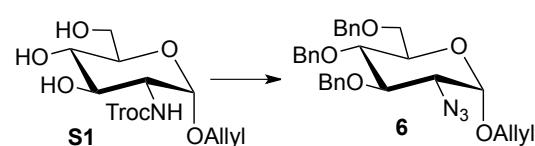


Supplementary Information

Synthesis and biological activity of phosphoglycolipids from *Thermus thermophilus*

Yukari Fujimoto,^{*a} Kunihiro Mitsunobe,^a Satoko Fujiwara,^a Motoko Mori,^a Masahiro Hashimoto,^b Yasuo Suda,^b Shoichi Kusumoto^a and Koichi Fukase^{*a}


1. General Procedures
2. Preparation of compound **2a** and **2b** (in Scheme 2)
3. Preparation of **3a** (in Scheme 2)
4. Preparation of diacylglycerol moieties for **5a** (**5c**, **5d**, and **5e**)/**5b**
(Scheme S1 and S2)
5. NMR spectra of of later stage of compounds

1. General Procedures

¹H-NMR spectra were measured at 30 °C in an indicated solvent with a JEOL Lambda 500 NMR spectrometer and a Delta ECA 500 NMR spectrometer and analyzed using Alice2® program version 5.2 (JOEL). The proton chemical shifts in CDCl₃ are given in δ values from tetramethylsilane as an internal standard, and the chemical shifts in other solvents or conditions are given in δ values from the residual proton signal of solvent. Mass spectra were obtained on an ESI-TOF mass spectrometer (MarinerTM, Applied Biosystems). High resolution mass spectra (HR-MS) were obtained on the quadrupole time of flight (QTOF) mass spectrometer (QTOF-micro, Micromass). Silica-gel column chromatography was performed using Kieselgel 60 (Merck, 0.040-0.063mm) or Silica Gel 60N [spherical neutral (Kanto Chemical Co., 40-50 μ m)] at medium pressure (2-4 kgcm⁻²) using the indicated solvent system. Analytical thin layer chromatographies (TLC) were performed on Kieselgel 60F254 Plates (Merck, 0.25 mm thickness). Specific rotations were measured on a Perkin Elmer model 241 polarimeter. Unless otherwise noted, non-aqueous reactions were carried out under argon atmosphere. Anhydrous dichloromethane were prepared by distillation from calcium hydride. Anhydrous THF, DMF, CHCl₃ were purchased from Kanto Chemicals Co. Distilled water was purchased from Otsuka Pharmaceutical Factory, Inc (Tokushima, Japan). Molecular sieves 4A were activated in vacuo at 250 °C for 3 h before use. [Ir(cod)(PMe(C₆H₅)₂)₂]PF₆ was activated with H₂ previously as follows; [Ir(cod)(PMe(C₆H₅)₂)₂]PF₆ was suspended in dry THF (7.5 times (wt)) under Ar at room temperature, and Ar in the system was replaced with H₂ to activate the complex. The color of the solution was changed from red to yellow, and then filled again with Ar.

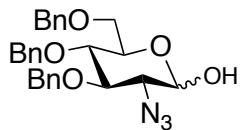
All other commercially obtained materials were used as received.

2. Preparation of compound **2a** and **2b** (in Scheme 2)

Allyl 2-azido-3,4,6-tri-O-benzyl-2-deoxy- α -D-glucopyranoside (6):

To a solution of **Allyl 2-N-Troc-2-deoxy- α -D-glucopyranoside S1** [Tetrahedron Lett. **2001**,

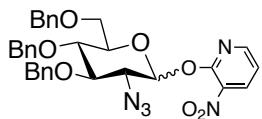
42, 7613; *Synlett* **2010**, (18), 2711.] (5.0 g, 12.7 mmol) in AcOH (100 mL) was added Zn-Cu couple (11.5 g) at room temperature. After the suspension was stirred vigorously for 4 h, insoluble materials were filtered off, and the filtrate was concentrated *in vacuo*. The residual AcOH was removed by co-evaporation with Toluene. The residue was dissolved in MeOH, and saturated aqueous NaHCO₃ was added. The resulted precipitates were filtered off, and the filtrate was concentrated *in vacuo* to give Allyl 2-amino-2-deoxy- α -D-glucopyranoside as a crude product as a white solid, and it was used for following reaction without further purification.


(TfN₃ was prepared before use of the next reaction as follows; To a solution of NaN₃ (8.3 g, 127 mmol) in H₂O (24 mL) was added CH₂Cl₂ (16 mL) and then added Tf₂O (5.2 mL, 31.7 mmol) at 0 °C. After the reaction mixture was stirred vigorously for 3 h at 0 °C, the organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (8 mL \times 2). The organic layers were combined and washed with saturated aqueous NaHCO₃ and used immediately.)

To a suspension of Allyl 2-amino-2-deoxy- α -D-glucopyranoside (crude 7.7 g from **S1** 12.7 mmol) in MeOH (81 mL) was added a solution of TfN₃ in CH₂Cl₂ (32 mL) and DMAP (5.4 g, 44.5 mmol) at room temperature. After being stirred vigorously overnight, the reaction mixture was concentrated *in vacuo*. The residue was dissolved in EtOAc, and insoluble materials were filtered off. The filtrate was then concentrated *in vacuo*. The residue was purified by silica-gel column chromatography (CHCl₃ : MeOH = 15 : 1 \rightarrow 5 : 1) to give crude Allyl 2-azido-2-deoxy- α -D-glucopyranoside as a major product.

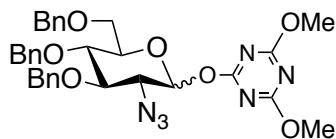
To a solution of Allyl 2-azido-2-deoxy- α -D-glucopyranoside (crude 6.1 g, from **S1** 12.7 mmol) in dry DMF (121 mL) was added NaH (60%, 2.5 g, 62.5 mmol) at 0 °C under Ar. After the reaction was stirred for 45 min, BnBr (7.5 mL, 63.5 mmol) was added to the reaction at 0 °C. The reaction mixture was stirred overnight at room temperature and quenched with saturated aqueous NaHCO₃, and then extracted with EtOAc. The organic layer was washed with saturated aqueous NaHCO₃ and brine, and the aqueous layer was extracted with EtOAc. The organic layers were combined, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica-gel column chromatography (Toluene : EtOAc = 30 : 1) to give **6** (5.5 g, 84% from **S1**) as yellow oil.

ESI-MS (positive) *m/z* = 516.25 [M+H]⁺, 533.28 [M+NH₄]⁺, 538.22 [M+Na]⁺; ¹H-NMR (500 MHz, CDCl₃) δ (ppm) = 7.38-7.14 (m, 15H, C₆H₅-CH₂-O- \times 3), 5.96-5.88 (m, 1H,


-CH₂-CH=CH₂), 5.35-5.31 (m, 1H, -CH₂-CH=CH₂), 5.23-5.20 (m, 1H, -CH₂-CH=CH₂), 4.98 (d, *J*=3.5 Hz, 1H, H-1), 4.90-4.48 (m, 6H, C₆H₅-CH₂-O- \times 3), 4.22-4.17 (m, 1H, -CH₂-CH=CH₂), 4.07-4.03 (m, 1H, -CH₂-CH=CH₂), 4.01 (dd, 1H, *J*=10.2 Hz, 8.9 Hz, H-3), 3.84 (ddd, *J*=10.1 Hz, 3.5 Hz, 2.15 Hz, 1H, H-5), 3.77-3.64 (m, 3H, H-4 and H-6), 3.40 (dd, *J*=10.2 Hz, 3.5 Hz, 1H, H-2).

2-Azido-3,4,6-tri-O-benzyl-2-deoxy-D-glucopyranose (7)

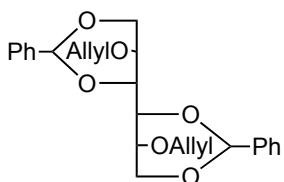
To a solution of **6** (995.2 mg, 1.93 mmol) in dry THF (7.5 mL) was added a solution of activated iridium complex [Ir(cod)(PMe(C₆H₅)₂)₂]PF₆ in dry THF under Ar. The mixture was stirred under Ar at room temperature for 4 h. Water (5 mL) and iodine (1.47 g, 5.79 mmol) were then added at room temperature, and the reaction mixture was stirred for 30 min. After excess of iodine was quenched with 5% aqueous Na₂S₂O₃, the reaction mixture was extracted with EtOAc. The organic layer was washed with 5% aqueous Na₂S₂O₃, saturated aqueous NaHCO₃ and brine. The solution was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica-gel column chromatography (Toluene : EtOAc = 10 : 1) to give **7** of α / β mixture (731 mg, 80%) as a yellow solid.


¹H-NMR (500 MHz, CDCl₃) **7- α form:** δ (ppm) = 7.38-7.13 (m, 15H, C₆H₅-CH₂-O- \times 3), 5.33 (d, *J*=3.4 Hz, 1H, H-1), 4.90-4.78 and 4.60-4.49 (m, 6H, C₆H₅-CH₂-O- \times 3), 4.04 (ddd, *J*=10.1 Hz, 4.3 Hz, 2.0 Hz, 1H, H-5), 4.01 (dd, *J*=10.0, 9.0 Hz, 1H, H-3), 3.71-3.57 (m, 3H, H-4 and H-6), 3.45 (dd, *J*=10.2, 3.5 Hz, 1H, H-2); ESI-MS (positive) *m/z* = 493.28 [M+NH₄]⁺, 498.23 [M+Na]⁺, 514.20 [M+K]⁺; HR-MS (*m/z*): Calcd. for C₂₇H₂₉N₃O₅Na [M+Na]⁺, 498.2005; Found, 498.2008.

Azide sugar **7** was dehydrated by lyophilization of the benzene solution before the reaction. To a mixture of **46** (943.9 mg, 1.98 mmol) and 2-bromonitropyridine (483.7 mg, 2.38 mmol) in dry

THF (20 mL) was added NaH (60%, 283 mg, 7.08 mmol) at 0 °C under Ar. After the reaction mixture was stirred for 6 h, the mixture was allowed to warm up gradually to 10 °C and then 2-bromonitropyridine (120.8 mg, 0.595 mmol) was added again. The reaction mixture was stirred for 2 h and quenched with brine, and then extracted with EtOAc. The organic layer was washed with saturated aqueous NaHCO₃ and brine, and the aqueous layer was extracted with EtOAc. The organic layers were combined, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica-gel column chromatography (Toluene : EtOAc = 40 : 1 → 5 : 1) to give **2a** of α / β (= 15 / 85) mixture (876.5 mg, 74%) as a yellow solid.

ESI-MS (positive) m/z = 615.25 [M+NH₄]⁺, 620.21 [M+Na]⁺, 636.23 [M+K]⁺; ¹H-NMR (500 MHz, CDCl₃) **2a- β form:** δ (ppm) = 8.39-7.13 (m, 19H, Ph- \times 3 and NPy), 6.02 (d, J = 8.5 Hz, 1H, H-1), 4.94-4.81 and 4.58-4.44 (m, 6H, C₆H₅-CH₂-O- \times 3), 3.83 (dd, J = 9.8 Hz, 8.4 Hz, 1H, H-2), 3.77 (dd, J = 9.6 Hz, 9.0 Hz, 1H, H-4), 3.72 (d, J = 3.1 Hz, 2H, H-6), 3.66 (dt, J = 9.6 Hz, 3.1 Hz, 1H, H-5), 3.59 (dd, J = 9.8 Hz, 9.0 Hz, 1H, H-3).



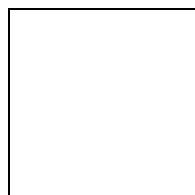
4,6-dimethoxy-1,3,5-triazine-2-yl-2-azido-3,4,6-tri-O-benzyl-2-deoxy-D-glucopyranoside (2b)

To a mixture of **7** (144.0 mg, 0.30 mmol) and DMT-MM (165.4 mg, 0.60 mmol) in dry THF (3.0 mL) was added DBU (53.7 μ L, 0.36 mmol) at 0 °C under Ar. After the addition of DBU, the reaction mixture was allowed to warm up gradually to room temperature and stirred for 8 h. The reaction mixture was quenched with brine, and then extracted with EtOAc. The organic layer was washed with saturated aqueous NaHCO₃ and brine, and was then dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica-gel column chromatography (Toluene : EtOAc = 25 : 1 → 10 : 1 → 5 : 1) to give **2b** (189.2 mg, 93%) as colorless oil.

¹H-NMR (500 MHz, CDCl₃) **2b- β form:** δ (ppm) = 7.35-7.17 (m, 15H, Ph- \times 3), 5.81 (d, J = 8.5 Hz, 1H, H-1), 4.90-4.80 and 4.60-4.45 (m, 6H, C₆H₅-CH₂-O- \times 3), 4.02 (s, 6H, CH₃-O- \times 2) 3.76 (dd, J = 9.5 Hz, 9.3 Hz, 1H, H-2), 3.73 (d, J = 3.9 Hz, 2H, H-6), 3.72 (dd, J = 6.1 Hz, 8.6 Hz, 1H, H-4), 3.63 (dt, J = 12 Hz, 3.0 Hz, 1H, H-5), 3.60 (dd, J = 9.0 Hz, 9.8 Hz, 1H, H-3); ESI-MS (positive) m/z = 637.2474 [M+Na]⁺

3. Preparation of **3a** (in Scheme 2)

1,3:4,6-Di-O-benzylidene-2,5-di-O-allyl-D-mannitol (9)


To a solution of D-mannitol (50 g, 0.27 mol) in DMF (200 mL) was added benzaldehyde (60 mL, 0.69 mol) at room temperature under Ar. To the mixture was added concentrated sulfuric acid (10 mL) dropwisely at 0 °C. After being allowed to warm up gradually to the room temperature, the mixture was stirred for 5 d. Then the mixture was poured into 1.2 L of ice water containing 20 g of NaHCO₃ and 200mL of *n*-hexane under vigorous stirring. After the mixture was allowed to warm up gradually to the room temperature, the precipitate was filtered and washed with *n*-hexane. The precipitate was suspended in chloroform and heated under reflux for 15 min under vigorous stirring. When the mixture reached room temperature, the undissolved precipitate was collected. Recrystallization from MeOH gave **1,3:4,6-Di-O-benzylidene-D-mannitol** (19 g, 20%) as a colorless needle crystal.

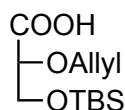
ESI-MS (positive) *m/z* = 381.11 [M+Na]⁺; ¹H-NMR (400 MHz, CDCl₃) δ (ppm) = 7.46-7.25 (m, 10H, C₆H₅-), 5.50 (s, 2H, acetal-H), 4.38 (dd, *J* = 10.5, 5.3 Hz, 2H, H-1eq and H-6eq), 4.21 (m, 2H, H-2 and H-5), 4.16 (m, 2H, H-1ax and H-6ax), 3.65 (t, *J* = 10.3 Hz, 2H, H-3 and H-4), 2.94 (s, 2H, -OH); Anal. Calcd. for C₂₀H₂₂O₆: C, 67.03; H, 6.19%. Found: C, 66.82; H, 6.10%.

To a suspension of NaH (60%, 1.3 g, 31.8 mmol) in dry DMF (30 mL) was added **1,3:4,6-Di-O-benzylidene-D-mannitol** in dry DMF (70 mL) dropwise at 0 °C under Ar and the mixture was stirred for 10 min. Then allyl bromide (3.4 mL, 39.8 mmol) was added dropwise to the reaction mixture at 0 °C. After the mixture was allowed to warm up gradually to the room temperature, the mixture was stirred for 15 min. Then the mixture was poured into ice water containing diethyl ether under vigorous stirring. The organic layer was washed with saturated aqueous NaHCO₃ and brine. The organic layer was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica-gel column chromatography (mobile phase: CHCl₃) to

give **9** (5.3 g, 76%) as a colorless solid.

¹H-NMR (400 MHz, CDCl₃) δ (ppm) = 7.45-7.25 (m, 10H, C₆H₅-), 5.91-5.81 (m, 2H, -CH₂-CH=CH₂), 5.49 (s, 2H, acetal-H), 5.23 (ddd, J = 17.0, 3.17, 1.47 Hz, 2H, -CH₂-CH=CH₂ cis), 5.15 (ddd, J = 10.2, 2.68, 1.22 Hz, 2H, -CH₂-CH=CH₂ trans), 4.40 (dd, J = 10.5, 5.1 Hz, 2H, H-1eq and H-6eq), 4.05-4.10 (m, 2H, -CH₂-CH=CH₂), 4.01 (dd, J = 10.2, 1.3 Hz, 2H, H-1ax and H-6ax), 3.95-3.90 (m, 2H, H-2 and H-5), 3.65 (t, J = 10.3 Hz, 2H, H-3 and H-4); Anal. Calcd. for C₂₆H₃₀O₆: C, 71.21; H, 6.90%. Found: C, 71.22; H, 6.91%.

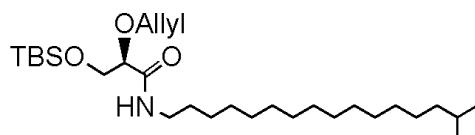
2,5-Di-O-allyl-1,6-di-O-tert-butyldimethylsilyl-D-mannitol (10)


To a suspension of **9** (7.5 g, 17.1 mmol) in 16.5 mL of EtOH and 3.5 mL of water was added 1N HCl aq. (1.2 mL). The mixture was heated at 70 °C and stirred for 3 h. Being cooled at 0 °C, the reaction was quenched by addition of NaHCO₃. Insoluble materials were filtered off and the filtrate was concentrated in vacuo. The residue was recrystallized from EtOAc-hexane to give pure **2,5-Di-O-allyl-D-mannitol** (0.46g, 77%) as colorless crystal.

¹H-NMR (400 MHz, CDCl₃) δ (ppm) = 5.95-5.85 (m, 2H, -CH₂-CH=CH₂), 5.28 (ddd, J = 17.3, 3.17, 1.46 Hz, 2H, -CH₂-CH=CH₂ cis), 5.21 (ddd, J = 10.2, 2.93, 1.22 Hz, 2H, -CH₂-CH=CH₂ trans), 4.20-4.16 (m, 4H, -CH₂-CH=CH₂), 3.93 (t, J = 4.76, 2H, H-3 and H-4), 3.88-3.77 (m, 4H, H-1 and H-6), 3.58-3.53 (m, 2H, H-2 and H-5), 3.08 (d, J = 4.40, 2H, 3-OH and 4-OH), 2.49 (s, 2H, 1-OH and 6-OH); Anal. Calcd. for C₁₂H₂₂O₆: C, 54.95; H, 8.45%. Found: C, 54.59; H, 8.36%.

To a mixture of **2,5-Di-O-allyl-D-mannitol** (1.95 g, 7.4 mmol) and imidazole (2.01 g, 29.6 mmol) in dry CH₂Cl₂ (50 mL) was added TBSCl (2.45 g, 16.2 mmol) at room temperature and the mixture was stirred for 30 min. The reaction was quenched with saturated aqueous NaHCO₃ and the mixture was extracted with EtOAc. The organic layer was washed with saturated aqueous NaHCO₃ and brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica-gel column chromatography (toluene: EtOAc = 20: 1) to give **10** (3.56 g, 97% from **2,5-Di-O-allyl-D-mannitol**) as colorless oil.

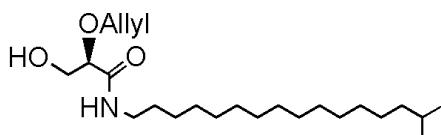
ESI-MS (positive) m/z = 491.34 [M+H]⁺; ¹H-NMR (500 MHz, CDCl₃) δ (ppm) = 5.91 (ddt, J = 18.7, 9.5, 4.0 Hz, 2H, -CH₂-CH=CH₂), 5.25 (dq, J = 17.2, 1.6 Hz, 2H, -CH₂-CH=CH₂ cis), 5.15 (ddd, J = 10.4, 2.9, 1.2 Hz, 2H, -CH₂-CH=CH₂ trans), 4.23-4.00 (m, 4H, -CH₂-CH=CH₂),


3.88-3.80 (m, 4H, H-1a, H-6a, H-3 and H-4), 3.79-3.75 (m, 2H, H-1b and H-6b), 3.54 (dd, J = 11.6, 5.2 Hz, 2H, H-2 and H-5), 3.26 (d, J = 5.3 Hz, 2H, -OH \times 2), 0.90 (s, 18H, *t*-butyl-H), 0.08 (s, 12H, -Si-(CH₃)₂); Anal. Calcd. for C₂₄H₅₀O₆Si: C, 58.73; H, 10.27%. Found: C, 58.61; H, 10.32%.

(R)-2-Allyloxy-3-*t*-butyldimethylsilyloxy-propanoic acid (13)

To a solution of **10** (1.74 g, 3.5 mmol) in dry THF (35 mL) was added Pb(OAc)₄ (2.2 g, 5.0 mmol) and the mixture was stirred for 30 min at room temperature. Insoluble materials were filtered off by Celite® and the filtrate was concentrated in vacuo to give crude compound **11**. The residue was dissolved in THF: *t*-BuOH: H₂O (=3: 4: 1) (70 mL). To the solution were added NaH₂PO₄ (0.83 g, 7.0 mmol) and 2-methyl-2-butene (3.7 mL, 35.0 mmol). Then 80% NaClO₄ (1.58 g, 14.0 mmol) was added and the mixture was stirred for 20 min at room temperature. The reaction was quenched with saturated aqueous NaHCO₃ and extracted with EtOAc. The organic layer was washed with saturated aqueous NaHCO₃ and brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica-gel column chromatography (CHCl₃: MeOH: AcOH = 30: 1: 1) to give **11** (1.27 g, 70% for 2 steps) as colorless oil.

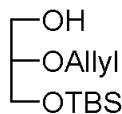
ESI-MS (negative) m/z = 259.13 [M-H]⁻; ¹H-NMR (500 MHz, CDCl₃) δ (ppm) = 5.94-5.91 (m, 1H, -CH₂-CH=CH₂), 5.35-5.25 (m, 2H, -CH₂-CH=CH₂), 4.28-4.01 (m, 4H, -CH₂-CH=CH₂, -CH₂OTBS), 3.96-3.90 (m, 1H, -CH(Oallyl)-COOH), 0.88 (s, 6H, -C(CH₃)₃), 0.09 (s, 6H, Si-(CH₃)₂).



(R)-1-Allyloxy-2-*t*-butyldimethylsilyloxy-1-(15-methylhexadecylcarbamoyl)ethane (15)

To a mixture of amine **14a** (34 mg, 0.13 mmol) and the appropriately protected glyceric acid **8** (51 mg, 0.20 mmol) in dry CHCl₃ (1.3 mL) were added -hydroxy-7-azabenzotriazole (HOAt) (27 mg, 0.20 mmol) and *N,N'*-diisopropylcarbodiimide (DIC) (41 μ L, 0.26 mmol, 2.0 eq.) at room temperature. After the mixture was stirred for 10 h, the reaction was quenched with

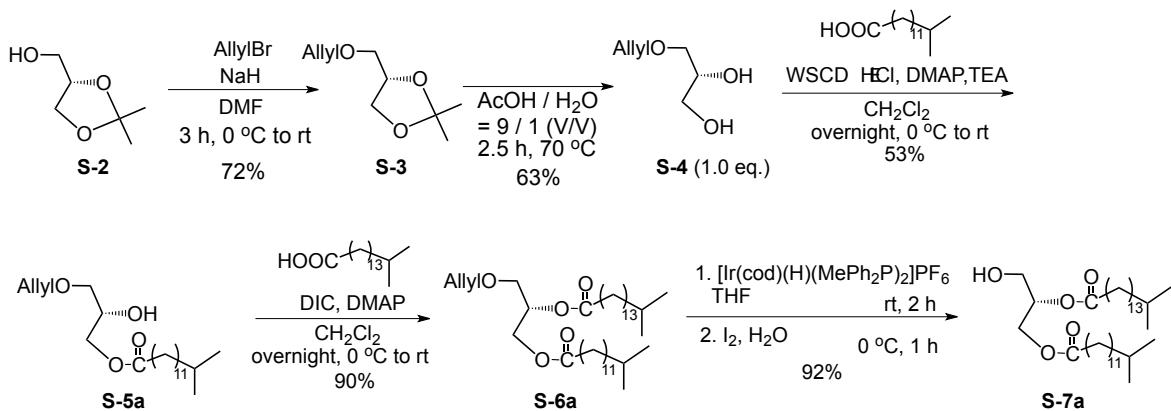
saturated aqueous NaHCO_3 and extracted with EtOAc . The organic layer was washed with saturated aqueous NaHCO_3 and brine, dried over Na_2SO_4 and concentrated in vacuo. The residue was purified by silica-gel column chromatography (toluene: EtOAc : HFIP = 30: 1: 0.3) to give **15** (50.8 mg, 79%) as colorless oil.


ESI-MS (positive) m/z = 498.43 [M+H]⁺; ¹H-NMR (500 MHz, CDCl₃) δ (ppm) = 6.63 (s, 1H, -CONH-), 5.94-5.88 (m, 1H, -CH₂-CH=CH₂), 5.30 (d, J = 17.2, 1.5 Hz, 1H, -CH₂-CH=CH₂ cis), 5.21 (dd, J = 10.4, 1.2 Hz, 1H, -CH₂-CH=CH₂ trans), 4.15-4.11 (m, 2H, -CH₂-CH=CH₂), 3.97 (dd, J = 10.8, 2.4 Hz, 1H, -CH(OAllyl)-CONHR), 3.88-3.80 (m, 2H, -CH₂OTBS), 3.29-3.20 (m, 2H, -NH-CH₂-), 1.55-1.48 (m, 3H, -NH-CH₂-CH₂- and -CH(CH₃)₂), 1.30-1.12 (m, 24H, -(CH₂)- \times 12), 0.88 (s, 9H, -C(CH₃)₃), 0.86 (d, J = 6.6 Hz, 6H, -CH(CH₃)₂), 0.06 (s, 6H, Si-(CH₃)₂); Anal. Calcd. For C₂₉H₅₉NO₃Si•0.25H₂O: C, 69.33; H, 11.94; N, 2.79%. Found: C, 69.35; H, 11.95; N, 2.98%.

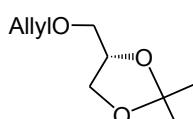
(R)-1-Allyloxy-2-hydroxy-1-(15-methylhexadecanylcarbamoyl)ethane (3a)

To a solution of **15** (0.12 g, 0.24 mmol) in dry THF (4.2 mL) was added TBAF 1M THF solution (0.72 mL, 0.72 mmol) and the mixture was stirred for 30 min at room temperature. The reaction was quenched with saturated aqueous NaHCO₃ and the mixture was extracted with EtOAc. The organic layer was washed with saturated aqueous NaHCO₃ and brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica-gel column chromatography (toluene: EtOAc: HFIP = 1: 1: 0.02) to give **3a** (78 mg, 85%) as a colorless solid.

ESI-MS (positive) m/z = 384.35 [M+H]⁺, 406.33 [M+Na]⁺; ¹H-NMR (500 MHz, CDCl₃) δ (ppm) = 6.59 (s, 1H, -CONH-), 5.88-5.82 (m, 1H, -CH₂-CH=CH₂), 5.28-5.13 (m, 2H, -CH₂-CH=CH₂), 4.10-4.00 (m, 2H, -CH₂-CH=CH₂), 3.83 (t, J = 5.1 Hz, 1H, -CH(OAllyl)-CONHR), 3.78-3.70 (m, 2H, -CH₂OH), 3.24-3.18 (m, 2H, -NH-CH₂-), 1.49-1.42 (m, 3H, -NH-CH₂-CH₂- and -CH(CH₃)₂), 1.23-1.06 (m, 24H, -(CH₂)- \times 12), 0.79 (d, J = 6.7 Hz, 6H, -CH(CH₃)₂); Anal. Calcd. for C₂₃H₄₅NO₃: C, 72.01; H, 11.82; N, 3.70%. Found: C, 71.74; H, 11.81; N, 3.70%.

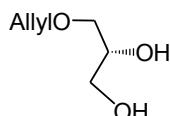

2-*O*-allyl-1-*O*-*t*-butyldimethylsilyl-*sn*-glycerol (12)

To a solution of **10** (3.73 g, 7.62 mmol) in dry THF (50 mL) was added $\text{Pb}(\text{OAc})_4$ (4.74 g, 10.7 mmol) and the mixture was stirred for 1 h at room temperature. Insoluble materials were filtered off by Celite® to give a solution of crude compound **11**. To the filtrate was added NaBH_4 (0.58 g, 15.2 mmol) in 30 mL of water dropwise at 0 °C. After the mixture was allowed to warm up gradually to the room temperature, the mixture was stirred for 15 h. The reaction was diluted with 30 mL of water and the mixture was extracted with EtOAc. The organic layer was washed with saturated aqueous NaHCO_3 and brine, dried over Na_2SO_4 and concentrated in vacuo. The residue was purified by silica-gel column chromatography (toluene: EtOAc = 20: 1) to give **12** (2.4 g, 65% for 2 steps from **10**) as colorless oil.


ESI-MS (positive) m/z = 269.16 $[(M+Na)^+]$; 1H -NMR (270 MHz, $CDCl_3$) δ (ppm) = 5.92 (ddt, J = 18.7, 9.5, 4.1, 1H, -CH₂-CH=CH₂), 5.28 (dq, J = 17.2, 1.6 Hz, 1H, -CH₂-CH=CH₂ cis), 5.15 (m, 1H, -CH₂-CH=CH₂trans), 4.20-4.00 (m, 2H, -CH₂-CH=CH₂), 3.79-3.50 (m, 4H, H-1 and H-3), 3.79-3.75 (m, 2H, H-2), 2.11 (t, J = 6.3 Hz, 1H, -OH), 0.90 (s, 9H, *t*-butyl-H), 0.08 (s, 6H, -Si-(CH₃)₂); Anal. Calcd. for $C_{12}H_{26}O_3Si$: C, 58.49; H, 10.63%. Found: C, 58.60; H, 10.66%.

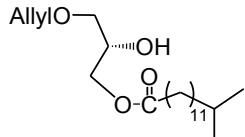
4. Preparation of diacylglycerol moieties for **5a** (**5c**, **5d**, and **5e**)/**5b**

3-1. Diacylglycerol moieties for **5a** (**5c**, **5d**, and **5e**)


Scheme S1

3-allyl-1,2-isopropylidene-*sn*-glycerol (S-3)

To a suspension of NaH (60%, 1.82 g, 45.5 mmol) in dry DMF (43 mL) was added (*S*)-(+)-2,2-dimethyl-1,3-dioxolane-4-methanol **S-2** (3.00 g, 22.7 mmol) in dry DMF (100 mL) dropwise for 15 min at 0 °C under Ar. After the mixture was stirred for 20 min, allyl bromide (4.80 mL, 56.7 mmol) was added dropwise to the reaction mixture at 0 °C. After the mixture was allowed to warm up gradually to the room temperature, the mixture was stirred for 15 min. Then the mixture was poured into ice water (100 mL) containing Et₂O (100 mL) under vigorous stirring. The organic layer was washed with saturated aqueous NaHCO₃ and brine. The organic layer was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica-gel column chromatography (CHCl₃ only) to give **S-3** (2.8 g, 72%) as colorless oil.


ESI-MS (positive) *m/z* = 173.14 [M+H]⁺, 195.13 [M+Na]⁺, 367.24 [2M+Na]⁺; ¹H-NMR (500 MHz, CDCl₃) δ (ppm) = 5.94-5.87 (m, 1H, -O-CH₂-CH=CH₂), 5.30-5.18 (m, 2H, -O-CH₂-CH=CH₂), 4.31-4.26 (m, 1H, Gro H-2), 4.06 (dd, *J* = 8.2 Hz, 6.4 Hz, 1H, Gro H-1a), 4.07-4.00 (m, 2H, -O-CH₂-CH=CH₂), 3.74 (dd, *J* = 8.2, 6.4 Hz, 1H, Gro H-1b), 3.53 (dd, *J* = 9.8 Hz, 5.7 Hz, 1H, Gro H-3a), 3.45 (dd, *J* = 9.9 Hz, 5.5 Hz, 1H, Gro H-3b), 1.43 (s, 3H, -CCH₃), 1.37 (s, 3H, -CCH₃).

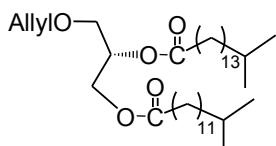
3-allyl-*sn*-glycerol (S-4)

A solution of **S-3** (0.8 g, 11.6 mmol) in AcOH (20 mL) and H₂O (2.2 mL) was heated at 70 °C and stirred for 2.5 h. Being cooled at room temperature, the reaction mixture was concentrated in vacuo. The residue was purified by silica-gel column chromatography (Hexane : EtOAc = 1 : 1) to give **S-4** (387 mg, 63%) as colorless oil.

ESI-MS (positive) *m/z* = 155.06 [M+Na]⁺; ¹H-NMR (500 MHz, CDCl₃) δ (ppm) = 5.94-5.87 (m, 1H, -O-CH₂-CH=CH₂), 5.32-5.20 (m, 2H, -O-CH₂-CH=CH₂), 4.04-4.02 (m, 2H, -O-CH₂-CH=CH₂), 3.91-3.87 (m, 1H, Gro H-2), 3.73 (dd, *J* = 11 Hz, 4.0 Hz, 1H, Gro H-1a), 3.65 (dd, *J* = 11 Hz, 5.3 Hz, 1H, Gro H-1b), 3.56 (dd, *J* = 9.7 Hz, 4.0 Hz, 1H, Gro H-3a), 3.52 (dd, *J* = 9.8, 6.3 Hz, 1H, Gro H-3b), 1.62 (brs, 2H, -OH[×]2).

3-Allyl-1-(13-methyltetradecanoyl)-*sn*-glycerol (S-5a)

To a mixture of **S-4** (35.0 mg, 0.265 mmol) and **13-methyltetradecanoic acid** (25.7 mg, 0.106 mmol) in dry CH_2Cl_2 (2.6 mL) was added WSCD·HCl (55.8 mg, 0.291 mmol), DMAP (25.9 mg, 0.212 mmol) and TEA (74.4 μg , 0.530 mmol) at 0 °C under Ar. After the mixture was stirred for 1 h, the reaction mixture was stirred overnight at room temperature. The reaction mixture was quenched with MeOH (420 μL), then a small amount of AcOH and extracted with CH_2Cl_2 . The solution was washed with saturated aqueous NaHCO_3 and brine, dried over Na_2SO_4 and concentrated in vacuo. The residue was purified by silica-gel column chromatography (1st CHCl_3 only; 2nd Hexane : EtOAc = 15 : 1) to give **S-5a** (24.8 mg, 66%) as colorless oil.


ESI-MS (positive) m/z = 357.35 [M+H]⁺, 374.37 [M+NH₄]⁺, 379.32 [M+Na]⁺, 735.67 [2M+Na]⁺; ¹H-NMR (500 MHz, CDCl_3) δ (ppm) = 5.94-5.86 (m, 1H, -O-CH₂-CH=CH₂), 5.30-5.19 (m, 2H, -O-CH₂-CH=CH₂), 4.18 (dd, J = 11.6 Hz, 4.4 Hz, 1H, Gro H-1a), 4.13 (dd, J = 11.5, 6.1 Hz, 1H, Gro H-1b), 4.04-4.00 (m, 3H, -O-CH₂-CH=CH₂ and Gro H-2), 3.52 (dd, J = 9.6, 4.3 Hz, 1H, Gro H-3a), 3.46 (dd, J = 9.6, 6.3 Hz, 1H, Gro H-3b), 2.34 (t, J = 7.5 Hz, 2H, -OCOCH₂-), 1.66-1.60 (m, 2H, -OCOCH₂-CH₂-), 1.55-1.48 (m, 1H, -CH(CH₃)₂), 1.29-1.26 (m, 16H, -OCO-CH₂-CH₂-(CH₂)₈-), 1.17-1.13 (m, 2H, -CH₂-CH(CH₃)₂), 0.86 (d, J = 6.8 Hz, 6H, -CH(CH₃)₂).

3-Allyl-1-myristoyl-*sn*-glycerol (S-5b)

In a manner similar to the synthesis of **S-5a**, it condensed a primary alcohol of **S-4** (136.2 mg, 1.03 mmol) and myristic acid (95.0 mg, 0.412 mmol) to give **S-5b** (80.6 mg, 57%) as colorless oil.

ESI-MS (positive) m/z = 343.27 [M+H]⁺, 365.26 [M+Na]⁺, 381.25 [M+K]⁺; ¹H-NMR (500 MHz, CDCl_3) δ (ppm) = 5.93-5.87 (m, 1H, -O-CH₂-CH=CH₂), 5.30-5.19 (m, 2H, -O-CH₂-CH=CH₂), 4.19 (dd, J = 11.5 Hz, 4.3 Hz, 1H, Gro H-1a), 4.13 (dd, J = 11.6 Hz, 6.2 Hz, 1H, Gro H-1b), 4.04-4.01 (m, 3H, -O-CH₂-CH=CH₂ and Gro H-2), 3.52 (dd, J = 9.7 Hz, 4.3 Hz, 1H, Gro H-3a), 3.46 (dd, J = 9.8 Hz, 6.3 Hz, 1H, Gro H-3b), 2.34 (t, J = 7.6 Hz, 2H, -OCOCH₂-), 1.66-1.60 (m, 2H, -OCOCH₂-CH₂-), 1.33-1.26 (m, 20H,

-OCO-CH₂-CH₂-(CH₂)₁₀-CH₃), 0.88 (t, J = 6.9 Hz, 3H, -CH₂-CH₃).

3-Allyl-1-(13-methyltetradecanoyl)-2-(15-methylhexadecanoyl)-sn-glycerol (S-6a)

To a mixture of **S-5a** (152.6 mg, 0.428 mmol) and **15-methylhexadecanoic acid** (139.0 mg, 0.514 mmol) in dry CH₂Cl₂ (7.5 mL) was added DMAP (10.5 mg, 0.0856 mmol) and DIC (132 μ L, 0.856 mmol) at 0 °C under Ar. Ar. After the mixture was stirred for 10 min, the reaction mixture was stirred overnight at room temperature. The reaction was quenched with saturated aqueous NaHCO₃ and extracted with EtOAc. The organic layer was washed with saturated aqueous NaHCO₃ and brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica-gel column chromatography (Hexane : EtOAc = 30 : 1) to give **S-6a** (233.9 mg, 90%) as colorless oil.

ESI-MS (positive) m/z = 626.56 [M+NH₄]⁺, 631.51 [M+Na]⁺, 1240.00 [2M+Na]⁺; ¹H-NMR (500 MHz, CDCl₃) δ (ppm) = 5.90-5.83 (m, 1H, -O-CH₂-CH=CH₂), 5.28-5.18 (m, 3H, -O-CH₂-CH=CH₂ and Gro H-2), 4.34 (dd, J = 12 Hz, 3.7 Hz, 1H, Gro H-1a), 4.17 (dd, J = 12 Hz, 6.4 Hz, 1H, Gro H-1b), 4.03-3.96 (m, 2H, -O-CH₂-CH=CH₂), 3.56 (d, J = 5.2 Hz, 2H, Gro H-3), 2.32 (t, J = 7.5 Hz, 2H, -OCOCH₂-), 2.30 (t, J = 7.5 Hz, 2H, -OCOCH₂-), 1.63-1.59 (m, 4H, -OCOCH₂-CH₂- \times 2), 1.54-1.49 (m, 2H, -CH(CH₃)₂ \times 2), 1.28-1.26 (m, 36H, -(CH₂)- \times 18), 1.16-1.14 (m, 4H, -CH₂-CH(CH₃)₂ \times 2), 0.86 (d, J = 6.8 Hz, 12H, -CH(CH₃)₂ \times 2).

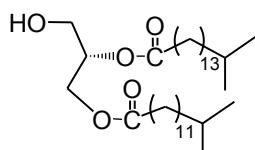
3-Allyl-1,2-di-(15-methylhexadecanoyl)-sn-glycerol (S-6c)

To a mixture of **S-4** (77.7 mg, 0.588 mmol) and **15-methylhexadecanoic acid** (381.6 mg, 1.41 mmol) in dry CH₂Cl₂ (15 mL) was added DMAP (28.7 mg, 0.235 mmol) and DIC (364 μ L, 2.35 mmol) at 0 °C under Ar. Ar. After the mixture was stirred for 30 min, the reaction mixture was stirred overnight at room temperature. The reaction was quenched with saturated aqueous NaHCO₃ and extracted with CH₂Cl₂. The organic layer was washed with saturated aqueous NaHCO₃ and brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica-gel column chromatography (Hexane : EtOAc = 30 : 1) to give **S-6c** (338.8 mg, 90%) as colorless oil.

ESI-MS (positive) m/z = 637.54 [M+H]⁺, 654.59 [M+NH₄]⁺, 659.53 [M+Na]⁺, 1297.19 [2M+Na]⁺; ¹H-NMR (500 MHz, CDCl₃) δ (ppm) = 5.90-5.83 (m, 1H, -O-CH₂-CH=CH₂),

5.28-5.18 (m, 3H, -O-CH₂-CH=CH₂ and Gro H-2), 4.34 (dd, *J* = 12 Hz, 3.7 Hz, 1H, Gro H-1a), 4.17 (dd, *J* = 12 Hz, 6.4 Hz, 1H, Gro H-1b), 4.01-3.99 (m, 2H, -O-CH₂-CH=CH₂), 3.56 (d, *J* = 5.2 Hz, 2H, Gro H-3), 2.32 (t, *J* = 7.5 Hz, 2H, -OCOCH₂-), 2.30 (t, *J* = 7.5 Hz, 2H, -OCOCH₂-), 1.63-1.59 (m, 4H, -OCOCH₂-CH₂-×2), 1.54-1.49 (m, 2H, -CH(CH₃)₂×2), 1.28-1.26 (m, 40H, -(CH₂)-×20), 1.17-1.13 (m, 4H, -CH₂-CH(CH₃)₂×2), 0.86 (d, *J* = 6.8 Hz, 12H, -CH(CH₃)₂×2).

3-Allyl-1-myristoyl-2-palmitoyl-*sn*-glycerol (S-6d)


In a manner similar to the synthesis of **S-6a**, it condensed a secondary alcohol of **S-4** (68.1 mg, 0.228 mmol) and palmitic acid (76.0 mg, 0.296 mmol) to give **S-6d** (120.9 mg, 91%) as colorless oil.

ESI-MS (positive) *m/z* = 581.55 [M+H]⁺, 598.52 [M+NH₄]⁺, 603.47 [M+Na]⁺, 1183.95 [2M+Na]⁺; ¹H-NMR (500 MHz, CDCl₃) δ (ppm) = 5.90-5.83 (m, 1H, -O-CH₂-CH=CH₂), 5.28-5.17 (m, 3H, -O-CH₂-CH=CH₂ and Gro H-2), 4.34 (dd, *J* = 12 Hz, 3.9 Hz, 1H, Gro H-1a), 4.17 (dd, *J* = 12 Hz, 6.4 Hz, 1H, Gro H-1b), 4.01-3.99 (m, 2H, -O-CH₂-CH=CH₂), 3.56 (d, *J* = 5.4 Hz, 2H, Gro H-3), 2.32 (t, *J* = 7.6 Hz, 2H, -OCOCH₂-), 2.30 (t, *J* = 7.6 Hz, 2H, OCOCH₂-), 1.65-1.58 (m, 4H, OCOCH₂-CH₂-×2), 1.31-1.26 (m, 44H, -(CH₂)-×22), 0.88 (d, *J* = 6.7 Hz, 6H, -CH₂CH₃×2).

3-Allyl-1,2-di-palmitoyl-*sn*-glycerol (S-6e)

In a manner similar to the synthesis of **S-6a**, it condensed alcohols of **S-4a** (64.8 mg, 0.490 mmol) and palmitic acid (301.7 mg, 1.18 mmol) to give **S-6e** (201.3 mg, 71%) as a white solid.

ESI-MS (positive) *m/z* = 609.47 [M+H]⁺, 626.54 [M+NH₄]⁺, 631.53 [M+Na]⁺, 1240.02 [2M+Na]⁺; ¹H-NMR (500 MHz, CDCl₃) δ (ppm) = 5.90-5.83 (m, 1H, -O-CH₂-CH=CH₂), 5.28-5.17 (m, 3H, -O-CH₂-CH=CH₂ and Gro H-2), 4.34 (dd, *J* = 12 Hz, 3.9 Hz, 1H, Gro H-1a), 4.17 (dd, *J* = 12 Hz, 6.4 Hz, 1H, Gro H-1b), 4.01-3.98 (m, 2H, -O-CH₂-CH=CH₂), 3.56 (d, *J* = 5.4 Hz, 2H, Gro H-3), 2.32 (t, *J* = 7.6 Hz, 2H, -OCOCH₂-), 2.30 (t, *J* = 7.6 Hz, 2H, -OCOCH₂-), 1.63-1.56 (m, 4H, -OCOCH₂-CH₂-×2), 1.30-1.26 (m, 48H, -(CH₂)-×24), 0.88 (d, *J* = 6.7 Hz, 6H, -CH₂CH₃×2).

1-(13-Methyltetradecanoyl)-2-(15-methylhexadecanoyl)-*sn*-glycerol (S-7a)

To a solution of **S-6a** (217.8 mg, 0.358 mmol) in dry THF (5 mL) was added a solution of activated iridium complex $[\text{Ir}(\text{cod})(\text{PMe}(\text{C}_6\text{H}_5)_2)_2]\text{PF}_6$ in dry THF under Ar. The mixture was stirred under Ar at room temperature for 2 h. Water (4 mL) and iodine (271.5 mg, 1.07 mmol) were then added at 0 °C, and the reaction mixture was stirred for 1 h. After excess of iodine was quenched with 5% aqueous $\text{Na}_2\text{S}_2\text{O}_3$, the reaction mixture was extracted with EtOAc. The organic layer was washed with 5% aqueous $\text{Na}_2\text{S}_2\text{O}_3$, saturated aqueous NaHCO_3 and brine. The solution was dried over Na_2SO_4 and concentrated in vacuo. The residue was purified by rapid silica-gel (Neutral) column chromatography (Toluene : EtOAc : HFIP = 20 : 1 : 0.1) to give **S-7a** (188.2 mg, 92%) as a white solid.

$^1\text{H-NMR}$ (500 MHz, CDCl_3) δ (ppm) = 5.10-5.06 (m, 1H, Gro H-2), 4.32 (dd, J = 12 Hz, 4.5 Hz, 1H, Gro H-1a), 4.24 (dd, J = 12 Hz, 5.7 Hz, 1H, Gro H-1b), 3.76-3.70 (m, 2H, Gro H-3), 2.34 (t, J = 7.5 Hz, 2H, -OCOCH₂-), 2.32 (t, J = 7.5 Hz, 2H, -OCOCH₂-), 2.01 (brs, 1H, -OH), 1.66-1.60 (m, 4H, -OCOCH₂-CH₂-×2), 1.59-1.48 (m, 2H, -CH(CH₃)₂×2), 1.29-1.26 (m, 36H, -(CH₂)-×18), 1.16-1.14 (m, 4H, -CH₂-CH(CH₃)₂×2), 0.86 (d, J = 6.6 Hz, 12H, -CH(CH₃)₂×2); m.p. 30.5-31.5 °C; ESI-MS (positive) m/z = 551.49 $[\text{M}-\text{H}_2\text{O}+\text{H}]^+$, 586.52 $[\text{M}+\text{NH}_4]^+$, 591.49 $[\text{M}+\text{Na}]^+$; HR-MS (m/z): Calcd. for $\text{C}_{35}\text{H}_{68}\text{O}_5\text{Na}$ $[\text{M}+\text{Na}]^+$, 591.4964; Found, 591.4954;

1,2-Di-(15-methylhexadecanoyl)-*sn*-glycerol (**S-7c**)

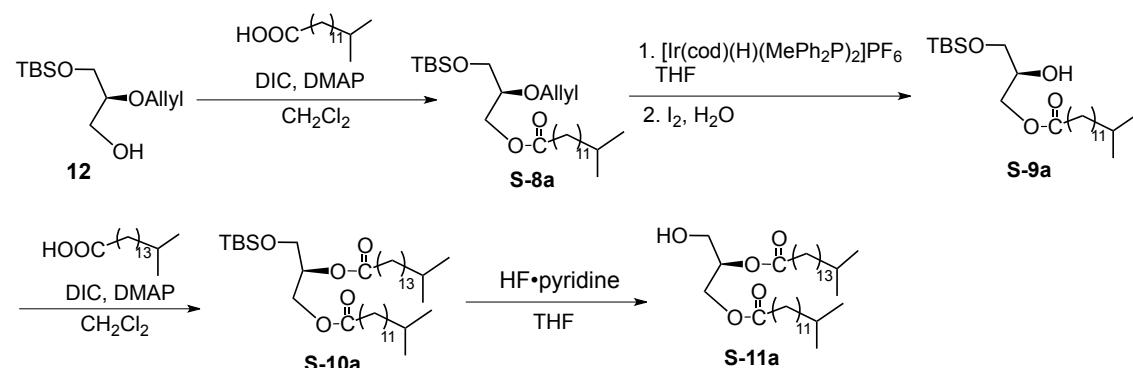
In a manner similar to the synthesis of **S-7a**, Allyl group of **S-6c** (320.8 mg, 0.504 mmol) was deprotected to give **S-7c** (238.2 mg, 79%) as a white solid.

$^1\text{H-NMR}$ (500 MHz, CDCl_3) δ (ppm) = 5.10-5.06 (m, 1H, Gro H-2), 4.32 (dd, J = 12 Hz, 4.5 Hz, 1H, Gro H-1a), 4.24 (dd, J = 12 Hz, 5.7 Hz, 1H, Gro H-1b), 3.76-3.70 (m, 2H, Gro H-3), 2.34 (t, J = 7.5 Hz, 2H, -OCOCH₂-), 2.32 (t, J = 7.5 Hz, 2H, -OCOCH₂-), 2.01 (brs, 1H, -OH), 1.66-1.59 (m, 4H, -OCOCH₂-CH₂-×2), 1.56-1.48 (m, 2H, -CH(CH₃)₂×2), 1.30-1.21 (m, 40H, -(CH₂)-×24), 1.17-1.13 (m, 4H, -CH₂-CH(CH₃)₂×2), 0.86 (d, J = 6.6 Hz, 12H, -CH(CH₃)₂×2); Anal. Calcd. for $\text{C}_{37}\text{H}_{72}\text{O}_5$; C, 74.44; H, 12.16%, Found: C, 73.73; H, 11.86%.m.p. 40-41 °C; ESI-MS (positive) m/z = 579.52 $[\text{M}-\text{H}_2\text{O}+\text{H}]^+$, 614.56 $[\text{M}+\text{NH}_4]^+$, 619.46 $[\text{M}+\text{Na}]^+$; HR-MS (m/z): Calcd. for $\text{C}_{37}\text{H}_{72}\text{O}_5\text{Na}$ $[\text{M}+\text{Na}]^+$, 619.5277; Found, 619.5281.

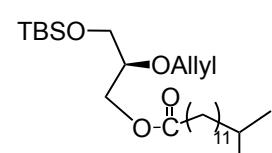
1-Myristoyl-2-palmitoyl-*sn*-glycerol (**S-7d**)

In a manner similar to the synthesis of **S-7a**, Allyl group of **S-6d** (125.3 mg, 0.216 mmol) was deprotected to give **S-7d** (98.7 mg, 85%) as a white solid.

$^1\text{H-NMR}$ (500 MHz, CDCl_3) δ (ppm) = 5.10-5.06 (m, 1H, Gro H-2), 4.32 (dd, J = 12 Hz, 4.6

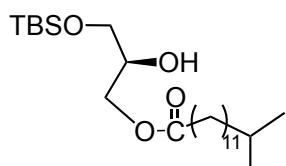

Hz, 1H, Gro H-1a), 4.24 (dd, J = 12 Hz, 5.7 Hz, 1H, Gro H-1b), 3.74-3.72 (m, 2H, Gro H-3), 2.34 (t, J = 7.5 Hz, 2H, -OCOCH₂-), 2.32 (t, J = 7.5 Hz, 2H, -OCOCH₂-), 1.99 (t, J = 6.2 Hz, 1H, -OH), 1.66-1.59 (m, 4H, -OCOCH₂-CH₂- \times 2), 1.29-1.26 (m, 44H, -(CH₂)- \times 22), 0.88 (d, J = 6.9 Hz, 6H, -CH₂CH₃ \times 2); m.p. 59-60 °C; ESI-MS (positive) m/z = 523.46 [M-H₂O+H]⁺, 558.51 [M+NH₄]⁺; HR-MS (m/z): Calcd. for C₃₃H₆₄O₅Na [M+Na]⁺, 563.4651; Found, 563.4651.

1,2-Di-palmitoyl-*sn*-glycerol (S-7e)


In a manner similar to the synthesis of S-7a, Allyl group of S-6a (194.2 mg, 0.319 mmol) was deprotected to give S-7e (143.1 mg, 79%) as a white solid.

¹H-NMR (500 MHz, CDCl₃) δ (ppm) = 5.10-5.06 (m, 1H, Gro H-2), 4.32 (dd, J = 12 Hz, 4.6 Hz, 1H, Gro H-1a), 4.24 (dd, J = 12 Hz, 5.7 Hz, 1H, Gro H-1b), 3.74-3.72 (m, 2H, Gro H-3), 2.34 (t, J = 7.5 Hz, 2H, OCOCH₂-), 2.30 (t, J = 7.6 Hz, 2H, OCOCH₂-), 1.99 (brs, 1H, -OH), 1.66-1.59 (m, 4H, -OCOCH₂-CH₂- \times 2), 1.31-1.26 (m, 48H, -(CH₂)- \times 24), 0.88 (d, J = 6.9 Hz, 6H, -CH₂CH₃ \times 2); Anal. Calcd. for C₃₅H₆₈O₅; C, 73.89; H, 12.05%, Found: C, 73.59; H, 11.84%. m.p. 64-65 °C; ESI-MS (positive) m/z = 551.49 [M-H₂O+H]⁺, 586.51 [M+NH₄]⁺, 591.46 [M+Na]⁺; HR-MS (m/z): Calcd. for C₃₅H₆₈O₅Na [M+Na]⁺, 591.4964; Found, 591.4966.

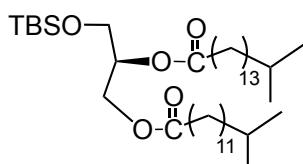
3-2. Preparation of diacylglycerol moiety for 5b


Scheme S2

2-O-Allyl-1-O-t-butyldimethylsilyl-3-(13-methyltetradecanoyl)-*sn*-glycerol (S-8a)

To a mixture of **12** (0.42 g, 1.7 mmol) and 1-methyltetradecanoic acid (0.50 g, 2.0 mmol) in dry CH_2Cl_2 (17 mL) were added DMAP (42 mg, 0.3 mmol) and DIC (0.40 mL, 2.6 mmol) at room temperature. After the mixture was stirred for 12 h, the reaction was quenched with saturated aqueous NaHCO_3 and extracted with EtOAc . The organic layer was washed with saturated aqueous NaHCO_3 and brine, dried over Na_2SO_4 and concentrated in vacuo. The residue was purified by silica-gel column chromatography (hexane: EtOAc = 25/ 1) to give **S-8a** (0.40 g, 50%) as colorless oil.

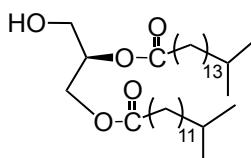
ESI-MS (positive) m/z = 493.38 $[\text{M}+\text{Na}]^+$; $^1\text{H-NMR}$ (500 MHz, CDCl_3) δ (ppm) = 5.93-5.88 (m, 1H, $-\text{CH}_2\text{CH}=\text{CH}_2$), 5.30-5.18 (m, 1H, $-\text{CH}_2\text{CH}=\text{CH}_2$ cis), 5.18-5.16 (m, 1H, $-\text{CH}_2\text{CH}=\text{CH}_2$ trans), 4.29-4.26 (m, 1H, $-\text{CH}_2\text{a}-\text{CH}=\text{CH}_2$), 4.13-4.08 (m, 3H, $-\text{CH}_2\text{b}-\text{CH}=\text{CH}_2$ and Gro H-3), 3.71-3.53 (m, 3H, Gro H-2 and H-1), 2.33 (t, J = 7.6 Hz, 2H, $\text{OCOCH}_2\text{-}$), 1.66-1.60 (m, 2H, $\text{OCOCH}_2\text{-CH}_2\text{-}$), 1.56-1.40 (m, 1H, $-\text{CH}(\text{CH}_3)_2$), 1.29-1.10 (m, 18H, $-(\text{CH}_2)_2\times 9$), 0.90 (s, 9H, $-\text{C}(\text{CH}_3)_3$), 0.87 (d, J = 6.7 Hz, 6H, $-\text{CH}(\text{CH}_3)_2$), 0.07 (s, 6H, $\text{Si}-(\text{CH}_3)_2$); Anal. Calcd. for $\text{C}_{27}\text{H}_{54}\text{O}_4\text{Si}$: C, 68.88; H, 11.56%. Found: C, 68.77; H, 11.56%.



1-*O*-*t*-butyldimethylsilyl-3-(13-methyltetradecanoyl)-*sn*-glycerol (**S-9a**)

To a solution of **S-8a** (50 mg, 0.10 mmol) in dry THF (1 mL) was added a solution of activated iridium complex $[\text{Ir}(\text{cod})(\text{PMe}(\text{C}_6\text{H}_5)_2)_2]\text{PF}_6$ in dry THF under Ar. The mixture was stirred under Ar at room temperature for 30 min. Water (0.5 mL) and iodine (76 mg, 0.30 mmol) were then added and the reaction mixture was stirred for 5 min. After excess of iodine was quenched with 10% aqueous $\text{Na}_2\text{S}_2\text{O}_3$, the mixture was extracted with EtOAc . The organic layer was washed with 10% aqueous $\text{Na}_2\text{S}_2\text{O}_3$, saturated aqueous NaHCO_3 and brine. The solution was dried over Na_2SO_4 and concentrated in vacuo. The residue was purified by silica-gel column chromatography (hexane: EtOAc = 7: 1) to give **S-9a** (35 mg, 81%) as colorless oil.

ESI-MS (positive) m/z = 453.35 $[\text{M}+\text{Na}]^+$, 883.72 $[\text{2M}+\text{Na}]^+$; $^1\text{H-NMR}$ (500 MHz, CDCl_3) δ (ppm) = 4.14-4.06 (m, 2H, Gro H-3), 3.86-3.82 (m, 1H, Gro H-2), 3.65 (dd, J = 16.1, 4.6 Hz, 1H, Gro H-1a), 3.58 (dd, J = 10.1, 5.6 Hz, 1H, Gro H-1b), 2.45 (s, 1H, $-\text{OH}$), 2.31 (t, J = 7.6 Hz, 2H, $\text{OCOCH}_2\text{-}$), 1.63-1.57 (m, 2H, $\text{OCOCH}_2\text{-CH}_2\text{-}$), 1.53-1.45 (m, 1H, $-\text{CH}(\text{CH}_3)_2$), 1.26-1.10 (m, 18H, $-(\text{CH}_2)_2\times 9$), 0.88 (s, 9H, $-\text{C}(\text{CH}_3)_3$), 0.83 (d, J = 6.6 Hz, 6H, $-\text{CH}(\text{CH}_3)_2$), 0.05 (s, 6H,

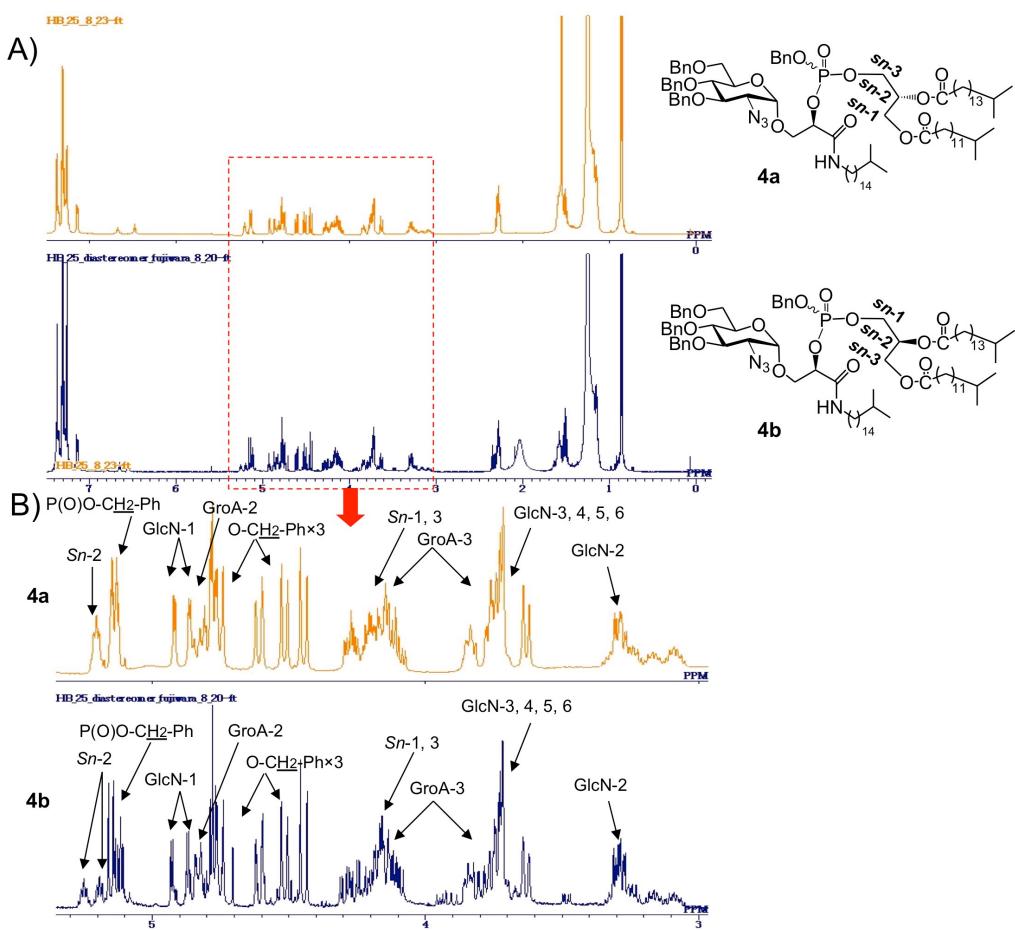

Si-(CH₃)₂); Anal. Calcd. for C₂₄H₅₀O₄Si: C, 66.92; H, 11.70%. Found: C, 66.58; H, 11.78%.

1-O-*t*-butyldimethylsilyl-3-(13-methyltetradecanoyl)-2-(15-methylhexadecanoyl)-*sn*-glycerol (S-10a)

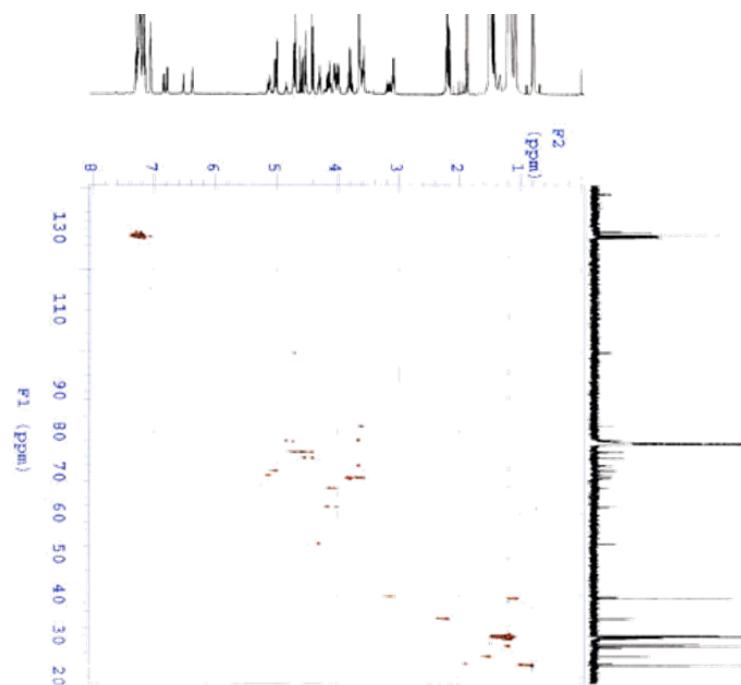
To a mixture of **S-9a** (0.27 g, 0.62 mmol) and **1-methylhexadecanoic acid** (0.20 g, 0.75 mmol) in dry CH₂Cl₂ (6 mL) were added DMAP (15 mg, 0.12 mmol) and DIC (0.19 mL, 1.24 mmol) at room temperature. After the mixture was stirred for 20 h, the reaction was quenched with saturated aqueous NaHCO₃ and extracted with EtOAc. The organic layer was washed with saturated aqueous NaHCO₃ and brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica-gel column chromatography (hexane: EtOAc: 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) = 15/1/0.3) to give **S-10a** (0.31 g, 74%) as colorless oil.

ESI-MS (positive) *m/z* = 683.61 [M+H]⁺, 705.59 [(M+Na)⁺]; ¹H-NMR (500 MHz, CDCl₃) δ (ppm) = 5.09-5.05 (m, 1H, Gro H-2), 4.34 (dd, *J* = 11.8, 3.7 Hz, 1H, Gro H-3a), 4.16 (dd, *J* = 11.8, 6.3 Hz, 1H, Gro H-3b), 3.77-3.71 (dd, m, 2H, Gro H-1), 2.30 (m, 4H, OCOCH₂- \times 2), 1.63-1.58 (m, 4H, OCOCH₂-CH₂- \times 2), 1.55-1.48 (m, 2H, -CH(CH₃)₂ \times 2), 1.28-1.14 (m, 40H, -(CH₂)- \times 15), 0.88 (s, 9H, -C(CH₃)₃), 0.86 (d, *J* = 6.7 Hz, 12H, -CH(CH₃)₂ \times 2), 0.05 (s, 6H, Si-(CH₃)₂); Anal. Calcd. for C₄₁H₈₂O₅Si: C, 72.08; H, 12.10%. Found: C, 72.01; H, 12.34%.

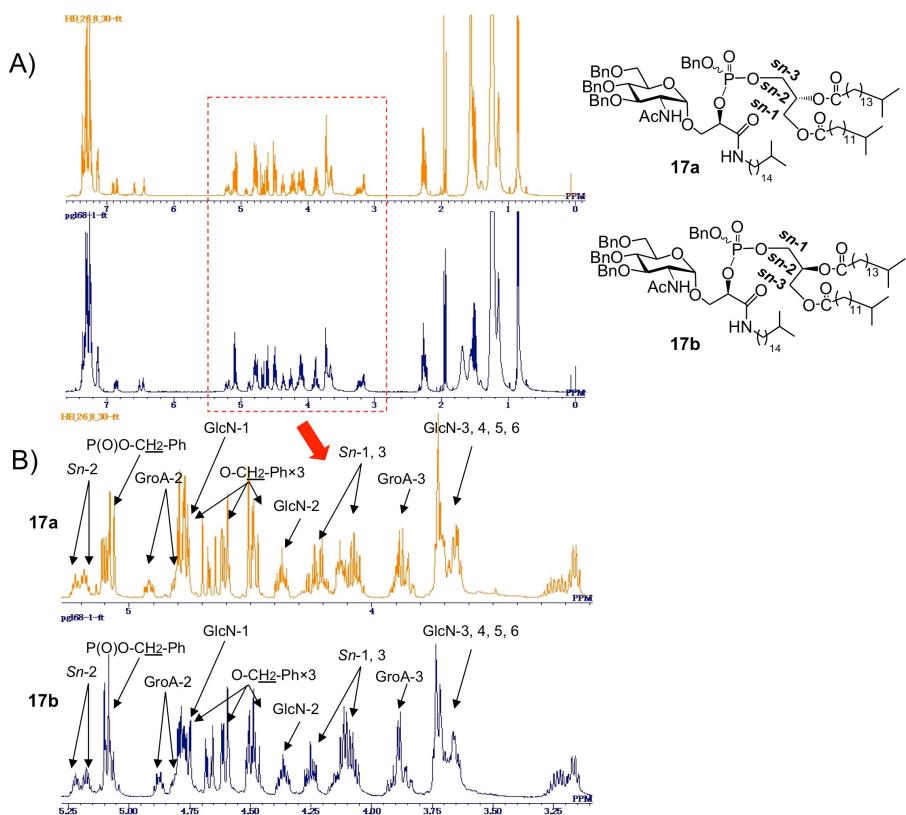
3-(13-methyltetradecanoyl)-2-(15-methylhexadecanoyl)-*sn*-glycerol (S-11a)

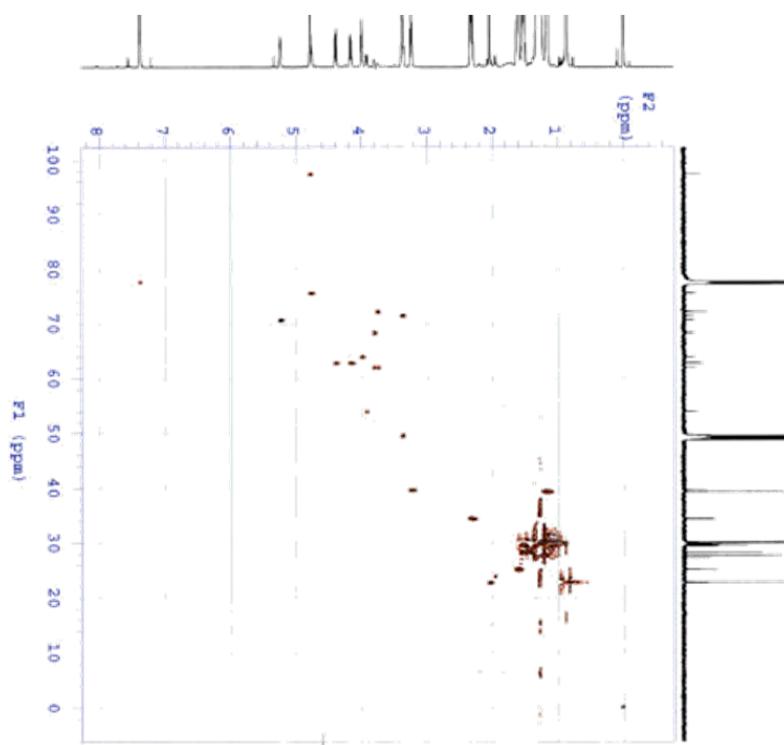

To a solution of **S-10a** (100 mg, 0.15 mmol) in dry THF (1.5 mL) was added pyridine (0.15 mL). HF·pyridine (75 μ L) was added to the mixture, and stirred for 2 h at room temperature. Additional HF·pyridine (75 μ L) was added and the mixture was stirred for 3 h. The reaction was quenched with saturated aqueous NaHCO₃ and the mixture was extracted with EtOAc. The organic layer was washed with saturated aqueous NaHCO₃ and brine, dried over Na₂SO₄ and

concentrated in vacuo. The residue was purified by silica-gel column chromatography (toluene: EtOAc: 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) = 20: 1: 0.2) to give **S-11a** (73 mg, 86%) as a colorless solid.


ESI-MS (positive) m/z = 591.47 [M+Na]⁺; ¹H-NMR (500 MHz, CDCl₃) δ (ppm) = 5.10-5.06 (m, 1H, Gro H-2), 4.32 (dd, J = 12.0, 4.5 Hz, 1H, Gro H-3a), 4.24 (dd, J = 12.1, 5.6 Hz, 1H, Gro H-3b), 3.73 (dd, J = 5.0, 1.6 Hz, 2H, Gro H-1), 2.33 (t, J = 7.5 Hz, 4H, OCOCH₂- \times 2), 1.66-1.59 (m, 4H, OCOCH₂-CH₂- \times 2), 1.56-1.48 (m, 2H, -CH(CH₃)₂ \times 2), 1.29-1.14 (m, 40H, -(CH₂)- \times 15), 0.86 (d, J = 6.6 Hz, 12H, -CH(CH₃)₂ \times 2); Anal. Calcd. for C₃₅H₆₈O₅: C, 73.89; H, 12.05%. Found: C, 72.75; H, 11.78%.

5. NMR spectra of later stage of compounds


1) NMR spectra of compound **4a** and **4b**


2) ^1H - ^{13}C HMQC of compound **4a**

3) NMR spectra of compound **17a** and **17b**

4) $^1\text{H}^{13}\text{C}$ HMQC of compound 1a

