ensemble of dye 2/1 (1:1). All titration are performed at 25 0 C in H₂O (pH = 6.4, 10 mM TrisHCl buffer).

Figure S15. Change in absorbance due to gradual addition of dihydrogenphosphate (c = $1.56 \times 10^{-3} \text{ M}$) to the ensemble of dye **2/1** (1:1). All titration are performed at 25 0 C in H₂O (pH = 6.4, 10 mM TrisHCl buffer).

b) Fluorescence experiments

Figure S16: Addition of **1** ($c = 1.6 \times 10^{-3}$ M) into the solution of **2** ($c = 4.2 \times 10^{-5}$ M) causes a decrease in the fluorescence intensity of **2** at 511 nm in H₂O (pH = 6.4, 10 mM Tris/HCl buffer) at 25 ^oC.

Figure S18: Change in fluorescence intensity due to gradual addition of AMP (c = 1.56×10^{-3} M) to the ensemble of dye 2/1 (1:1). All titration are performed at 25 ^oC in H₂O (pH = 6.4, 10 mM TrisHCl buffer).

Figure S17: Change in fluorescence intensity due to gradual addition of ATP (c = $1.56 \times 10^{-3} \text{ M}$) to the ensemble of dye 2/1 (1:1). All titration are performed at 25 °C in H₂O (pH = 6.4, 10 mM TrisHCl buffer).

Figure S 19: Change in fluorescence intensity due to gradual addition of ADP (c = 1.56×10^{-3} M) to the ensemble of dye **2/1** (1:1). All titration are performed at 25 ^oC in H₂O (pH = 6.4, 10 mM TrisHCl buffer).

Figure S20: Change in fluorescence intensity due to gradual addition of Sodium dihydrogenphosphate (c = 1.56×10^{-3} M) to the ensemble of dye 2/1 (1:1). All titration are performed at 25 ^oC in H₂O (pH = 6.4, 10 mM TrisHCl buffer).

Figure S22: Change in fluorescence intensity due to gradual addition of AMP ($c = 1.56 \times 10^{-3} \text{ M}$) to the ensemble of dye **2/1** (1:1). All titration are performed at 25 ^oC in H₂O (pH = 6.4, 10 mM TrisHCl buffer).

Figure S21: Change in fluorescence intensity due to gradual addition of phosphate (c = 1.56×10^{-3} M) to the ensemble of dye **2/1** (1:1). All titration are performed at 25 $^{\circ}$ C in H₂O (pH = 6.4, 10 mM TrisHCl buffer).

Figure S23: Change in fluorescence intensity due to gradual addition of monohydrogenphosphate (c = 1.56×10^{-3} M) to the ensemble of dye **2/1** (1:1). All titration are performed at 25 ^oC in H₂O (pH = 6.4, 10 mM TrisHCl buffer).

c) Color change in the "Indicator displacement assay"

Figure S24: (1) Dye, (2) dye 2 + 1 (1:1) = A, (3) A + ATP, (4) A + ADP, (5) A + AMP, (6) A + H₂PO₄⁻, (7) A + HPO₄²⁻, (8) A + PO₄³⁻ and (9) pyrophosphate.{ [1] = 1.6×10^{-3} M, [2] = 4.2×10^{-5} M, [G] = 1.56×10^{-3} , in H₂O (pH = 6.4, 10 mM Tris/HCl buffer) at 25 ⁰C}

Figure S25: (1) Dye, (2) dye $\mathbf{2} + \mathbf{1}$ (1:1) = A, (3) A + ATP, (4) A + AMP, (5) A + ADP, (6) A + H₂PO₄⁻, (7) A + HPO₄²⁻, (8) A + PO₄³⁻ and (9) pyrophosphate, while respective solution in vials in figure irradiated at 365 nm

Figure S26: Job plot of dye **2** with **1** from fluorescence at 511 nm in H₂O (pH = 6.4, 10 mM TrisHCl buffer). [G] = [H] = 5.0×10^{-5} M.

Figure S27: Job plot of dye **2** with **1** from UV at 485 nm in H₂O (pH = 6.4, 10 mM TrisHCl buffer). [G] = [H] = 5.0×10^{-5} M.

d) Job plot of 2 with 1 from fluorescence

e) Binding constant curves for 1 with the anions in H_2O (pH = 6.4, 10mM TrisHCl buffer)

Figure S28: Binding constant curves of **1** ($c = 6.7 \times 10^{-5} \text{ M}$) from UV-vis titration with Na salt of (a) ATP, (b) ADP and (c) AMP in H₂O (pH = 6.4, 10 mM TrisHCl Buffer). [G] = 1.35 x 10⁻³ M.

f) Binding constant curves of 1 with the dye 2 in H_2O (pH = 6.4, 10mM TrisHCl buffer)

Figure S 29: Binding constant curves of dye **2** ($c = 4.2 \times 10^{-5} \text{ M}$) with **1** ($c = 1.6 \times 10^{-3} \text{ M}$) from UV-vis titration in H₂O (pH = 6.43, 10 mM TrisHCl Buffer).

g)

.

Figure S30: Change in fluorescence of dye in H₂O upon addition of equiv. amount of **1** and other guests in 5 equiv. amounts to the ensemble of 1/dye 2 (pH = 6.4, 10 mM TrisHCl buffer, [dye 2] = 4.2 x 10⁻⁵ M, [1] = 1.6 x 10⁻³ M, [G] = 1.56 x 10⁻³ M).

Figure S31: (a) dye , (b) receptor $\mathbf{1}$ + dye (1:1) = \mathbf{A} , \mathbf{A} with 5 equiv. amount of (c) ATP + ADP, (d) ADP + ATP + AMP; (e) Phosphate; (f) Pyrophosphate ; (g) Phosphate +Pyrophosphate + AMP in H₂O (pH = 6.4, 10 mM TrisHcl Buffer, [dye] = 4.2×10^{-5} M, [$\mathbf{1}$] = 1.6×10^{-3} M, [\mathbf{G}] = 4.7×10^{-3} M).

Figure S32: Change in fluorescence intensity of dye upon addition of receptor **1** (1:1) and other guests (5 equiv.) to the ensemble of **1**/dye **2** in H₂O (pH = 6.4, 10 mM TrisHCl Buffer) ([dye] = 4.2×10^{-5} M, [**1**] = 1.6×10^{-3} M, [G] = 4.7×10^{-3} M).

Figure S33: (a) dye **2**, (b) receptor **1** + dye **2** (1:1) = **A**, **A** with 5 equiv. amounts of (c) ADP (d) ATP (e) A + ADP + ALP, (f) A + ATP + ALP ([dye **2**] = 4.2×10^{-5} M, [**1**] = 1.6×10^{-3} M, [G] = 1.56×10^{-3} M).

h) Selectivity study

Figure S34: Change in fluorescence intensity of dye upon addition of **1** (1:1) and other guests (5 equiv.) to the ensemble of **1**/dye **2** in H₂O (pH = 7.0, 10 mM TrisHCl Buffer). [dye] = 4.2×10^{-5} M, [**1**] = 1.6×10^{-3} M, [G] = 1.56×10^{-3} M.

Figure S35: (a) dye, (b) receptor $\mathbf{1} + dye$ (1:1) = **A**, **A** with 5 equiv. amount of (c) AMP (d) ADP (e) ATP ([dye] = 4.2 x 10^{-5} M, [**1**] = 1.6 x 10^{-3} M, [G] = 1.56 x 10^{-3} M) at pH = 7.0.

Figure S36: Change in fluorescence intensity of dye upon addition of **1** (1:1) and other guests (5 equiv.) to the ensemble of **1**/dye **2** in H₂O (pH = 8.0, 10 mM TrisHCl Buffer). [dye] = 4.2×10^{-5} M, [**1**] = 1.6×10^{-3} M, [**G**] = 1.56×10^{-3} M.

Figure S37: (a) dye, (b) receptor 1 + dye (1:1) = A, A with 5 equiv. amount of (c) AMP (d) ADP (e) ATP ([dye] = 4.2 x 10^{-5} M, [1] = 1.6 x 10^{-3} M, [G] = 1.56 x 10^{-3} M) at pH = 8.0.

Figure S38: Change in fluorescence intensity of dye upon addition of receptor **1** (1:1) [dye] = 4.2×10^{-5} M, [**1**] = 1.6×10^{-3} M, at pH = 5.0.

8. MTT assay

Figure S39. MTT assay.

9. Quantitative analysis of fluorescence by using Fluorescence activated cell sorter (FACS)

Figure S40: A = cell without receptor 1, B = cell + ensemble 1/dye 2, C = cell + ATP + ensemble 1/dye 2, D = cell + ADP + ensemble 1/dye 2, E = cell + AMP + ensemble 1/dye 2 (5 min), F = cell + AMP + ensemble 1/dye 2 (10 min).

Figure S41: Change in absorbance of 1 with pH in H₂O.

10. Spectral data

HRMS Spectra of receptor 1

