Supporting Information - I: Experimental Procedures and Characterization

Stereoselective Direct Reductive Amination of Ketones with Electron-Deficient Amines using Re₂O₇/NaPF₆ Catalyst

Braja Gopal Das and Prasanta Ghorai*

Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal-462023, India. *E-mail*: <u>pghorai@iiserb.ac.in</u>

Contents:	Page:
General Experimental Procedures	2
Optimization of reaction conditions	2
Standard procedure for reductive ammination of ketone	3
Benzyl cyclohexylcarbamate (3a)	3
Benzyl cyclopentylcarbamate (3b)	3
Benzyl cycloheptylcarbamate (3c)	3
Benzyl cyclooctylcarbamate (3d)	4
Benzyl (1-benzoylpiperidin-4-yl)carbamate (3e)	4
Benzyl (tetrahydro-2H-thiopyran-4-yl)carbamate (3f)	4
Benzyl-adamantan-2-ylcarbamate (3g)	4
tert-Butyl 1,4-dioxaspiro[4.5]decan-8-ylcarbamate (3h)	5
Benzyl sec-butylcarbamate (3i)	5
Benzyl (3-methylbutan-2-yl)carbamate (3j)	5
Benzyl(4-phenylbutan-2-yl)carbamate (3k)	5
Benzyl pentan-3-ylcarbamate (3l)	6
Benzyl undecan-6-ylcarbamate (3m)	6
Ethyl cyclohexylcarbamate (3n)	6
tert-butyl cyclohexylcarbamate (30)	6
(9H-Fluoren-9-yl)methyl cyclohexylcarbamate (3p)	7
N-Cyclohexylbenzenesulfonamide (3q)	7
N-Cyclohexyl-4-methylbenzenesulfonamide (3r)	7
N-Cyclohexyl-4-nitrobenzenesulfonamide (3s)	7
N-Cyclohexylmethanesulfonamide (3 t)	8
N-Cyclohexylbenzamide (3u)	8
N-Cyclohexylacetamide (3v)	8
3-cyclohexyloxazolidin-2-one (3w)	8
4-Methyl-N-(2-methylcyclohexyl)benzenesulfonamide (6a)	9
(9H-fluoren-9-yl)methyl (2-methylcyclohexyl)carbamate (6b)	9
tert-Butyl (2-methylcyclohexyl)carbamate (6c)	9
tert-Butyl (2-allylcyclohexyl)carbamate (6d)	9
N-(2-Allylcyclohexyl)-4-methylbenzenesulfonamide (6e)	10
Benzyl (2-allylcyclohexyl)carbamate (6f)	10
4-Methyl-N-(2-(3-methylbut-2-en-1-yl)cyclohexyl)benzenesulfonamide (6g)	10
(E)-Benzyl (2-cinnamylcyclohexyl)carbamate (6h)	10
Synthesis of (1-(1-Tosyloctahydro-1H-indol-2-yl)butan-2-one (8)	11
Synthesis of Benzyl 2-(hydroxymethyl)octahydro-1H-indole-1-carboxylate (10)	11
References	12

General Experimental Procedures:

All reagents and solvents were used as supplied commercially. Commercial Re₂O₇, ranging in color from yellow to brown-black, were stored in a desiccators over CaCl₂. Reactions were conducted in open atmosphere. Analytical thin-layer chromatography (TLC) were performed on 0.2 mm coated Science silica gel (EM 60-F254) plates purchased from Merck, Germany. Visualization was accomplished with UV light (254 nm) and exposure to either ethanolic phosphomolybdic acid (PMA), anisaldehyde or $KMnO_4$, $CeSO_4$ + ammonium phosphomolybdate + 10% H₂SO₄, ninhydrine solution followed by heating. Melting points are uncorrected. ¹H NMR spectra were acquired on a Bruker AVANCE (at 400 MHz or 500 MHz) and chemical shifts are reported relative to the residual solvent peak. ¹³C NMR spectra were acquired on either a Bruker AVANCE (at 100 MHz or 125 MHz) and chemical shifts are reported in ppm relative to the residual solvent peak. Unless noted, NMR spectra were acquired in CDCl₃; individual peaks are reported as: multiplicity, integration, coupling constant in Hz. All IR spectra were obtained as neat films with a Perkin-Elmer Model 2000 FT-IR and selected absorbances are reported in cm⁻¹. Low resolution (LR) and Highresolution (HR) mass spectrometry data were acquired by the Central Instrumentation Facility, Indian Institute of Science Education and Research Bhopal on a Bruker Daltonics MicroTOF-Q-II Mass Spectrometer using CH₃CN/H₂O as solvent.

	$\begin{array}{c} + H_2N-Cbz \\ 2a \end{array} \begin{array}{c} Et_3SiH (1.2 equesity - 1.2 equesity$	$\stackrel{\text{HN}}{\longleftarrow} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	OH 4		
	Catalysts (1.5 mol %)	Additives (mol %)	Solvent	t/min	3 [%] ^a
1	Re ₂ O ₇		CH_2CI_2	rt, 3 d	0
2	Re ₂ O ₇		CH_2CI_2	reflux, 9h	0
3	ReCl ₃ O(PPh ₃) ₂		CH_2CI_2	20h	0
4	ReIO ₂ (PPh ₃) ₂		CH_2CI_2	20h	0
5	ReCl ₃ O(SMe ₂)OPPh ₃		CH_2CI_2	20h	0
6	Re ₂ O ₇	NaBF ₄ (20)	CH_2CI_2	15h	100
7	Re ₂ O ₇	NH₄PF ₆ (20)	CH_2CI_2	15h	46
8	Re ₂ O ₇	KPF ₆ (20)	CH_2CI_2	15h	7
9	Re ₂ O ₇	NaSbF ₆ (20)	CH_2CI_2	15h	5
10	ReCl ₃ O(SMe ₂)PPh ₃	NaPF ₆ (20)	CH_2CI_2	20h	7
11	ReIO ₂ (PPh ₃) ₂	NaPF ₆ (20)	CH_2CI_2	20h	11
12	Re ₂ O ₇	NaPF ₆ (20)	CH_2CI_2	15h	100
13	Re ₂ O ₇	NaPF ₆ (20)	THF	15h	2.5
14	Re ₂ O ₇	NaPF ₆ (20)	Et ₂ O	15h	55
15	Re ₂ O ₇	NaPF ₆ (20)	Tolune	15h	36
16	Re ₂ O ₇	NaPF ₆ (20)	MeOH	15h	0
17	Re ₂ O ₇	NaPF ₆ (20)	CH₃CN	15h	4
18	Re ₂ O ₇	NaPF ₆ (20)	CH_2CI_2	20h	(79) ^b
19	Re ₂ O ₇	$NaPF_{6}(5)$	CH ₂ Cl ₂	20h	(48) ^b

Optimization of the reaction conditions:

20	Re ₂ O ₇	NaPF ₆ (10)	CH_2CI_2	20h	(60) ^b			
21		NaPF ₆ (20)	CH_2CI_2	20h	0			
22	NH ₄ OReO ₃	NaPF ₆ (20)	CH_2CI_2	20h	0			
^[a] The	e % was determined by ¹ H NMR	spectroscopy of the re	eaction mixture u	ising <i>p</i> -anisald	lehyde. ^[b] In parentheses the yield of			
the isolated product after column chromatography.								

Standard procedure for reductive amination of ketone: To a stirred solution of carbonyl (1.00 mmol) and amine (1.20 mmol, 1.2 equiv) in CH_2Cl_2 (3.0 ml) was taken in a round bottom flask fitted with reflux condenser, sodium hexafluorophosphate (20 mol %) and triethylsilane (1.20 mmol, 1.2 equiv) was added followed by the addition of Re_2O_7 (1.5 mol %). After stirring at 50°C on an oil-bath for a given time on *Table 2, 3*, or 4, the reaction mixture was passed through a small silica bed & washed properly with dichloromethane. The solvent was removed under vacuum and the crude was purified by flash column chromatography (EtOAc/n-Hexane) on silica gel.

Benzyl cyclohexylcarbamate (**3a**):¹ 79% yield; $R_f = 0.25$ (5:95 = EtOAc/n-Hexane); Colorless solid; mp. 81-84°C; IR (neat): 3320, 2931, 2855, 1699, 1684, 1540, 1456, 1313, 1276, 1143, 1050, 965, 825, 724, 693, 614 cm⁻¹; ¹H

NMR (400 MHz, CDCl₃): 7.39-7.29 (m, 5H), 5.11 (s, 2H), 4.69 (s, 2H), 3.53 (m, 1H), 1.98-1.94 (m, 2H), 1.75-1.70 (m, 2H), 1.64-1.60 (m, 1H), 1.37 (m, 2H), 1.23-1.14 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): 155.5, 136.7, 128.5, 128.1, 128.0, 66.4, 49.9, 49.8, 33.4, 25.4, 24.7; HRMS (ESI, m/z): [M + H]⁺ calculated for C₁₄H₂₀NO₂: 234.1494; found: 234.1411.

Benzyl cyclopentylcarbamate (3b):¹ 67% yield; $R_f = 0.20$ (5:95 = EtOAc/n-Hexane); Colorless solid; mp. 51-53°C; IR (neat): 3325, 2953, 2870, 1695, 1683, 1539, 1256, 1048, 875, 825, 750, 728, 693 cm⁻¹; ¹H NMR (400 MHz,

.Cbz

3a

CDCl₃): 7.39-7.28 (m, 5H), 5.12 (s, 2H), 4.74 (s, 1H), 4.02 (m, 1H), 1.98 (m, 2H), 1.64 (m, 4H), 1.42 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 155.9, 136.6, 128.5, 128.1, 128.0, 66.5, 52.8, 33.2, 23.5; HRMS (ESI, m/z): $[M + H]^+$ calculated for C₁₃H₁₈NO₂: 220.1338; found: 220.1332.

Benzyl cycloheptylcarbamate (3c): 83% yield; $R_f = 0.27 (10:90 = EtOAc/n-Hexane)$; Colorless solid; mp. 54-57°C; IR (neat): 3331, 2928, 2857, 1715, 1694, 1531, 1455, 1315, 1239, 1104, 1040, 1020, 824, 776, 737, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 7.34-7.28 (m, 5H), 5.06 (s, 2H), 4.74 (s, 1H), 3.69 (s, 1H), 1.91 (m, 2H), 1.641.35 (m, 10H); ¹³C NMR (100 MHz, CDCl₃): 155.4, 136.7, 128.5, 128.1, 128.0, 66.4, 52.1, 35.3, 28.0, 23.9 ; HRMS (ESI, m/z): $[M + H]^+$ calculated for C₁₅H₂₂NO₂: 248.1651; found: 248.1645.

Benzyl cyclooctylcarbamate (3d):² 59% yield; $R_f = 0.3$ (10:90 = EtOAc/n-Hexane); Colorless liquid; IR (neat): 3331, 2923, 2855, 1712, 1694, 1520, 1455, 1312, 1245, 1093, 1045, 989, 776, 737, 696 cm⁻¹; ¹H NMR (400 MHz,

CDCl₃): 7.35-7.29 (m, 5H), 5.06 (s, 2H), 4.69 (s, 1H), 3.73 (s, 1H), 1.82 (m, 2H), 1.72-1.22 (m, 14H); ¹³C NMR (100 MHz, CDCl₃): 155.4, 136.7, 128.5, 128.0, 66.4, 51.1, 32.3, 27.2, 25.4, 23.5; HRMS (ESI, m/z): [M + H]⁺ calculated for C₁₆H₂₄NO₂: 262.1807; found: 262.1802.

Benzyl (1-benzoylpiperidin-4-yl)carbamate (3e): 92% yield; $R_f = 0.23$ (30:70 = EtOAc/n-Hexane); Colorless oil; IR (neat): 3306, 3061, 2947, 2862, 1713, 1614, 1531, 1446, 1370, 1318, 1275, 1233, 1109, 1041, 920,

848, 781, 733, 709, 629, 570cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 7.48-7.28 (m, 10 H), 5.11 (s, 2H), 4.85 (m, 1H), 4.61 (s, 1H), 3.78 (m, 2H), 3.04 (m, 2H), 2.51 (s, 1H), 1.99 (m, 2H), 1.40 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 206.7, 170.4, 155.5, 136.3, 135.8, 129.7, 128.5, 128.2, 126.8, 66.7, 48.4, 41.0, 33.0, 32.1; HRMS (ESI, m/z): $[M + H]^+$ calculated for C₂₀H₂₃N₂O₃: 339.1709; found: 339.1707.

Benzyl (tetrahydro-2H-thiopyran-4-yl)carbamate (3f): 89% yield; $R_f = 0.32$ (20:80 = EtOAc/n-Hexane); Colorless solid; mp. 126-131°C; IR (neat): 3314, 2942, 1682, 1542, 1310, 1266, 1229, 1141, 1066, 1029, 968, 845, 757, 694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 7.31 (m, 5H), 5.07 (s, 2H), 4.73 (s, 1H), 3.52 (m, 1H), 2.62 (m, 4H), 2.20 (d, *J* = 12.66 Hz, 2H), 1.53 (dd, *J* = 17.25 Hz & 3.24 Hz, 2H) ; ¹³C NMR (100 MHz, CDCl₃): 155.4, 136.4, 128.5, 128.1, 66.7, 49.3, 34.4, 27.7; HRMS (ESI, *m/z*): [M + H]⁺ calculated for C₁₃H₁₈NO₂S: 252.1058; found: 252.1053

Benzyl-adamantan-2-ylcarbamate (**3g**): 91% yield; $R_f = 0.33$ (10:90 = EtOAc/n-Hexane); Colorless solid; mp. 66°C; IR (neat): 3340, 2907, 2857, 1717, 1700, 1522, 1507, 1456, 1431, 1090, 1013, 875, 824, 676 cm⁻¹; ¹H

NMR (400 MHz, CDCl₃): 7.40-7.28 (m, 5H), 5.12 (s, 3H), 3.85 (d, J = 6.77 Hz, 1H), 1.96 (m, 2H), 1.82 (m, 10H), 1.63 (d, J = 12.63 Hz, 2H) ; ¹³C NMR (100 MHz, CDCl₃): 155.6,

136.6, 128.5, 128.2, 128.1, 66.5, 55.0, 37.5, 37.1, 36.5, 31.7, 27.1, 27.0; HRMS (ESI, m/z): $[M + H]^+$ calculated for C₁₈H₂₄NO₂: 286.1807; found: 286.1807.

tert-Butyl 1,4-dioxaspiro[4.5]decan-8-ylcarbamate (3h):³ 72% yield; $R_f = 0.28$ (10:90 = EtOAc/n-Hexane); Colorless solid; mp. 115-120°C; IR (neat): 3371, 2952, 2872, 1681, 1519, 1456, 1366, 1274, 1159, 1103, 929,

877, 831, 765 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 4.46 (s, 1H), 3.94 (s, 4H), 3.53(s, 1H), 1.93 (m, 2H), 1.73 (m, 3H), 1.63 (dt, J = 12.25 & 3.82 Hz, 2H), 1.49 (dd, J = 12.16 & 3.94 Hz, 1H), 1.45 (s, 9H) ; ¹³C NMR (100 MHz, CDCl₃): 155.2, 107.9, 79.2, 64.3, 64.2, 48.1, 38.1, 33.8, 33.0, 30.1, 28.4, 28.2; HRMS (ESI, m/z): [M + H]⁺ calculated for C₁₃H₂₄NO₄: 258.1705; found: 258.1706.

Benzyl sec-butylcarbamate (3i):⁴ 81% yield; $R_f = 0.29$ (10:90 = EtOAc/n-Hexane); Colorless solid; mp. 47°C; IR (neat): 3327, 2968, 1717, 1699, 1521, 1456, 1240, 1099, 1026, 737, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 7.38-7.28

H N Boc

3h

(m, 5H), 5.11 (s, 2H), 4.63 (s, 1H), 3.68 (m, 1H), 4.18 (m, 2H), 1.15 (d, J = 6.60 Hz, 3H), 0.93 (t, J = 7.42 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): 155.8, 136.7, 128.5, 128.0, 66.4, 48.5, 29.8, 20.6, 10.2; HRMS (ESI, m/z): $[M + H]^+$ calculated for C₁₂H₁₈NO₂: 208.1338; found: 208.1359.

Benzyl (3-methylbutan-2-yl)carbamate (3j):⁵ 95% yield; $R_f = 0.31$ (10:90 = EtOAc/n-Hexane); Colorless oil; IR (neat): 3331, 3034, 2962, 2875, 1713, 1537, 1454, 1374, 1343, 1241, 101, 1028, 932, 775, 737, 697 cm⁻¹; ¹H NMR (400

HN^{Cbz} Me 3j Me

MHz, CDCl₃): 7.38-7.31 (m, 5H), 5.11 (s, 2H), 4.70 (s, 1H), 3.63 (m, 1H), 1.72 (m, 1H), 1.11 (d, J = 6.74 Hz, 3H), 0.92 (d, J = 6.74 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): 155.9, 136.7, 128.5, 128.1, 128.0, 66.5, 51.9, 33.1, 28.3, 18.3, 17.7; HRMS (ESI, m/z): [M + H]⁺ calculated for C₁₃H₂₀NO₂: 222.1494; found: 222.1492.

Benzyl (4-phenylbutan-2-yl)carbamate (3k): 66% yield; $R_f = 0.37$ (10:90 = EtOAc/n-Hexane); Off white solid; mp. 48°C; IR (neat): 3326, 3029, 2930, 1717, 1521, 1455, 1338, 1245, 1053, 1024, 748, 698 cm⁻¹; ¹H NMR (400 MHz,

CDCl₃): 7.40-7.19 (m, 10H), 5.31 (s, 2H), 4.63 (m, 1H), 3.83 (m, 1H), 2.29 (dt, J = 8.15 Hz & 2.79 Hz, 2H), 1.78 (m, 2H), 1.22 (d, J = 6.54 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃):

155.7, 141.7, 136.6, 128.5, 128.4, 128.3, 128.1, 125.9, 66.5, 47.0, 38.9, 32.4, 21.3; HRMS (ESI, m/z): $[M + H]^+$ calculated for C₁₈H₂₂NO₂: 284.1651; found: 284.1645.

Benzyl pentan-3-ylcarbamate (31):⁶ 91% yield; $R_f = 0.33$ (10:90 = EtOAc/n-Hexane); Colorless oil; IR (neat): 3314, 3035, 2960, 2875, 1693, 1537, 1454, 1298, 1249, 1159, 1101, 1044, 967, 777, 727, 694, 575 cm⁻¹; ¹H NMR (400

MHz, CDCl₃): 7.38-7.31 (m, 5H), 5.12 (s, 2H), 4.57 (s, 1H), 3.52 (s, 1H), 1.45 (m, 2H), 1.36 (m, 3H), 0.93 (t, J = 7.39 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): 156.3, 136.7, 128.5, 128.0, 66.4, 54.0, 27.6, 10.1; HRMS (ESI, m/z): $[M + H]^+$ calculated for C₁₃H₂₀NO₂: 222.1494; found: 222.1486.

Benzyl undecan-6-ylcarbamate (3m): 60% yield; $R_f = 0.25$ (03:97 = EtOAc/n-Hexane); Colorless solid; mp. 66°C; IR (neat): 3321, 2934, 2857, 1697, 1688, 1540, 1458, 1276, 1252, 1112, 1040, 825, 726, 684 cm⁻¹; ¹H

NMR (400 MHz, CDCl₃): 7.38-7.33 (m, 5H), 5.12 (s, 2H), 4.50 (d, J = 8.77 Hz, 1H), 3.63 (m, 1H), 1.49 (m, 2H), 1.32 (m, 15H), 0.90 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): 156.1, 136.8, 128.5, 128.0, 66.4, 51.3, 37.4, 35.4, 31.9, 31.7, 25.3, 22.5, 14.0; HRMS (ESI, m/z): [M + H]⁺ calculated for C₁₉H₃₂NO₂: 306.2433; found: 306.2435.

Ethyl cyclohexylcarbamate (3n):⁷ 91% yield; $R_f = 0.22$ (10:90 = EtOAc/n-Hexane); Colorless solid; mp. 52-55°C; IR (neat): 3323, 2974, 2932, 2856, 1685, 1540, 1447, 1371, 1314, 1280, 1251, 1235, 1146, 1056, 968, 892, 779,

1685, 1540, 1447, 1371, 1314, 1280, 1251, 1235, 1146, 1056, 968, 892, 779, 667, cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 4.59 (s, 1H), 4.09 (d, J = 6.91 Hz, 2H), 3.47 (s, 1H), 1.91 (m, 2H), 1.70 (m, 2H), 1.59 (m, 1H), 1.34 (m, 2H), 1.23 (t, J = 7.10 Hz, 3H), 1.13 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): 155.8, 60.4, 49.6, 33.4, 25.4, 24.7, 14.6; HRMS (ESI,

tert-butyl cyclohexylcarbamate (30): 61% yield; $R_f = 0.29 (05:95 = EtOAc/n-Hexane)$; Colorless solid; mp. 72-74°C; IR (neat): 3364, 2933, 2853, 1681, 1523, 1447, 1365, 1315, 1279, 1251, 1232, 1167, 1048, 902, 763 cm⁻¹; ¹H NMR

m/z): $[M + H]^+$ calculated for C₉H₁₈NO₂: 172.1338; found: 172.1388.

(400 MHz, CDCl₃): 4.44 (s, 1H), 3.43 (s, 1H), 1.93 (m, 2H), 1.70 (m, 2H), 1.60 (m, 1H), 1.45 (s, 9H), 1.34 (m, 2H), 1.13 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): 155.2, 78.9, 49.3, 33.5, 28.4, 25.5, 24.8; HRMS (ESI, m/z): [M + Na]⁺ calculated for C₁₁H₂₁NaNO₂: 222.1470; found: 222.1478.

HN^{_Cbz}

⊷ 4 3m

(9H-Fluoren-9-yl)methyl cyclohexylcarbamate (3p): 84% yield; $R_f = 0.29$ (10:90 = EtOAc/n-Hexane); Colorless solid; mp. 161-163°C; IR (neat): 3324, 2933, 2852, 1683, 1534, 1445, 1311, 1276, 1140, 1041, 757, 734 cm⁻¹; ¹H

NMR (400 MHz, CDCl₃): 7.79 (d, J = 7.52 Hz, 2H), 7.62 (d, J = 7.52 Hz, 2H), 7.43 (t, J = 7.44 Hz, 2H), 7.34 (td, J = 7.49 Hz, 0.92 Hz, 2H), 4.67 (s, 1H), 4.32 (d, J = 6.58 Hz, 2H), 4.25 (t, J = 6.63 Hz, 1H), 3.52 (s, 1H), 1.97 (m, 2H), 1.74 (m, 2H), 1.63 (m, 1H), 1.38 (m, 2H), 1.16 (m, 3H) ; ¹³C NMR (100 MHz, CDCl₃): 155.6, 144.0, 141.3, 127.6, 127.0, 125.0, 119.9, 66.3, 49.9, 47.3, 33.4, 25.5, 24.8; HRMS (ESI, m/z): $[M + H]^+$ calculated for C₂₁H₂₄NO₂: 322.1807; found: 322.1814.

N-Cyclohexylbenzenesulfonamide (3q): 55% yield; $R_f = 0.19$ (10:90 = EtOAc/n-Hexane); Colorless oil; IR (neat): 3281, 2934, 2856, 1484, 1448, 1324, 1160, 1094, 993, 914, 884, 840, 756, 720, 690, 593, 561 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 7.90 (m, 2H), 7.55 (m, 3H), 4.59 (d, J = 7.30 Hz, 1H), 3.17 (m, 1H), 1.77 (m, 2H), 1.64 (m, 3H), 1.53 (m, 1H), 1.20 (m, 5H) ; ¹³C NMR (100 MHz, CDCl₃): 141.4, 132.4, 129.0, 126.8, 52.6, 33.9, 25.1, 24.6; HRMS (ESI, m/z): $[M + H]^+$ calculated for

C₁₂H₁₈NO₂S: 240.1058; found: 240.1091.

N-Cyclohexyl-4-methylbenzenesulfonamide (**3r**):⁸ 86% yield; $R_f = 0.21$ (10:90 = EtOAc/n-Hexane); Colorless solid; mp. 81-83°C; IR (neat): 3278, 2933, 2856, 1599, 1451, 1324, 1160, 1094, 994, 914, 883, 815, 666, 572 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 7.79(d, J = 8.24 Hz, 2H), 7.31 (d, J = 8.09), 4.77 (d, J = 6.38Hz, 1H), 3.12 (m, 1H), 2.44 (s, 3H), 1.75 (m, 2H), 1.63 (m, 2H), 1.51(m, 1H), 1.18 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): 143.0, 138.5, 129.6, 126.9, 52.5, 33.8, 25.1, 24.6, 21.5; HRMS

N-Cyclohexyl-4-nitrobenzenesulfonamide (**3s**): 42% yield; $R_f = 0.32$ (20:80 = EtOAc/n-Hexane); Colorless solid; mp. 129-131°C; IR (neat): 3287, 2933, 2856, 1530, 1451, 1350, 1164, 1093, 854, 736, 685, 615, 560, 466 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 8.39 (d, J = 8.17 Hz, 2H), 8.09 (s, J

(ESI, m/z): $[\text{M} + \text{Na}]^+$ calculated for C₁₃H₁₉NaNO₂S: 276.1034; found: 276.1068.

= 8.17 Hz, 2H), 4.55 (m, 1H), 3.26 (m, 1H), 1.80 (m, 1H), 1.68 (m, 1H), 1.59 (m, 3H, having residual water peak), 1.22 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): 149.9, 147.5, 128.1, 124.3, 53.1, 34.0, 29.7, 24.9, 24.6; HRMS (ESI, m/z): [M + Na]⁺ calculated for C₁₂H₁₆NaN₂O₄S: 307.0728; found: 307.0724.

N-Cyclohexylmethanesulfonamide (3t): 66% yield; $R_f = 0.22$ (20:80 = EtOAc/n-Hexane); Colorless solid; mp. 100-104°C; IR (neat): 3254, 2934, 2854, 1452, 1423, 1307, 1155, 1080, 999, 884, 738, 525 cm⁻¹; ¹H NMR (400

3u

Me

Ο

3v

MHz, $CDCl_3$): 4.37 (d, J = 6.38 Hz, 1H), 3.31 (m, 1H), 2.99 (s, 3H), 2.01 (m, 2H), 1.75 (m, 2H), 1.63 (m, 1H), 1.29 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): 52.8, 42.1, 44.4, 25.1, 24.7; HRMS (ESI, m/z): $[M + Na]^+$ calculated for C₇H₁₅NaNO₂S: 200.0721; found: 200.0767.

N-Cyclohexylbenzamide (3u): 85% yield; $R_f = 0.25$ (10:90 = EtOAc/n-Hexane): Colorless solid; mp. 149-151°C; IR (neat): 3314, 2929, 2852, 1627, 1535, 1330, 1256, 1149, 1081, 849, 692 cm⁻¹; ¹H NMR (400 MHz,

CDCl₃): 7.76 (d, *J* = 7.22 Hz, 2H), 7.44 (tt, *J* = 7.35 Hz & 2.14 Hz, 1H), 7.36 (t, *J* = 7.68 Hz, 2H), 6.43 (d, J = 6.80 Hz, 1H), 3.94 (m, 1H), 1.98 (m, 2H), 1.72 (m, 2H), 1.62 (m, 1H), 1.27 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): 166.7, 135.0, 131.1, 128.3, 126.9, 48.7, 33.1, 25.5, 24.9; HRMS (ESI, m/z): $[M + H]^+$ calculated for C₁₃H₁₇NO: 204.1388; found: 204.1401.

N-Cyclohexylacetamide (3v): 63% yield; $R_f = 0.28$ (50:50 = EtOAc/n-Hexane); Colorless solid; mp. 107-109°C; IR (neat): 3299, 2932, 2852, 1640, 1557, 1445, 1374, 1314, 1155, 1117, 981, 893, 737, 607, 550 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 5.45 (s, 1H), 3.76 (m, 1H), 1.96 (s, 3H), 1.92 (m, 2H), 1.71 (m, 2H), 1.62 (m, 1H), 1.37 (m, 2H), 1.14 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): 169.1, 48.2, 33.2, 25.5, 24.8, 23.5; HRMS (ESI, m/z): $[M + H]^+$ calculated for C₈H₁₅NO: 142.1232;

found: 142.1237.

3-Cyclohexyloxazolidin-2-one (3w):⁹ 65% yield; $R_f = 0.27$ (30:70 = EtOAc/n-Hexane); Colorless oil; IR (neat): 3494, 2932, 2856, 1713, 1484, 1422, 1422, 1252, 1148, 1062, 999, 973, 893, 823, 763, 699 cm⁻¹; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$: 4.27 (t, J = 8.07 Hz, 2H), 3.62 (m, 1H), 3.49 (t, J = 8.03

Hz, 2H), 1.77 (m, 4H), 1.63 (m, 1H), 1.33 (m, 4H), 1.07 (m, 1H); ¹³C NMR (100 MHz, $CDCl_3$): 157.8, 62.0, 52.4, 40.5, 30.2, 25.3, 25.2; HRMS (ESI, m/z): $[M + H]^+$ calculated for C₉H₁₆NO₂: 170.1181; found: 170.1199.

4-Methyl-N-(2-methylcyclohexyl)benzenesulfonamide (6a): 50% yield; dr = 19.81; R_f = 0.21 (10:90 = EtOAc/n-Hexane); Colorless solid; mp. 95°-97°C; IR (neat): 3290, 22, 2858, 1599, 1453, 1326, 1162, 1093, 1022, 1007, 918, 882, 814, 666, 574, 550 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 7.79 (d, J = 8.44 Hz,

Fmoc

6b

Me

ΗN

2H), 7.30 (d, J = 7.99 Hz, 2H), 4.76 (m, 1H), 3.34 (m, 1H), 2.44 (s, 3H), 1.68 (m, 2H), 1.53 (m, 2H), 1.40 (m, 3H), 1.20 (m, 2H), 0.77 (d, J = 7.00 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): 143.0, 138.3, 129.5, 127.0, 59.1, 54.4, 38.4, 34.3, 2.8, 25.4, 25.3, 23.4, 21.5, 19.0, 16.3; HRMS (ESI, m/z): [M + H]⁺ calculated for C₁₄H₂₂NO₂S: 268.1371; found: 268.1418.

(9H-fluoren-9-yl)methyl (2-methylcyclohexyl)carbamate (6b) 88% yield; dr = 17.83; R_f = 0.25 (10:90 = EtOAc/n-Hexane); Colorless solid; mp. 156-159°C; IR (neat): 3339, 2929, 2856, 1697, 1531, 1449, 1327, 1237, 1107, 1078, 991, 758, 739 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 7.80 (d, J = 7.57 Hz,

2H), 7.63 (d, J = 7.45 Hz, 2H), 7.43 (t, J = 7.37 Hz, 2H), 7.35 (td, J = 7.49 Hz, 0.98 Hz, 2H), 4.83 (d, J = 8.36 Hz, 1H), 4.44 (m, 2H), 4.27 (t, J = 6.81 Hz, 1H), 3.83 (m, 1H), 1.17 (m, 1H), 1.76-1.16 (m, 9H), 0.91 (d, J = 7.02 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): 156.0, 144.0, 141.3, 127.6, 127.0, 125.0, 119.9, 66.3, 51.3, 47.4, 33.7, 30.0, 22.0, 16.4 ; HRMS (ESI, m/z): [M + H]⁺ calculated for C₂₂H₂₆NO₂: 336.1964; found: 336.1958.

tert-Butyl (2-methylcyclohexyl)carbamate (6c):¹⁰ 54% yield; dr = 9:91; R_f = 0.31 (05:95 = EtOAc/n-Hexane); Colorless oil; IR (neat): 3344, 2930, 2857, 1698, 1503, 1455, 1390, 1365, 1245, 1174, 1101, 1068, 1052, 967 cm⁻¹; ¹H

NMR (400 MHz, CDCl₃): 4.59 (m, 1H), 3.74 (m, 1H), 1.85 (m, 1H), 1.68 (m, 3H), 1.52 (m, 2H), 1.46 (s, 9H), 1.32 (m, 2H), 1.20 (m, 2H), 0.87 (d, J = 6.95 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): 155.6, 78.8, 50.6, 38.9, 33.8, 28.4, 25.5, 22.2, 16.2; HRMS (ESI, m/z): [M - H]⁺ calculated for C₁₂H₂₂NO₂: 212.1651; found: 212.1677.

tert-Butyl (2-allylcyclohexyl)carbamate (6d): 75% yield; dr = 19:81; R_f = 0.31 (10:90 = EtOAc/n-Hexane); Colorless oil; IR (neat): 3347, 2977, 2930, 2857, 1697, 1505, 1454, 1391, 1365, 1247, 1172, 1062, 971, 910, 873, 780 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 5.76 (m, 1H), 4.98 (m, 2H), 4.61 (m, 1H),

3.81 (m, 1H), 2.07 (m, 1H), 1.88 (m, 2H), 1.69 (m, 1H), 1.51 (m, 2H), 1.43 (s, 9H), 1.35 (m, 1H), 1.25 (m, 2H), 1.11 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 155.4, 137.1, 115.8, 78.9,

;53.5, 49.2, 43.4, 37.2, 34.3, 30.9, 30.7, 29.7, 28.4, 27.3, 25.5, 25.4, 24.3, 21.6; HRMS (ESI, *m/z*): [M + H]⁺ calculated for C₁₄H₂₆NO₂: 240.1964; found: 240.1945.

N-(2-Allylcyclohexyl)-4-methylbenzenesulfonamide (6e):¹¹ 74% yield; dr = 3.97; R_f = 0.3 (15:85 = EtOAc/n-Hexane); White solid; mp. 145°-148°C; IR (neat): 3288, 2930, 2858, 1452, 1425, 1327, 1161, 1093, 1001, 910, 813, 671 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 7.78 (d, J = 8.22 Hz, 2H), 7.31 (d, J = 8.03

Hz, 2H), 5.62 (m, 1H), 4.95 (m, 2H), 4.63 (d, J = 8.52 Hz, 1H), 3.48 (m, 1H), 2.44 (s, 3H), 2.00 (m, 1H), 1.89 (m, 1H), 1.54 (m, 3H), 1.42-1.04 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): 143.1, 136.6, 129.6, 127.0, 116.0, 53.2, 40.1, 35.6, 30.5, 26.9, 23.8, 21.5, 21.2; HRMS (ESI, m/z): [M + H]⁺ calculated for C₁₆H₂₄NO₂S: 294.1528; found: 294.1541

Benzyl (2-allylcyclohexyl)carbamate (6f): 91% yield; dr = >1.99; R_f = 0.31 (5:95 = EtOAc/n-Hexane); Colorless oil; IR (neat): 3342, 2930, 2856, 1713, 1695, 1519, 1455, 1335, 1237, 1105, 1064, 978, 911, 737, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 7.40-7.26 (m, 5H), 5.79 (m, 1H), 5.12 (s, 2H), 5.01 (d, J =

14.08 Hz, 2H), 4.89 (d, J = 7.73 Hz, 1H), 3.95 (m, 1H), 2.10 (m, 1H), 1.93 (m, 1H), 1.77 (m, 1H), 1.67 (m, 2H), 1.52 (m, 3H),1.34 (m, 2H), 1.12 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): 155.8, 136.9, 136.6, 128.5, 128.1, 116.0, 66.6, 49.9, 39.6, 36.2, 30.7, 27.2, 24.3, 21.5; HRMS (ESI, m/z): [M + H]⁺ calculated for C₁₇H₂₄NO₂: 274.1807; found: 274.1818.

4-Methyl-N-(2-(3-methylbut-2-en-1-yl)cyclohexyl)benzenesulfonamide (**6g**): 68% yield; dr = >1.99; $R_f = 0.22$ (10:90 = EtOAc/n-Hexane); Colorless solid, mp. 117°-123°C; IR (neat): 3291, 2928, 2856, 1599, 1451, 1328, 1158, 1093, 1021, 1001, 918, 814, 707, 670, 551 cm⁻¹; ¹H NMR

(400 MHz, CDCl₃): 7.76 (d, J = 8.25 Hz, 2H), 7.26 (d, J = 8.03 Hz, 2H), 4.82 (m, 2H), 3.41 (m, 1H), 2.39 (s, 3H), 1.77 (m, 2H), 1.60 (s, 3H), 1.54 (m, 2H), 1.48 (s, 3H), 1.37 (m, 4H), 1.26 (m, 1H), 1.11 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 143.0, 138.3, 129.5, 127.0, 122.3, 53.4, 40.8, 30.8, 27.1, 25.7, 21.5, 21.2, 17.7; HRMS (ESI, m/z): [M + H]⁺ calculated for C₁₈H₂₈NO₂S: 322.1841; found: 322.1837.

(E)-Benzyl (2-cinnamylcyclohexyl)carbamate (6h): 75% yield; dr = 12.88; R_f = 0.21 (5:95 = EtOAc/n-Hexane); Colorless solid; mp. 81-85°C;

HN^{_Cbz}

6f

IR (neat): 3432, 3346, 2930, 1704, 1505, 1455, 1335, 1232, 1094, 1059, 969, 743, 695 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 7.33 (m, 9H), 7.21 (m, 1H), 6.40 (q, J = 16.03 Hz, 1H), 6.24 (m, 1H), 5.13 (s, 2H), 4.93 (d, J = 8.58 Hz, 1H), 3.98 (m, 1H), 2.26 (m, 1H), 2.08 (m, 1H), 1.78 (m, 2H), 1.58 (m, 4H), 1.32 (m, 2H), 1.17 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): 155.8, 137.7, 137.6, 136.6, 128.5, 128.4, 128.2, 128.1, 126.9, 126.0, 125.9, 69.1, 66.6, 50.0, 41.8, 40.2, 33.1, 30.7, 25.1, 21.5, 20.4; HRMS (ESI, m/z): $[M + H]^+$ calculated for C₂₃H₂₈NO₂: 350.2120; found: 350.2143.

Synthesis of (1-(1-Tosyloctahydro-1H-indol-2-yl)butan-2-one (8):¹² To an oven dried round bottom flask, N-(2-allylcyclohexyl)-4-methylbenzenesulfonamide **6e** (0.5 mmol, 1 equiv), ethyl vinyl ketone (1.25 mmol, 2.5 equiv) were taken. After adding dry DCM (3 ml) to the flask, the solution was degassed for 0.5h with nitrogen gas. Next, 5 mol % of Grubbs-II catalyst was added into the reaction flask and continued to stirred for 18h at 40°C. The reaction mixture was passed through a plug of silica, concentrated, and the mixture was purified by column chromatography.

95% yield; $R_f = 0.25$ (30:70 = EtOAc/n-Hexane); colorless oil; IR (neat): 2933, 2859, 1713, 1599, 1455, 1415, 1337, 1158, 1094, 1009, 890, 816, 709, 665, 591 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 8.15-8.03 (2H), 7.55-7.15

(10H), 6.70-6.55 (3H), 6.41 (dd, J = 6, 16 Hz, 1H), 5.23 (d, J = 6 Hz, 1H), 4.93 (b s, 1H); ¹³C NMR (100 MHz, CDCl₃): 152.1, 140.3, 138.5, 136.0, 132.3, 129.2, 128.7, 128.6, 128.2, 128.1, 127.1, 126.6, 126.2, 112.1, 60.0; HRMS (ESI, m/z): $[M + H]^+$ calculated for C₁₉H₂₈NO₃S: 350.1790; found: 350.1790.

Synthesis of Benzyl 2-(hydroxymethyl)octahydro-1H-indole-1-carboxylate (10): mCPBA (0.6 mmol, 1.2 equiv) was added to a cooled solution (ice bath) of Benzyl (2-allylcyclohexyl)-carbamate **6f** (0.5 mmol, 1 equiv) dissolved in 3 mL of CH₂Cl₂. After 10 minutes, the ice bath was removed and continued to stir at room temperature for additional 3h. The reaction mixture was diluted by adding 30 ml CH₂Cl₂ and then washed twice with 1N NaOH. The organic layer was evaporated after drying over anhydrous sodium sulfate. After dissolving the residue in *tert*-butanol (3 ml), ^tBuOK (0.6 mmol) was added followed by stirring for 12h at room temperature. The excess ^tBuOK was quenched (at 0°C) with 1N HCl and extract twice with 20 ml EtOAc. The organic layer was dried, concentrated and finally purified by column chromatography on silica-gel.

89% yield; $R_f = 0.26$ (20:80 = EtOAc/n-Hexane); colorless oil; IR (neat): 3430, 2931, 2861, 1682, 1416, 1337, 1298, 1122, 1094, 1046, 773, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): 8.15-8.03 (2H), 7.55-7.15 (10H), 6.70-6.55

(3H), 6.41 (dd, J = 6, 16 Hz, 1H), 5.23 (d, J = 6 Hz, 1H), 4.93 (b s, 1H); ¹³C NMR (100 MHz, CDCl₃): 152.1, 140.3, 138.5, 136.0, 132.3, 129.2, 128.7, 128.6, 128.2, 128.1, 127.1, 126.6, 126.2, 112.1, 60.0; HRMS (ESI, m/z): $[M + H]^+$ calculated for C₁₇H₂₄NO₃: 290.1756; found: 290.1751.

References:

- 1) J. Matsuo, Y. Tanaki, A. Kido and H. Ishibashi, Chem. Commun., 2006, 2896.
- 2) R. N. Salvatore; S. Shin; A. S. Nagle; K.W. Jung, J. Org. Chem., 2001, 66, 1035.
- 3) B. T. Gregg, K. C. Golden, J. F. Quinn, Tetrahedron, 2008, 64, 3287.
- 4) W. McGhee, D. Riley, K. Christ, Y. Pan, B. Parnas, J. Org. Chem., 1995, 60, 2820.
- 5) L. K. Thalen, D. Zhao, J. B. Sortais, J. Paetzold, C. Hoben, J. Backvall, *Chem. Eur. J.*, 2009, **15**, 3403.
- 6) J. Matsuo, Y. Tanaki, A. Kido, H. Ishibashi, Chem. Commun., 2006, 2896.
- 7) M. Feroci , M. Orsini , L. Rossi , G. Sotgiu , A. Inesi, J. Org. Chem., 2007, 72 , 200.
- 8) S. Kundu, E. Miceli, E. Farquhar, F. F. Pfaff, U. Kuhlmann, P. Hildebrandt, B. Braun, C.
- Greco, K. Ray, J. Am. Chem. Soc., 2012, 134, 14710
- 9) J. W. Lown and S. M. S. Chauhan, J. Med. Chem. 1981, 24, 270.
- 10) K. Fuchs, C. Dorner-Ciossek, S. Handschuh; N. Heine, S. Hoerer, K. Klinder, PCT Int. Appl. 2009, WO 2009092566 A1 20090730.
- 11) K. Moriyama, Y. Izumisawa, H. Togo, J. Org. Chem., 2011, 76, 7249.
- 12) D. C. Behenna and B. M. Stoltz, J. Am. Chem. Soc. 2004, 126, 15044.