Iridium-Catalyzed Asymmetric Ring-Opening of Azabicyclic Alkenes with Alcohols

Dingqiao Yang,^{*,†} Jiuyun Xia,[†] Yuhua Long,[†] Zhongyi Zeng,[†] Xiongjun Zuo,[†] Sanyong Wang,[‡] and Chunrong Li[‡]

[†]*Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and* [‡]*Guangdong Food Industry Institute, Guangzhou 510308, People's Republic of China.*

*Corresponding Author. E-mail: yangdq@scnu.edu.cn. Phone: +86 20 39310068. Fax: +86 20 31040403.

Supporting Information

Table of Contents	Page
1. General	S2
2. Experimental procedures and characterization data	S 3
3. Crystal structure and data of 3c	S14
4. The parties of the copies of HPLC of 2b, 3h and 3f	S23
5. Copies of ¹ H and ¹³ C NMR spectra of 3fa, 2a–2b, 3a–3l, 4a–4c, 5a,	
and 6a—6d	S26

1. General

All flasks were flame-dried under a stream of nitrogen and cooled before use. Solvents and solutions were transferred with syringes and cannulae using standard inert atmosphere techniques. NMR spectra were recorded at 400 MHz using a Varian INOVA NMR spectrometer with CDCl₃ as reference standard (δ 7.27 ppm) for ¹H NMR and (δ 77.23 ppm) for ¹³C NMR. Spectral features are tabulated in the following order: Chemical shift (δ , ppm); number of protons; multiplicity (s-singlet, d-doublet, t-triplet, m-complex multiplet br-broad); coupling constants (*J*, Hz). IR spectra were obtained using a Nicolet DX FT-IR spectrometer as a KBr pellet or using a Perkin-Elmer Spectrum 1000 FT-IR spectrometer as a neat film on a NaCl plate. MS spectra were recorded on a Bruker esquire 6000 mass spectrometer (ESI). Optical rotations were measured on a Perkin-Elmer Model 243 Polarimeter using the sodium D line with spectra-grade CHCl₃ in a 1 dm cell. Melting points were taken on an XT₄ binocular micromelting point apparatus. HPLC analysis was performed on a Thermo. Flash EA. TM. 1112. Crystal structure determination was carried out on a Bruker SMART-1000 X-ray diffraction apparatus.

Materials: DME was distilled from sodium benzophenone ketyl and stored. The THP, dioxane, toluene, and THF were distilled from sodium benzophenone ketyl immediately prior to use. CH_3CN was distilled from calcium hydride. DMF was dried over MgSO₄ and stored over activated molecular sieves. The *N*-protected azabenzonorbornadienes $1a^1$, $1b^1$, $1c^2$, $1d^2$ and [Ir(COD)Cl]₂ were prepared according to the reported procedure, respectively.³

^{1.} Lautens, M.; Fagnou, K.; Zunic, V. Org. Lett. 2002, 4, 3465-3468

^{2.} Zunic, Y.-H.; Cho, V.; Senboku, H.; Olsen, M.; Lautens, M. J. Am. Chem. Soc. 2006, 128, 6837-6846.

^{3.} Van der Ent, A.; Onderdelinden, A. L. Inorg. Synth. 1973, 14, 92-95.

2. Experimental procedures and characterization data

General procedure (I) for the asymmetric ring-opening of azabicyclic alkenes with various alcohols: A 5.0 mL round-bottomed flask fitted with a reflux condenser was flame-dried under a stream of nitrogen and cooled to room temperature. $[Ir(COD)Cl]_2$ (3.5 mg, 2.5 mol %) and (*S*)-BINAP (6.5 mg, 5.0 mol %) were simultaneously added and followed by the addition of anhydrous tetrahydrofuran (2.0 mL). After the mixture was stirred for about 20 min, azabicyclic alkene **1b** (59.4 mg, 0.20 mmol) was added and the resulting mixture was heated to reflux. On the first sign of reflux, alcohol nucleophile (5 equiv to **1b**) was added. Then the oil bath temperature was continuously increased to 80 °C until the reaction was completed as judged by thin layer chromatography. The solvent was removed in *vacuo* and the crude mixture was purified by column chromatography on silica gel (ethyl acetate : petroleum ether = 1 : 10, v/v) to give the target product.

(1*R*,2*R*)-[2-Methoxy-1,2-dihydro-naphthalen-1-yl]-carbamic acid *tert*-butyl ester (2a). Following the general procedure (**I**), 2a was obtained as a white solid (25.0 mg, 50 %). R_f = 0.31 on silica gel (ethyl acetate : petroleum ether = 1 : 6, v/v). mp 69-70 °C. The ee was determined to be 63 % using HPLC analysis on a Chiralcel OD-H column (hexane/2-propanol = 95/5, 0.5 mL/min, λ = 254 nm); Retention times were 18.4 min (minor) and 20.7 min (major). [α]²⁰_D = -100.5 (*c* 1.00, CHCl₃). IR (film, cm⁻¹): 3448(w), 2973(w), 2928(w), 1703(s), 1489(m), 1366(m), 1274(w), 1160(w), 910(w), 750(w), 577(w). ¹H NMR (400 MHz, CDCl₃): δ 7.35 (d, *J* = 2.4 Hz, 1H), 7.24-7.22 (m, 2H), 7.10 (d, *J* = 2.4 Hz, 1H), 6.59 (dd, *J* = 9.6 Hz, 2.8Hz, 1H), 6.08 (dd, *J* = 9.6 Hz, 4.4 Hz, 1H), 4.98 (dd, *J* = 7.6 Hz, 4.8Hz, 1H), 4.62 (d, *J* = 8.0 Hz, 1H), 3.99 (t, *J* = 4.8 Hz, 1H), 3.46 (s, 3H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 155.3, 133.9, 131.9, 130.1, 129.0, 128.3, 127.1, 126.3, 125.8, 79.7, 76.6, 56.4, 51.1, 28.4. MS (ESI) calcd for C₁₆H₂₁NO₃ (M⁺): 275.15; Found: 298.30 (M+Na)⁺. Anal. Calcd. for C₁₆H₂₁NO₃: C, 69.79; H, 7.69; N, 5.09. Found: C, 69.78; H, 7.71; N, 5.07.

For the asymmetric ring-opening of *N*-Boc-azabenzonorbornadiene (1a), *N*-Ts-azabenzonorbornadiene (1b), *N*-Ns-azabenzonorbornadiene (1c), and *N*-Bs-azabenzonorbornadiene (1d) with alcohols and addition of 1a-1b with thiols to afford the corresponding new compounds 2b, 3a-3l, 4a-4c, 5a, and 6a-6d, respectively, are as the same as above representative procedure.

1-Naphthyltosylamine (3fa). 3fa was obtained as a light-brown solid and was purified by column chromatography ($R_f = 0.22$, ethyl acetate : petroleum ether = 1 : 4, v/v). mp 145-147 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.84 (m, 1H), 7.81-7.79 (m, 1H), 7.70 (dd, J = 2.4, 7.2 Hz, 1H), 7.65 (s, 1H), 7.63 (s, 1H), 7.46-7.40 (m, 2H), 7.38-7.33 (m, 2H), 7.16 (s, 1H), 7.13 (s, 1H), 7.11 (s, 1H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 136.4, 134.3, 131.6, 129.7, 129.0, 128.5, 127.5, 127.3, 126.7, 126.4, 125.5, 122.8, 121.6, 21.6.

(1*R*,2*R*)-[2-(4-Bromobenzyloxy)-1,2-dihydro-naphthalen-1-yl]-carbamic acid *tert*-butyl ester (2b). Following the general procedure (**I**), 2b was obtained as a white solid (27.5 mg, 32 %). $R_f = 0.31$ on silica gel (ethyl acetate : petroleum ether = 1 : 6, v/v). mp 96-98 °C. The ee was determined to be 75 % using HPLC analysis on a Chiralcel OD-H column (hexane/2-propanol = 95/5, 0.5 mL/min, λ = 254 nm); Retention times were 20.2 min (major) and 21.9 min (minor). [α]²⁰_D = -143.5 (*c* 1.00, CHCl₃). IR (film, cm⁻¹): 3339(w), 2962(w), 2926(w), 1714(s), 1488(m), 1366(w), 1248(w), 1170(s), 1081(w), 1012(w), 802(w), 747(w), 647(w). ¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, *J* = 7.6 Hz, 2H), 7.38 (d, *J* = 5.6 Hz, 1H), 7.30-7.24 (m, 4H), 7.15 (d, *J* = 6.4 Hz, 1H), 6.62 (d, *J* = 9.6 Hz, 1H), 6.05 (d, *J* = 9.6, 1H), 5.09 (t, *J* = 5.6 Hz, 1H), 4.70-4.65 (m, 3H), 4.20 (s, 1H), 1.48 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 155.4, 137.5, 133.8, 132.0, 131.4, 130.2, 129.6, 128.4, 128.3, 127.1, 126.3, 125.9, 121.5, 79.8, 75.3, 69.7, 51.7, 28.4. MS (ESI) calcd for C₂₂H₂₄BrNO₃ (M⁺): 429.09; Found: 452.37 (M+Na)⁺. Anal. Calcd. for C₂₂H₂₄BrNO₃: C, 61.40; H, 5.62; N, 3.25. Found: C, 61.36; H, 5.60; N, 3.25.

(1*R*,2*R*)-*N*-(2-Methoxy-1,2-dihydronaphthalen-1-yl)-4-methylbenzenesulfonamide (3a).

Following the general procedure (**I**), **3a** was obtained as a white solid (73.0 mg, 85 %). $R_f = 0.25$ on silica gel (ethyl acetate : petroleum ether = 1 : 6, v/v). mp 71-72 °C. The ee was determined to be 4 % using HPLC analysis on a Chiralcel OD-H column (hexane/2-propanol = 90/10, 0.5 mL/min, $\lambda = 254$ nm); Retention times were 52.9 min (major) and 58.0 min (minor). [α]²⁰_D = 10.6 (*c* 1.00, CHCl₃). IR (film, cm⁻¹): 3273(w), 3038(w), 2926(w), 2853(w), 1721(s), 1598(m), 1493(m), 1454(w), 1329(m), 1159(s), 1093(m), 970(m), 916(w), 813(m), 666(m), 571(m). ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, *J* = 8 Hz, 2H), 7.30 (d, *J* = 8.8 Hz, 2H), 7.22-7.18 (m, 1H), 7.07-7.04 (m, 2H), 6.60 (d, *J* = 8 Hz, 1H), 6.57 (d, *J* = 9.6 Hz, 1H), 6.03 (dd, *J* = 9.6 Hz, 4.8 Hz, 1H), 4.68 (d, *J* = 7.6 Hz, 1H), 4.49 (dd, *J* = 4.8 Hz, 7.6 Hz, 1H), 3.96 (t, *J* = 4.4 Hz, 1H), 3.25 (s, 3H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 143.5, 137.7, 132.5, 131.7, 130.3, 129.6, 128.8, 128.3, 127.3, 125.0, 76.7, 56.5, 54.2, 21.6. MS (ESI) calcd for C₁₈H₁₉NO₃S (M⁺): 329.11; Found: 347.10 (M+Na)⁺. Anal. Calcd. for C₁₈H₁₉NO₃S: C, 65.63; H, 5.81; N, 4.25; S, 9.73. Found: C, 65.66; H, 5.78; N, 4.23; S, 9.69.

(1R,2R)-*N*-(2-Ethoxy-1,2-dihydronaphthalen-1-yl)-4-methylbenzenesulfonamide (3b). Following the general procedure (I), 3b was obtained as a white solid (61.7 mg, 90 %). $R_f = 0.20$ on silica gel (ethyl acetate : petroleum ether = 1 : 5, v/v). mp 146-148 °C. The ee was determined to be 1 % using HPLC analysis on a Chiralcel OD-H column (hexane/2-propanol = 90/10, 0.5 mL/min, $\lambda =$ 254 nm); Retention times were 27.9 min (major) and 39.4 min (minor). $[\alpha]^{20}{}_D = -10.2$ (*c* 1.00, CHCl₃). IR (film, cm⁻¹): 3273(w), 3040(w), 2967(w), 2924(m), 2853(w),1921(w), 1598(m), 1454(m), 1329(w), 1159(s), 1093(s), 968(m), 923(w), 813(m), 780(m), 737(m), 666(m), 547(m). ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 8.8 Hz, 2H), 7.21-7.15 (m, 1H), 7.08-7.03 (m, 2H), 6.85 (d, *J* = 7.6 Hz, 1H), 6.54 (d, *J* = 9.6 Hz, 1H), 6.00 (dd, *J* = 9.6 Hz, 4.8 Hz, 1H), 4.74 (d, *J* = 7.6 Hz, 1H), 4.49 (dd, *J* = 4.8 Hz, 7.6 Hz, 1H), 4.04 (t, *J* = 4.8 Hz, 1H), 3.49 (q, *J* = 7.2 Hz, 14 Hz, 2H), 2.44 (s, 3H) , 1.03 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 143.5, 137.8, 132.7, 131.8, 129.8, 129.6, 128.7, 128.3, 128.2, 127.3, 127.2,125.8, 75.3, 64.5, 54.7, 21.6, 15.4. MS (ESI) calcd for C₁₉H₂₁NO₃S (M⁺): 343.12; Found: 366.40 (M+Na)⁺. Anal. Calcd. for C₁₉H₂₁NO₃S: C, 66.45; H, 6.16; N, 4.08; S, 9.34. Found: C, 66.49; H, 6.14; N, 4.05; S, 9.30.

(1R,2R)-N-(2-Isopropoxy-1,2-dihydronaphthalen-1-yl)-4-methylbenzenesulfonamide (3c). Following the general procedure (I), 3c was obtained as a white solid (53.6 mg, 75 %). $R_f = 0.16$ on silica gel (ethyl acetate : petroleum ether = 1 : 5, v/v). mp 121-123 °C. The ee was determined to be 12 % using HPLC analysis on a Chiralcel OD-H column (hexane/2-propanol = 90/10, 0.5 mL/min, $\lambda =$ 254 nm); Retention times were 22.6min (minor) and 28.3 min (major). $[\alpha]^{20}{}_D = -23.5 (c \ 1.00, CHCl_3)$. IR (film, cm⁻¹): 3255(w), 3040(w), 2957(w), 2923(m), 2852(w),1727(w), 1598(w), 1495(m), 1462(w), 1288(w), 1185(w), 1161(s), 968(m), 776(m), 666(m), 568(w). ¹H NMR (400 MHz, CDCl_3): δ 7.75 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 8 Hz, 2H) , 7.20-7.16 (m, 1H), 7.05-7.02 (m, 2H), 6.82 (d, *J* = 7.6 Hz, 1H), 6.54 (d, *J* = 9.6 Hz, 1H), 5.96 (dd, *J* = 9.6 Hz, 4.8 Hz, 1H), 4.68 (d, *J* = 7.6 Hz, 1H), 4.43 (dd, *J* = 4.8 Hz, 7.6 Hz, 1H), 4.09 (t, *J* = 4.8 Hz, 1H), 3.75-3.72 (m, 1H), 2.44 (s, 3H) , 1.02 (dd, *J* = 2.4 Hz, 8.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 143.5, 137.8, 132.7, 131.9, 129.7, 129.5, 128.6, 128.4, 128.2, 127.3, 127.2,126.4, 72.8, 70.3, 55.3, 22.5, 21.6. MS (ESI) calcd for C₂₀H₂₃NO₃S (M⁺): 357.14; Found: 380.46 (M+Na)⁺. Anal. Calcd. for C₂₀H₂₃NO₃S: C, 67.20; H, 6.49; N, 3.92; S, 8.97. Found: C, 67.18; H, 6.50; N, 3.93; S, 8.95.

(1*R*,2*R*)-*N*-(2-(4-Bromophenethoxy)-1,2-dihydronaphthalen-1-yl)-4-methylbenzenesulfonamide (3d). Following the general procedure (I), 3d was obtained as a white solid (74.5 mg, 75 %). $R_f = 0.27$ on silica gel (ethyl acetate : petroleum ether = 1 : 4, v/v). mp 163-164 °C. The ee was determined to be 30 % using HPLC analysis on a Chiralcel OD-H column (hexane/2-propanol = 85/15, 0.5 mL/min, $\lambda = 254$ nm); Retention times were 24.4 min (minor) and 36.3 min (major). [α]²⁰_D = -62.7 (*c* 1.00, CHCl₃). IR (film, cm⁻¹): 3273(w), 3033(w), 2957(s), 2279(w), 1727(m), 1598(w), 1488(m), 1455(w), 1331(m), 1160(s), 1093(s), 962(w), 813(m), 666(m), 547(m). ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 4H), 7.21 (t, *J* = 7.6 Hz, 1H), 7.06 (d, *J* = 7.2 Hz, 2H), 6.97 (d, *J* = 8.4 Hz, 2H), 6.61 (d, J = 7.6 Hz, 1H), 6.56 (d, J = 9.6 Hz, 1H), 5.96 (dd, J = 4.8 Hz, 9.6 Hz, 1H), 4.58 (d, J = 7.6 Hz, 1H), 4.31 (dd, J = 4.0 Hz, 7.6 Hz, 1H), 4.07 (t, J = 4.4 Hz, 1H), 3.73-3.61 (m, 2H), 2.66 (t, J = 7.2 Hz, 2H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 143.6, 137.9, 137.6, 132.3, 131.7, 131.3, 130.7, 130.3, 129.7, 128.8, 128.5, 128.3, 172.3, 127.2, 125.1, 120.0, 75.3, 69.5, 54.2, 35.7, 21.6. MS (ESI) calcd for C₂₅H₂₄BrNO₃S (M⁺): 497.07; Found: 520.16 (M+Na)⁺. Anal. Calcd. for C₂₅H₂₄BrNO₃S: C, 60.24; H, 4.85; N, 2.81; S, 6.43. Found: C, 60.21; H, 4.87; N, 2.82; S, 6.40.

(1*R*,2*R*)-*N*-(2-(Furan-2-ylmethoxy)-1,2-dihydronaphthalen-1-yl)-4-methylbenzenesulfonamide (3e). Following the general procedure (I), 3e was obtained as a white solid (40.5 mg, 51 %). R_f = 0.30 on silica gel (ethyl acetate : petroleum ether = 1 : 3, v/v). mp 123-124 °C. The ee was determined to be 94 % using HPLC analysis on a Chiralcel OD-H column (hexane/2-propanol = 85/15, 0.5 mL/min, λ = 254 nm); Retention times were 29.1 min (minor) and 33.3 min (major). [α]²⁰_D = -165 (*c* 1.00, CHCl₃). IR (film, cm⁻¹): 3269(w), 2926(w), 2854(w), 1715(m), 1598(w), 1503(w), 1454(m), 1331(m), 1159(s), 1069(m), 918(w), 815(m), 749(m), 665(m), 569(m). ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, *J* = 8.0 Hz, 2H), 7.37 (s, 1H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.18 (t, *J* = 7.6 Hz, 1H), 7.07 (d, *J* = 7.2 Hz, 2H), 6.84 (d, *J* = 7.6 Hz, 1H), 6.56 (d, *J* = 9.6 Hz, 1H), 6.32 (s, 1H), 6.27 (s, 1H), 5.92 (dd, *J* = 4.8 Hz, 9.6 Hz, 1H), 4.51-4.46 (m, 2H), 4.43 (s, *J* = 8.0 Hz, 2H), 4.18 (s, 1H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 151.3, 143.5, 142.9, 137.5, 132.5, 131.7, 130.2, 129.6 128.7, 128.4, 128.3, 127.4, 125.2, 110.3, 109.8, 74.4, 62.8, 54.7, 21.6. MS (ESI) calcd for C₂₂H₂₁NO₄S (M⁺): 395.12; Found: 518.51 (M+Na)⁺. Anal. Calcd. for C₂₂H₂₁NO₄S: C, 66.82; H, 5.35; N, 3.54; S, 8.11. Found: C, 66.80; H, 5.34; N, 3.55; S, 8.08.

(1*R*,2*R*)-*N*-(2-(4-Bromobenzyloxy)-1,2-dihydronaphthalen-1-yl)-4-methylbenzenesulfonamide (3f). Following the general procedure (I), 3f was obtained as a white solid (53.5 mg, 55 %). $R_f = 0.24$ on silica gel (ethyl acetate : petroleum ether = 1 : 4, v/v). mp 132-134 °C. The ee was determined to be 92 % using HPLC analysis on a Chiralcel OD-H column (hexane/2-propanol = 85/15, 0.5 mL/min, $\lambda =$ 254 nm); Retention times were 27.6 min (minor) and 38.6 min (major). [α]²⁰_D = -175 (*c* 1.00, CHCl₃).

IR (film, cm⁻¹): 3275(w), 3034(w), 2925(w), 1721(m), 1597(w), 1487(m), 1454(w), 1330(m), 1159(s), 1093(s), 1070(s), 1011(m), 912(w), 811(m), 666(m), 570(m), 547(m). ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, *J* = 8.4 Hz, 2H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 7.24 (t, *J* = 7.6 Hz, 1H), 7.11 (d, *J* = 8.0 Hz, 3H), 7.09-7.06 (m, 1H), 6.73 (d, *J* = 7.6 Hz, 1H), 6.63 (d, *J* = 9.6 Hz, 1H), 6.00 (dd, *J* = 4.8 Hz, 9.6 Hz, 1H), 4.56-4.51 (m, 3H), 4.46 (t, *J* = 8.0 Hz, 1H), 4.17 (t, *J* = 4.8 Hz, 1H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 143.6, 137.6, 137.2, 132.3, 131.7, 131.4, 130.5, 129.7 129.4, 129.0, 128.9, 128.5, 172.3, 127.2, 124.9, 121.6, 74.7, 70.1, 54.4, 21.6. MS (ESI) calcd for C₂₄H₂₂BrNO₃S (M⁺): 483.05; Found: 508.43 (M+Na)⁺. Anal. Calcd. for C₂₄H₂₂BrNO₃S: C, 59.51; H, 4.58; N, 2.89; S, 6.62. Found: C, 59.53; H, 4.59; N, 2.89; S, 6.60.

(1*R*,2*R*)-*N*-(2-Benzyloxy-1,2-dihydronaphthalen-1-yl)-4-methylbenzenesulfonamide (3g). Following the general procedure (**I**), 3g was obtained as a white solid (36.5 mg, 45 %). $R_f = 0.25$ on silica gel (ethyl acetate : petroleum ether = 1 : 4, v/v). mp 113-114 °C. The ee was determined to be 78 % using HPLC analysis on a Chiralcel OD-H column (hexane/2-propanol = 85/15, 0.5 mL/min, $\lambda = 254$ nm); Retention times were 26.4 min (minor) and 29.2 min (major). [α]²⁰_D = -135 (*c* 1.00, CHCl₃). IR (film, cm⁻¹): 3280(w), 3061(w), 2920(w), 1723(m), 1598(w), 1495(m), 1454(w), 1330(s), 1160(s), 1093(s), 966(w), 918(w), 813(m), 750(w), 698(w), 666(m), 569(m). ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 8.4 Hz, 2H), 7.33-1.21 (m, 8H), 7.10 (d, *J* = 7.6 Hz, 2H), 6.79 (d, *J* = 7.2 Hz, 1H), 6.62 (d, *J* = 9.6 Hz, 1H), 6.00 (dd, *J* = 4.8 Hz, 9.6 Hz, 1H), 4.59-4.55 (m, 3H), 4.50 (t, *J* = 7.6 Hz, 1H), 4.18 (t, *J* = 4.8 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 143.5, 138.1, 137.6, 132.5, 131.8, 130.3, 129.6, 128.8, 128.5, 128.4, 127.8, 127.7, 127.3, 127.2, 125.3, 74.5, 70.9, 54.5, 21.6. MS (ESI) calcd for C₂₄H₂₃NO₃S (M⁺): 405.14; Found: 428.64 (M+Na)⁺. Anal. Calcd. for C₂₄H₂₃NO₃S: C, 71.09; H, 5.72; N, 3.45; S, 7.91. Found: C, 71.12; H, 5.74; N, 3.48; S, 7.89.

(**3h**). Following the general procedure (**I**), **3h** was obtained as a white solid (36.5 mg, 65 %). $R_f = 0.22$ on silica gel (ethyl acetate : petroleum ether = 1 : 4, v/v). mp 133-134 °C. The ee was determined to be 73 % using HPLC analysis on a Chiralcel OD-H column (hexane/2-propanol = 85/15, 0.5 mL/min, $\lambda = 254$ nm); Retention times were 25.4 min (minor) and 33.9 min (major). $[\alpha]_D^{20} = -135$ (*c* 1.00, CHCl₃). IR (film, cm⁻¹): 3281(w), 2925(w), 1492(w), 1455(w), 1328(m), 1454(w), 1330(s), 1159(s), 1093(s), 1014(w), 812(m), 667(w), 666(m), 569(m). ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* = 7.2 Hz, 2H), 7.30-7.27 (m, 4H), 7.24 (t, *J* = 7.2 Hz, 1H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.12-7.08 (m, 2H), 6.73 (d, *J* = 7.6 Hz, 1H), 6.62 (d, *J* = 9.6 Hz, 1H), 6.00 (dd, *J* = 4.8 Hz, 9.6 Hz, 1H), 4.53 (d, *J* = 7.6 Hz, 2H), 4.49 (t, *J* = 7.6 Hz, 1H), 4.17 (t, *J* = 7.6 Hz, 1H), 2.46 (s, 3H), 2.18 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 143.6, 137.6, 136.7, 133.4, 132.3, 131.7, 130.5, 129.7, 129.1, 128.9, 128.4, 128.5, 127.3, 127.2, 124.9, 74.7, 70.1, 54.4, 21.6. MS (ESI) calcd for C₂₄H₂₂NO₃ClS (M⁺): 439.10; Found: 462.58 (M+Na)⁺. Anal. Calcd. for C₂₄H₂₂NO₃ClS: C, 65.52; H, 5.04; N, 3.18; S, 7.29. Found: C, 65.53; H, 5.02; N, 3.19; S, 7.26.

(1*R*,2*R*)-*N*-(2-(4-Methoxybenzyloxy)-1,2-dihydronaphthalen-1-yl)-4-methylbenzenesulfonamide (3i). Following the general procedure (**I**), 3i was obtained as a white solid (27.9 mg, 32 %). $R_f = 0.15$ on silica gel (ethyl acetate : petroleum ether = 1 : 5, v/v). mp 83-84 °C. The ee was determined to be 82 % using HPLC analysis on a Chiralcel OD-H column (hexane/2-propanol = 85/15, 0.5 mL/min, $\lambda = 254$ nm); Retention times were 37.6 min (minor) and 40.8 min (major). [α]²⁰_D = -143 (*c* 1.00, CHCl₃). IR (film, cm⁻¹): 3276(w), 3035(w), 2925(w), 1724(w), 1612(w), 1514(w), 1454(w), 1329(m), 1248(m), 1159(s), 1094(m), 1034(m), 914(w), 8125(m), 664(m), 566(m). ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 9.6 Hz, 2H), 7.22 (t, *J* = 7.2 Hz, 1H), 7.16 (d, *J* = 8.4 Hz, 2H), 7.08 (d, *J* = 8.8 Hz, 2H), 6.85 (d, *J* = 8.4 Hz, 2H), 6.76 (d, *J* = 7.2 Hz, 1H), 6.59 (d, *J* = 9.6 Hz, 1H), 5.96 (dd, *J* = 4.4 Hz, 9.6 Hz, 1H), 4.55-4.51 (m, 1H), 4.50-4.47 (m, 3H), 4.16 (s, 1H), 3.82 (s, 3H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.2, 143.5, 137.7, 132.5, 131.8, 130.2, 130.1, 129.7, 129.5, 128.8, 128.5, 128.3, 127.3, 125.4, 113.7, 74.0, 70.6, 55.3, 54.4, 21.6. MS (ESI) calcd for C₂₅H₂₅NO₄S (M⁺): 435.15; Found: 458.45 (M+Na)⁺. Anal. Calcd. for C₂₅H₂₅NO₄S: C, 68.94; H, 5.79; N, 3.22; S, 7.36. Found: C, 68.93; H, 5.77; N, 3.19; S, 7.34.

(1R,2R)-N-(2-(4-Nitrobenzyloxy)-1,2-dihydronaphthalen-1-yl)-4-methylbenzenesulfonamide

(3j). Following the general procedure (I), 3j was obtained as a white solid (54.1 mg, 60 %). $R_f = 0.12$ on silica gel (ethyl acetate : petroleum ether = 1 : 4, v/v). mp 190-191 °C. The ee was determined to be 60 % using HPLC analysis on a Chiralcel OD-H column (hexane/2-propanol = 90/10, 1.0 mL/min, $\lambda = 254$ nm); Retention times were 47.3 min (minor) and 54.6 min (major). $[\alpha]_{D}^{20} = -121$ (*c* 1.00, CHCl₃). IR (film, cm⁻¹): 3282(w), 3045(w), 2925(w), 2854(w), 1958(w), 1519(w), 1397(w), 1344(s), 1161(s), 1092(m), 961(w), 814(m), 775(m), 667(m), 569(m). ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 2H), 7.30-7.27 (m, 3H), 7.25 (t, *J* = 7.6 Hz, 1H), 7.12 (d, *J* = 8.0 Hz, 3H), 6.70 (d, *J* = 7.6 Hz, 1H), 6.63 (d, *J* = 9.6 Hz, 1H), 5.98 (dd, *J* = 4.8 Hz, 9.6 Hz, 1H), 4.55-4.52 (m, 3H), 4.45 (t, *J* = 8.0 Hz, 1H), 4.16 (t, *J* = 4.8 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 145.6, 137.6, 136.7, 133.4, 132.3, 131.7, 130.5, 129.7, 129.1, 128.9, 128.4, 128.5, 127.3, 127.2, 124.9, 79.2, 71.9, 54.4, 24.3. MS (ESI) calcd for C₂₄H₂₂N₂O₅S (M⁺): 450.13; Found: 473.52 (M+Na)⁺. Anal. Calcd. for C₂₄H₂₂N₂O₅S: C, 63.98; H, 4.92; N, 6.22; S, 7.12. Found: C, 63.95; H, 4.94; N, 6.19; S, 7.08.

(1*R*,2*R*)-*N*-(2-(2-Bromobenzyloxy)-1,2-dihydronaphthalen-1-yl)-4-methylbenzenesulfonamide (3k). Following the general procedure (**I**), 3k was obtained as a white solid (40.5 mg, 75 %). $R_f = 0.10$ on silica gel (ethyl acetate : petroleum ether = 1 : 8, v/v). mp 134-135 °C. The ee was determined to be 12 % using HPLC analysis on a Chiralcel OD-H column (hexane/2-propanol = 85/15, 0.5 mL/min, $\lambda =$ 254 nm); Retention times were 46.7 min (minor) and 50.3 min (major). [α]²⁰_D = -23 (*c* 1.00, CHCl₃). IR (film, cm⁻¹): 3284(w), 3059(w), 2924(w), 1597(w), 1491(w), 1444(m), 1332(m), 1159(s), 1094(m), 928(w), 812(w), 664(m), 547(m). ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 8.4 Hz, 2H), 7.51 (d, *J* = 8.0 Hz, 1H), 7.35(d, *J* = 4.8 Hz, 1H), 7.26-7.21 (m, 4H), 7.16-7.09 (m, 3H), 6.92 (d, *J* = 7.6 Hz, 1H), 6.61 (d, *J* = 9.6 Hz, 1H), 6.05 (dd, *J* = 4.8 Hz, 9.6 Hz, 1H), 4.62 (s, 1H), 4.56 (s, 2H), 4.23 (t, *J* = 4.0 Hz, 1H), 2.40 (s, 3H), 2.34 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 143.3, 137.5, 137.3, 132.7, 132.4, 131.8, 130.4, 129.6, 129.4, 129.0, 128.7, 128.4, 128.3, 127.3, 127.2, 125.0, 122.8, 121.4, 75.5, 70.2, 54.7, 21.6. MS (ESI) calcd for $C_{24}H_{22}BrNO_3S$ (M⁺): 485.05; Found: 506.33 (M+Na)⁺. Anal. Calcd. for $C_{24}H_{22}NBrO_3S$: C, 59.51; H, 4.58; N, 2.89; S, 6.62. Found: C, 59.54; H, 4.55; N, 2.88; S, 6.58.

(*IR*,*2R*)-*N*-(2-(Benzo[d][1,3]dioxol-5-ylmethoxy)-1,2-dihydronaphthalen-1-yl)-4-methylbenze nesulfonamide (3l). Following the general procedure (I), 3l was obtained as a white solid (72.6 mg, 45 %). R_f = 0.15 on silica gel (ethyl acetate : petroleum ether = 1 : 5, v/v). mp 63-64 °C. The ee was determined to be 88 % using HPLC analysis on a Chiralcel OD-H column (hexane/2-propanol = 85/15, 0.5 mL/min, λ = 254 nm); Retention times were 26.1 min (minor) and 35.5 min (major). [α]²⁰_D = -128 (*c* 1.00, CHCl₃). IR (film, cm⁻¹): 3268(w), 3059(w), 2957(w), 2924(w), 1597(w), 1454(w), 1329(m), 1161(s), 1093(s), 967(w), 916(w), 813(m), 752(m), 665(m), 548(m). ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.21 (t, *J* = 7.6 Hz, 1H), 7.08 (d, *J* = 7.6 Hz, 2H), 6.77-6.73 (m, 4H), 6.59 (d, *J* = 9.6 Hz, 1H), 5.98 (d, *J* = 4.4 Hz, 1H), 5.95 (s, 2H), 4.52 (s, 2H), 4.43 (s, 2H), 4.14 (s, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 143.7, 143.2, 139.6, 133.7, 128.5, 127.9, 127.8, 126.4, 125.7, 124.9, 124.5, 124.4, 123.4, 123.3, 121.3, 117.6, 104.7, 104.1, 97.0, 70.1, 66.8, 50.5, 17.7. MS (ESI) calcd for C₂₅H₂₃NO₅S (M⁺): 449.13; Found: 472.33 (M+Na)⁺. Anal. Calcd. for C₂₅H₂₃NO₅S: C, 66.80; H, 5.16; N, 3.12; S, 7.13. Found: C, 66.81; H, 5.15; N, 3.12; S, 7.16.

(1R,2R)-N-(2-(4-Bromobenzyloxy)-1,2-dihydronaphthalen-1-yl)-4-nitrobenzenesulfonamide

(4a). Following the general procedure (**I**), 4a was obtained as a white solid (77.3 mg, 75 %). $R_f = 0.18$ on silica gel (ethyl acetate : petroleum ether = 1 : 4, v/v). mp 166-167 °C. The ee was determined to be 10 % using HPLC analysis on a Chiralcel OD-H column (hexane/2-propanol = 80/20, 1.0 mL/min, $\lambda = 254$ nm); Retention times were 33.5 min (minor) and 50.1 min (major). [α]²⁰_D = -19 (*c* 1.00, CHCl₃). IR (film, cm⁻¹): 3274(w), 3059(w), 2925(w), 2854(m), 1724(m), 1605(w), 1530(s), 1487(w), 1455(w), 1348(s), 1288(m), 1164(m), 1092(m), 1073(m), 853(w), 811(w), 736(m), 615(m), 503(m). ¹H NMR

(400 MHz, CDCl₃): δ 8.21 (d, J = 8.4 Hz, 2H), 7.94 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 7.26 (s, 1H), 7.15-7.11 (m, 2H), 7.05 (d, J = 8.0 Hz, 2H), 6.97 (d, J = 7.6 Hz, 1H), 6.60 (d, J = 9.6 Hz, 1H), 5.99 (dd, J = 4.0 Hz, 3.6 Hz, 1H), 4.96 (d, J = 7.6 Hz, 1H), 4.65 (t, J = 7.2 Hz, 1H), 4.52 (d, J = 8.0 Hz, 1H), 4.36 (d, J = 9.6 Hz, 1H), 4.14 (t, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 149.8, 146.5, 136.7, 132.1, 131.9, 131.5, 130.3, 129.3, 129.1, 128.5, 128.2, 127.7, 127.4, 125.1, 124.1, 121.9, 75.5, 70.2, 55.8. MS (ESI) calcd for C₂₃H₁₉N₂O₅BrS (M⁺): 514.02; Found: 538.34 (M+Na)⁺. Anal. Calcd. for C₂₃H₁₉N₂O₅BrS: C, 53.60; H, 3.72; N, 5.44; S, 6.22. Found: C, 53.62; H, 3.71; N, 5.44; S, 6.19.

(1*R*,2*R*)-*N*-(2-(4-Chlorobenzyloxy)-1,2-dihydronaphthalen-1-yl)-4-nitrobenzenesulfonamide (4b). Following the general procedure (**I**), 4b was obtained as a white solid (61.1 mg, 65 %). $R_f = 0.18$ on silica gel (ethyl acetate : petroleum ether = 1 : 4, v/v). mp 173-174 °C. The ee was determined to be 16 % using HPLC analysis on a Chiralcel OD-H column (hexane/2-propanol = 80/20, 1.0 mL/min, $\lambda =$ 254 nm); Retention times were 31.0 min (minor) and 42.7 min (major). [α]²⁰_D = -32 (*c* 1.00, CHCl₃). IR (film, cm⁻¹) 3283(w), 3104(w), 2919(w), 2852(w), 1728(w), 1605(w), 1530(s), 1492(w), 1454(w), 1348(s), 1164(s), 1091(m), 1014(w), 853(m), 813(m), 736(m), 558(m). ¹H NMR (400 MHz, CDCl₃): δ 8.20 (d, *J* = 4.8 Hz, 2H), 7.94 (d, *J* = 8.8 Hz, 2H), 7.36-7.24 (m, 4H), 7.14-1.10 (m, 3H), 6.97 (d, *J* = 7.6 Hz, 1H), 6.60 (d, *J* = 9.6 Hz, 1H), 6.00 (dd, *J* = 9.6 Hz, 4.0 Hz, 1H), 4.85 (d, *J* = 8.4 Hz, 1H), 4.66 (t, *J* = 6.0 Hz, 1H), 4.53 (d, *J* = 12.0 Hz, 1H), 4.38 (d, *J* = 9.6 Hz, 1H), 4.15 (t, *J* = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 146.5, 136.1, 133.8, 132.1, 131.9, 130.3, 129.1, 128.9, 128.6, 128.5, 128.2, 127.7, 127.4, 125.1, 124.8, 124.1, 75.4, 70.1, 55.8. MS (ESI) calcd for C₂₃H₁₉N₂O₅ClS (M⁺): 470.07; Found:493.43 (M+Na)⁺. Anal. Calcd. for C₂₃H₁₉N₂O₅ClS: C, 58.66; H, 4.07; N, 5.95; S, 6.81. Found: C, 58.67; H, 4.06; N, 5.94; S, 6.77.

(**1***R*,**2***R*)-*N*-(**2**-(**Benzo**[**d**][1,3]dioxol-5-ylmethoxy)-1,2-dihydronaphthalen-1-yl)-4-nitrobenzenesu Ifonamide (4c). Following the general procedure (**I**), 4c was obtained as a white solid (52.8 mg, 55 %). $R_f = 0.15$ on silica gel (ethyl acetate : petroleum ether = 1 : 5, v/v). mp 173-175 °C. The ee was determined to be 18 % using HPLC analysis on a Chiralcel OD-H column (hexane/2-propanol = 75/25, 1.0 mL/min, $\lambda = 254$ nm); Retention times were 38.6 min (major) and 53.7 min (minor). [α]²⁰_D = -28 (*c* 1.00, CHCl₃). IR (film, cm⁻¹): 3735(w), 3294(w), 2921(s), 1729(w), 1529(m), 1444(m), 1348(s), 1254(m), 1163(s), 1094(m), 1039(m), 929(w), 737(w), 615(w), 503(m). ¹H NMR (400 MHz, CDCl₃): δ 8.21 (d, *J* = 8.4 Hz, 2H), 7.97 (d, *J* = 8.4 Hz, 2H), 7.21-7.10 (m, 4H), 6.72 (d, *J* = 8.0 Hz, 1H), 6.63-6.56 (m, 3H), 6.00 (d, *J* = 3.6 Hz, 1H), 5.98 (d, *J* = 4.0 Hz, 2H), 4.75-4.68 (m, 2H), 4.46 (d, *J* = 12.0 Hz, 1H), 4.27 (d, *J* = 12.0 Hz, 1H), 4.10 (t, *J* = 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 149.7, 147.7, 147.3, 146.5, 132.6, 132.0, 131.2, 130.9, 129.9, 128.9, 128.5, 128.3, 127.5, 127.2, 125.6, 124.0, 121.3, 108.2, 101.2, 75.1, 70.6, 55.3. MS (ESI) calcd for C₂₄H₂₀N₂O₇S (M⁺): 480.10; Found: 503.76 (M+Na)⁺. Anal. Calcd. for C₂₄H₂₀N₂O₇S: C, 59.99; H, 4.20; N, 5.83; S, 6.67. Found: C, 59.95; H, 4.19; N, 5.80; S, 6.63.

(1*R*,2*R*)-*N*-(2-(4-Bromobenzyloxy)-1,2-dihydronaphthalen-1-yl)-4-bromobenzenesulfonamide (5a). Following the general procedure (**I**), 5a was obtained as a white solid (74.6 mg, 68 %). $R_f = 0.15$ on silica gel (ethyl acetate : petroleum ether = 1 : 5, v/v). mp 136-137 °C. The ee was determined to be 4 % using HPLC analysis on a Chiralcel OD-H column (hexane/2-propanol = 85/15, 1.0 mL/min, $\lambda = 254$ nm); Retention times were 16.7 min (minor) and 27.1 min (major). [α]²⁰_D = -17 (*c* 1.00, CHCl₃). IR (film, cm⁻¹): 3565(w), 3270(w), 2924(s), 2028(w), 1575(w), 1487(w), 1390(s), 1333(m), 1275(w), 1162(s), 1069(m), 1011(m), 819(m), 739(m), 610(m), 558(w). ¹H NMR (400 MHz, CDCl₃): δ 7.65 (d, *J* = 8.4 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.28-7.25 (m, 2H), 7.12-7.07 (m, 3H), 6.84 (d, *J* = 8.0 Hz, 1H), 6.60 (d, *J* = 9.6 Hz, 1H), 5.98 (dd, *J* = 9.6 Hz, 4.4 Hz, 1H), 4.63 (d, *J* = 8.0 Hz, 1H), 4.56-4.51 (m, 2H), 4.43 (d, *J* = 9.6 Hz, 1H), 4.13 (d, *J* = 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 139.7, 136.9, 132.3, 132.2, 131.7, 131.5, 130.5, 129.4, 129.0, 128.6, 128.5, 128.2, 127.7, 127.4, 124.9, 121.7, 74.9, 70.2, 54.9. MS (ESI) calcd for $C_{23}H_{19}NO_3Br_2S$ (M⁺): 546.95; Found: 569.93 (M+Na)⁺. Anal. Calcd. for $C_{23}H_{19}NO_3Br_2S$: C, 50.29; H, 3.49; N, 2.55; S, 5.84. Found: C, 50.32; H, 3.48; N, 2.51; S, 5.80.

2-(4-Chloro-benzylsulfanyl)-1,2,3,4-tetrahydro-1,4-epiazano-naphthalene-9-carboxylic acid tert-butyl ester (6a). Following the general procedure (I), 6a was obtained as a white solid (64.2 mg, 80 %). $R_f = 0.25$ on silica gel (ethyl acetate : petroleum ether = 1 : 15, v/v). mp 91-93 °C. The ee was determined to be 9 % using HPLC analysis on a Chiralcel OD-H column (hexane/2-propanol = 90/10, 0.5 mL/min, $\lambda = 254$ nm); Retention times were 12.2 min (minor) and 16.2 min (major). $[\alpha]_D^{20} = 9$ (*c* 1.00, CHCl₃). IR (film, cm⁻¹): 3339(w), 2962(w), 2926(w), 1714(m), 1488(w), 1366(m), 1248(s), 1170(m), 1081(w), 802(s), 747(m), 693(w), 526(m). ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.26 (m, 4H), 7.20-7.12 (m, 4H), 5.14 (s, 1H), 4.76 (s, 1H), 3.88-3.78 (m, 2H), 2.60 (s, 1H), 1.87-1.84 (m, 1H), 1.78-1.75 (m, 1H), 1.40 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 167.7, 145.0, 132.9, 130.9, 130.2, 128.8, 126.9, 126.7, 80.3, 65.6, 45.3, 36.4, 30.6, 29.7, 28.3. MS (ESI) calcd for C₂₂H₂₄CINO₂S (M⁺): 401.12; Found: 424.23 (M+Na)⁺. Anal. Calcd. for C₂₂H₂₄CINO₂S: C, 65.74; H, 6.02; N, 3.48; S, 7.98 Found: C, 65.75; H, 5.99; N, 3.44; S, 7.90.

2-(4-Methoxy-benzylsulfanyl)-1,2,3,4-tetrahydro-1,4-epiazano-naphthalene-9-carboxylic acid tert-butyl ester (6b). Following the general procedure (I), 6b was obtained as a white solid (65.1 mg, 82 %). $R_f = 0.25$ on silica gel (ethyl acetate : petroleum ether = 1 : 15, v/v). mp 85-87 °C. The ee was determined to be 8 % using HPLC analysis on a Chiralcel OD-H column (hexane/2-propanol = 90/10, 0.5 mL/min, $\lambda = 254$ nm); Retention times were 13.4 min (minor) and 15.2 min (major). $[\alpha]^{20}_{D} = 8 (c$ 1.00, CHCl₃). IR (film, cm⁻¹): 3339(w), 2962(w), 2926(w), 1714(m), 1488(w), 1366(m), 1248(s), 1170(m), 1081(w), 802(s), 747(m), 693(w), 526(m). ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.12 (m, 6H), 6.89-6.87 (m, 2H), 5.15-4.99 (m, 1H), 4.77 (s, 1H), 3.87-3.79 (m, 5H), 2.63 (s, 1H), 1.90-1.84 (m, 1H), 1.80-1.73 (m, 1H), 1.42 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 158.7, 145.1, 145.0, 130.0, 129.9, 126.8, 126.6, 114.0, 80.2, 65.2, 60.0, 55.3, 45.2, 36.5, 35.9, 28.3. MS (ESI) calcd for C₂₃H₂₇NO₃S (M⁺): 397.17; Found: 420.25 (M+Na)⁺. Anal. Calcd. for C₂₃H₂₇NO₃S: C, 69.49; H, 6.85; N, 3.52; S, 8.07. Found: C, 69.45; H, 6.83; N, 3.50; S, 8.17.

2-(4-Chloro-benzylsulfanyl)-9-(toluene-4-sulfonyl)-1,2,3,4-tetrahydro-1,4-epiazano-naphthalen e (6c). Following the general procedure (**I**), **6c** was obtained as a white solid (77.3 mg, 85 %). $R_f = 0.25$ on silica gel (ethyl acetate : petroleum ether = 1 : 15, v/v). mp 94-96 °C. The ee was determined to be 1 % using HPLC analysis on a Chiralcel OD-H column (hexane/2-propanol = 85/15, 0.5 mL/min, $\lambda = 254$ nm); Retention times were 35.4 min (major) and 41.9 min (minor). $[\alpha]^{20}{}_{D} = 1$ (*c* 1.00, CHCl₃). IR (film, cm⁻¹): 2934(w), 2925(w), 1596(w), 1511(m), 1489(w), 1342(m), 1161(s), 1090(m), 1014(w), 971(s), 812(m), 693(w), 679(m), 604(m), 526(m). ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.26 (m, 6H), 6.91 (d, *J* = 4.0 Hz, 2H), 6.86 (s, 3H), 6.73 (d, *J* = 4.4 Hz, 1H), 5.00 (d, *J* = 4.4 Hz, 1H), 4.52 (s, 1H), 3.84 (d, *J* = 4.8 Hz, 2H), 2.51 (dd, *J* = 3.6 Hz, 8.0 Hz, 1H), 2.25 (s, 3H), 2.01-1.98 (m, 1H), 1.78-1.74 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 143.0, 142.9, 141.7, 136.9, 134.9, 132.9, 130.3, 128.9, 128.8, 127.9, 126.9, 126.7, 120.2, 120.1, 68.3, 63.1, 44.6, 36.7, 36.3, 21.4. MS (ESI) calcd for C₂₄H₂₂CINO₂S₂ (M⁺): 455.08; Found: 478.43 (M+Na)⁺. Anal. Calcd. for C₂₄H₂₂CINO₂S₂: C, 63.21; H, 4.86; N, 3.07; S, 14.06. Found: C, 63.23; H, 4.83; N, 3.08; S, 14.12.

2-(4-Methoxy-benzylsulfanyl)-9-(toluene-4-sulfonyl)-1,2,3,4-tetrahydro-1,4-epiazano-naphthale ne (6d). Following the general procedure (I), 6d was obtained as a white solid (79.3 mg, 88 %). $R_f =$ 0.20 on silica gel (ethyl acetate : petroleum ether = 1 : 15, v/v). mp 102-103 °C. The ee was determined to be 5 % using HPLC analysis on a Chiralcel OD-H column (hexane/2-propanol = 85/15, 0.5 mL/min, $\lambda = 254$ nm); Retention times were 39.0 min (minor) and 48.1 min (major). $[\alpha]_D^{20} = 5$ (*c* 1.00, CHCl₃). IR (film, cm⁻¹): 2933(w), 2925(w), 1669(w), 1511(m), 1460(w), 1342(m), 1161(s), 1089(m), 1031(w), 971(s), 813(m), 604(w), 558(m). ¹H NMR (400 MHz, CDCl₃): δ 7.31 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 8.4 Hz, 2H), 6.97 (d, *J* = 8.0 Hz, 2H), 6.87-6.85 (m, 5H), 6.75 (d, *J* = 4.0 Hz, 1H), 4. 98 (d, *J* = 3.6 Hz, 1H), 4.50 (s, 1H), 3.83 (d, *J* = 4.8 Hz, 2H), 3.80 (s, 3H), 2.55-2.52 (m, 1H), 2.25 (s, 3H), 2.00-1.96 (m, 1H), 1.78-1.73 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 154.7, 139.1, 138.9, 137.9, 131.0, 126.3, 126.1, 124.9, 123.9, 122.9, 122.7, 116.3, 116.2, 110.1, 64.4, 59.2, 51.4, 40.6, 32.7, 32.5, 17.5. MS (ESI) calcd for C₂₅H₂₅NO₃S₂ (M⁺): 451.13; Found: 474.41 (M+Na)⁺. Anal. Calcd. for C₂₅H₂₅NO₃S₂: C, 66.49; H, 5.58; N, 3.10; 14.20. Found: C, 66.55; H, 5.54; N, 3.12; 14.11.

3.	Crystal	structure	and	data	of

(1R,2R)-N-(-2-isopropoxy-1,2-dihydronaphthalen-1-yl)-4-methylbenzenesulfonamide (3c).

Table 1. Crystal data and structure refinement for 3c.

Identification code	3c	
Empirical formula	$C_{20}H_{25}NO_{3}S$	
Formula weight	359.47	
Temperature	293(2) K	
Wavelength	0.71073 A	
Crystal system, space group	Monoclinic, P21/c	
Unit cell dimensions	a = 9.807(5) A alpha	= 90 deg.
	b = 13.026(6) A be	ta = 96.029(8) de
	c = 14.561(7) A gar	nma = 90 deg.
Volume	1849.8(16) A^3	

Z, Calculated density	4, 1.291 Mg/m^3
Absorption coefficient	0.193 mm^-1
F(000)	768
Crystal size	0.20 x 0.18 x 0.16 mm
Theta range for data collection	2.10 to 25.00 deg.
Limiting indices	-10<=h<=11, -15<=k<=15, -17<=l<=17
Reflections collected / unique	9163 / 3223 [R(int) = 0.1478]
Completeness to theta $= 25.00$	98.9 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3223 / 135 / 229
Goodness-of-fit on F^2	1.003
Final R indices [I >2 sigma (I)]	R1 = 0.0813, $wR2 = 0.1339$
R indices (all data)	R1 = 0.2585, wR2 = 0.1580
Largest diff. peak and hole	0.373 and -0.392 e.A^-3

Table 2.	Atomic coordinates (x 10 ⁴) and equivalent isotropic displacement parameters (A	A^2 x
10^3) for	c. U(eq) is defined as one third of the trace of the orthogonalzed Uij tensor.	

	Х	У	Z	U(eq)
S(1)	4771(2)	3517(2)	825(1)	69(1)
O(4)	1681(5)	4748(3)	2233(3)	85(2)
O(5)	4463(4)	2452(3)	928(3)	85(2)
O(6)	5810(4)	3848(3)	132(3)	74(1)
N(2)	3410(5)	4093(3)	605(3)	68(2)
C(19)	66(10)	2195(6)	-1187(6)	113(3)
C(20)	1453(9)	2225(6)	-1268(5)	107(3)
C(21)	2077(8)	2763(5)	-603(5)	89(2)
C(22)	1344(7)	3238(5)	110(4)	63(2)
C(23)	-85(8)	3215(5)	201(5)	73(2)
C(24)	-686(8)	2672(5)	-480(5)	98(3)
C(25)	-846(7)	3734(5)	946(5)	81(2)
C(26)	-294(8)	4356(5)	1505(5)	81(2)
C(27)	1185(8)	4586(5)	1369(4)	73(2)
C(28)	2011(7)	3736(5)	887(4)	64(2)
C(29)	1340(12)	5762(6)	2627(6)	151(4)

C(30)	5252(7)	3969(5)	1886(4)	68(2)
C(31)	5852(7)	4908(5)	1933(5)	85(2)
C(32)	6319(7)	5237(6)	2742(5)	94(2)
C(33)	6206(8)	4598(7)	3494(5)	88(2)
C(34)	5144(7)	3330(5)	2627(5)	90(2)
C(35)	5599(8)	3657(7)	3450(5)	107(3)
C(36)	6782(8)	4943(6)	4382(4)	130(3)
C(39)	2550(12)	6302(8)	2629(8)	226(5)
C(40)	1053(14)	5591(7)	3622(6)	239(5)

Table 3. Bond lengths [A] and angles [deg] for 3c.

S(1)-O(5)	1.431(4)
S(1)-N(2)	1.536(5)
S(1)-O(6)	1.568(4)
S(1)-C(30)	1.675(6)
O(4)-C(27)	1.317(6)
O(4)-C(29)	1.492(8)
N(2)-C(28)	1.545(7)
N(2)-H(2C)	0.8600
C(19)-C(20)	1.378(10)
C(19)-C(24)	1.466(9)
C(19)-H(19A)	0.9300
C(20)-C(21)	1.295(8)
C(20)-H(20A)	0.9300
C(21)-C(22)	1.462(8)
C(21)-H(21A)	0.9300
C(22)-C(28)	1.405(7)
C(22)-C(23)	1.422(8)
C(23)-C(24)	1.307(8)
C(23)-C(25)	1.536(9)
	S(1)-O(5)S(1)-N(2)S(1)-O(6)S(1)-C(30)O(4)-C(27)O(4)-C(29)N(2)-C(28)N(2)-H(2C)C(19)-C(20)C(19)-C(24)C(19)-H(19A)C(20)-C(21)C(20)-C(21)C(21)-C(22)C(21)-H(21A)C(22)-C(28)C(22)-C(23)C(23)-C(24)C(23)-C(25)

C(24)-H(24A)	0.9300
C(25)-C(26)	1.233(7)
C(25)-H(25A)	0.9300
C(26)-C(27)	1.515(9)
C(26)-H(26A)	0.9300
C(27)-C(28)	1.579(8)
C(27)-H(27A)	0.9800
C(28)-H(28A)	0.9800
C(29)-C(39)	1.379(13)
C(29)-C(40)	1.521(11)
C(29)-H(29A)	0.9800
C(30)-C(31)	1.355(8)
C(30)-C(34)	1.376(8)
C(31)-C(32)	1.292(7)
C(31)-H(31A)	0.9300
C(32)-C(33)	1.389(9)
C(32)-H(32A)	0.9300
C(33)-C(35)	1.361(9)
C(33)-C(36)	1.428(8)
C(34)-C(35)	1.306(8)
C(34)-H(34A)	0.9300
C(35)-H(35A)	0.9300
C(36)-H(36A)	0.9600
C(36)-H(36B)	0.9600
C(36)-H(36C)	0.9600
C(39)-H(39A)	0.9600
C(39)-H(39B)	0.9600
C(39)-H(39C)	0.9600
C(40)-H(40A)	0.9600
C(40)-H(40B)	0.9600

C(40)-H(40C)	0.9600
O(5)-S(1)-N(2)	107.9(3)
O(5)-S(1)-O(6)	119.6(3)
N(2)-S(1)-O(6)	109.9(3)
O(5)-S(1)-C(30)	106.7(3)
N(2)-S(1)-C(30)	100.1(3)
O(6)-S(1)-C(30)	110.9(3)
C(27)-O(4)-C(29)	115.8(5)
S(1)-N(2)-C(28)	125.0(4)
S(1)-N(2)-H(2C)	117.5
C(28)-N(2)-H(2C)	117.5
C(20)-C(19)-C(24)	128.4(8)
C(20)-C(19)-H(19A)	115.8
C(24)-C(19)-H(19A)	115.8
C(21)-C(20)-C(19)	110.2(9)
C(21)-C(20)-H(20A)	124.9
C(19)-C(20)-H(20A)	124.9
C(20)-C(21)-C(22)	122.0(8)
C(20)-C(21)-H(21A)	119.0
C(22)-C(21)-H(21A)	119.0
C(28)-C(22)-C(23)	108.4(7)
C(28)-C(22)-C(21)	123.0(7)
C(23)-C(22)-C(21)	128.4(6)
C(24)-C(23)-C(22)	108.1(8)
C(24)-C(23)-C(25)	124.1(8)
C(22)-C(23)-C(25)	127.8(6)
C(23)-C(24)-C(19)	122.8(8)
C(23)-C(24)-H(24A)	118.6
C(19)-C(24)-H(24A)	118.6
C(26)-C(25)-C(23)	122.9(8)

C(26)-C(25)-H(25A)	118.5
C(23)-C(25)-H(25A)	118.5
C(25)-C(26)-C(27)	113.8(8)
C(25)-C(26)-H(26A)	123.1
C(27)-C(26)-H(26A)	123.1
O(4)-C(27)-C(26)	99.7(6)
O(4)-C(27)-C(28)	112.4(5)
C(26)-C(27)-C(28)	117.6(6)
O(4)-C(27)-H(27A)	108.9
C(26)-C(27)-H(27A)	108.9
C(28)-C(27)-H(27A)	108.9
C(22)-C(28)-N(2)	106.0(6)
C(22)-C(28)-C(27)	117.6(6)
N(2)-C(28)-C(27)	114.7(5)
C(22)-C(28)-H(28A)	105.8
N(2)-C(28)-H(28A)	105.8
C(27)-C(28)-H(28A)	105.8
C(39)-C(29)-O(4)	103.0(10)
C(39)-C(29)-C(40)	108.6(8)
O(4)-C(29)-C(40)	107.9(7)
C(39)-C(29)-H(29A)	112.3
O(4)-C(29)-H(29A)	112.3
C(40)-C(29)-H(29A)	112.3
C(31)-C(30)-C(34)	125.1(6)
C(31)-C(30)-S(1)	116.3(6)
C(34)-C(30)-S(1)	118.2(6)
C(32)-C(31)-C(30)	117.1(7)
C(32)-C(31)-H(31A)	121.5
C(30)-C(31)-H(31A)	121.5
C(31)-C(32)-C(33)	118.1(8)

C(31)-C(32)-H(32A)	121.0
C(33)-C(32)-H(32A)	121.0
C(35)-C(33)-C(32)	125.0(8)
C(35)-C(33)-C(36)	117.1(8)
C(32)-C(33)-C(36)	117.9(8)
C(35)-C(34)-C(30)	118.3(7)
C(35)-C(34)-H(34A)	120.8
C(30)-C(34)-H(34A)	120.8
C(34)-C(35)-C(33)	116.3(8)
C(34)-C(35)-H(35A)	121.9
C(33)-C(35)-H(35A)	121.9
C(33)-C(36)-H(36A)	109.5
C(33)-C(36)-H(36B)	109.5
H(36A)-C(36)-H(36B)	109.5
C(33)-C(36)-H(36C)	109.5
H(36A)-C(36)-H(36C)	109.5
H(36B)-C(36)-H(36C)	109.5
C(29)-C(39)-H(39A)	109.5
C(29)-C(39)-H(39B)	109.5
H(39A)-C(39)-H(39B)	109.5
C(29)-C(39)-H(39C)	109.5
H(39A)-C(39)-H(39C)	109.5
H(39B)-C(39)-H(39C)	109.5
C(29)-C(40)-H(40A)	109.5
C(29)-C(40)-H(40B)	109.5
H(40A)-C(40)-H(40B)	109.5
C(29)-C(40)-H(40C)	109.5
H(40A)-C(40)-H(40C)	109.5
H(40B)-C(40)-H(40C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for 3c. The anisotropic displacement
factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + + 2 h k a* b* U12]

U11	U22	U3	3	U23	U13	U12	
S(1)	62(1)	67(1)	74(1)	-4(1)	-16(1)	5(1)	
O(4)	91(4)	86(3)	70(3)	-5(3)	-36(3)	13(3)	
O(5)	79(4)	63(3)	104(4)	-8(3)	-35(3)	6(3)	
O(6)	57(3)	94(4)	68(3)	0(3)	-5(3)	6(3)	
N(2)	54(4)	69(4)	76(4)	5(3)	-20(3)	13(3)	
C(19)	111(6)	104(5)	111(6)	-26(4)	-46(6)	-5(6)	
C(20)	101(6)	103(5)	106(5)	-32(4)	-37(5)	3(5)	
C(21)	78(5)	95(5)	87(5)	-11(4)	-32(4)	-7(4)	
C(22)	60(4)	66(4)	58(4)	-2(3)	-19(4)	-1(4)	
C(23)	76(5)	65(4)	71(4)	5(3)	-25(4)	0(4)	
C(24)	89(6)	90(5)	106(6)	-7(4)	-41(5)	-5(4)	
C(25)	63(5)	85(5)	89(5)	12(4)	-19(4)	4(4)	
C(26)	71(5)	82(5)	85(5)	-3(4)	-19(4)	11(4)	
C(27)	77(5)	68(4)	65(4)	1(4)	-28(4)	15(4)	
C(28)	55(4)	71(4)	62(4)	3(3)	-14(4)	15(4)	
C(29)	248(11)	86(6)	100(5)	-46(5)	-73(7)	-34(6)	
C(30)	68(5)	69(5)	60(4)	0(4)	-22(4)	12(4)	
C(31)	95(5)	76(5)	76(5)	-5(4)	-33(4)	17(4)	
C(32)	96(5)	96(5)	81(5)	-17(4)	-40(5)	10(4)	
C(33)	85(5)	105(6)	66(4)	-10(5)	-29(4)	23(5)	
C(34)	85(5)	94(5)	85(5)	5(4)	-24(5)	-19(4)	
C(35)	109(6)	129(6)	75(5)	17(5)	-23(5)	-6(5)	
C(36)	126(8)	160(7)	88(6)	-28(5)	-63(5)	29(6)	
C(39)	181(10)	177(10)	309(11)	-128(9)	-28(9)	3(7)	
C(40)	387(13)	194(9)	133(7)	-79(8)	10(9)	-40(9)	

	X	У	Z	U(eq)
H(2C)	3425	4654	294	82
H(19A)	-461	1824	-1640	135
H(20A)	1879	1905	-1732	128
H(21A)	3022	2848	-579	107
H(24A)	-1631	2585	-518	118
H(25A)	-1763	3571	976	97
H(26A)	-745	4656	1968	97
H(27A)	1222	5229	1023	87
H(28A)	2219	3199	1352	77
H(29A)	576	6103	2260	181
H(31A)	5925	5298	1405	102
H(32A)	6718	5883	2819	113
H(34A)	4756	2680	2544	108
H(35A)	5514	3269	3977	128
H(36A)	6371	4574	4853	195
H(36B)	6610	5664	4442	195
H(36C)	7753	4822	4448	195
H(39A)	2896	6229	2040	339
H(39B)	3210	6037	3103	339
H(39C)	2387	7014	2745	339
H(40A)	1870	5724	4028	358
H(40B)	770	4893	3698	358
H(40C)	338	6047	3769	358

Table 5. Hydrogen coordinates ($x\ 10^{4}$) and isotropic displacement parameters (A^2 $x\ 10^{3}$) for 3c.

5. Copies of ¹H and ¹³C NMR spectra of 3fa, 2a–2b, 3a–3l, 4a–4c, 5a and 6a–6d.

200

150 100 50

0

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

