Aerobic C-H Amination of Tetrahydrocarbazole Derivatives via Photochemically Generated Hydroperoxides

Naeem Gulzar and Martin Klussmann*

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany

Email: klusi@mpi-muelheim.mpg.de

Contents

General Information	S2
Optimization of reaction conditions	S3
Synthetic procedures	S7
Synthesis of starting materials	S7
General procedure for the synthesis of hydroperoxides:	S7
General procedures, reaction of hydroperoxides with N-H nucleophiles	S7
Comparison of two-step and one-pot methods	S7
Structure determination of the coupling products	S9
Reduction of hydroperoxides to alcohols in DMSO-d ₆	S14
Characterization of the coupling products	S15
Characterization of hydroperoxides	S29
X-ray Data	S35
1-Saccharinyl-2,3,4,9-tetrahydro-1H-carbazole (17)	S35
4-(6-Chloro-2,3,4,9-tetrahydro-1H-carbazol-1-ylamino)benzonitrile (21)	S36
4-((3-Methyl-1H-indol-2-yl)(phenyl)methylamino)benzonitrile (23)	S38
4-(1-(3-Ethyl-1H-indol-2-yl)propylamino)benzonitrile (24)	S39
Copies of the NMR spectra	S41
Supplementary References	S102

General Information

Except when indicated otherwise, all reagents and solvents were purchased from commercial sources and used as received. All reactions and work-up procedures were conducted under air except where noted otherwise. Flash column chromatography was performed using either Merck Silica Gel 60 (40-63 μ m) or Sigma Aldrich activated, neutral, Brockmann I aluminium oxide. TLC was performed on Macherey-Nagel Polygram Sil G/UV₂₅₄ or Macherey-Nagel Polygram Alox N/UV₂₅₄ thin layer plates and visualised by UV-light and KMnO₄ solution. NMR spectra were recorded on a Bruker AV500, AV400 or DPX 300 MHz spectrometers. The chemical shifts are reported in ppm downfield of internal standard tetramethylsilane for ¹H NMR and ¹³C NMR. Chemical shifts are designated using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, m = multiplet. Peaks were assigned based on ¹³C-DEPT- or 2D NMR spectra. High resolution mass spectra were recorded with a Bruker APEX III FTICR-MS or a Finnigan SSQ 7000 quadrupole MS or a Finnigan MAT 95 double focusing sector field MS instrument. Infrared spectra were measured with a PerkinElmer Spectrum 100 FT-IR spectrometer on a diamond ATR unit.

Abbreviations

AcOH	Acetic acid
DMSO	Dimethyl sulfoxide
MeOH	Methanol
MsOH	Methanesulfonic acid
PTSA	<i>p</i> -Toluenesulfonic acid
TFA	Trifluoroacetic acid
THF	Tetrahydrofuran

Optimization of reaction conditions

All reactions were run until full conversion of the starting hydroperoxide **3** was achieved, according to thin layer chromatography or ¹H-NMR analysis of the crude reaction mixture.

Screening of Catalysts:

To optimize the yield of the desired coupling product, different catalysts were tested in CH₃CN at room temperature. TFA was found to be the most suitable catalyst for our coupling reaction.

Supplementary Table S1: Screening of catalysts

Entry	Catalyst	Remaining aniline (%)	Product 4 (%, NMR Yield)
1	FeCl ₃	93	7
2	FeBr ₃	100	0
3	K ₄ Fe(CN) ₆	100	0
4	Fe(OTf) ₃	90	10
5	Yb(OTf) ₃	90	10
6	Sc(OTf) ₃	92	8
7	Fe(NO ₃) _{3.} 9H ₂ O	91	9
8	TFA	86	14
9	PTSA	95	5
10	MsOH	100	0

Conditions: 3 (0.49 mmol), p-nitroaniline (0.49 mmol), CH₃CN (10 ml), catalyst (0.049 mmol).

 $FeCl_2$, iron acetate, $Fe(C_2H_5)_2BF_4$, iron acetylacetonate, $FePO_4$, Mohrs salt, cyclopentadienyliron dicarboxyl iodide, $FeBr_2$, and $FeCl_3.6H_2O$ were also tried, but they gave inferior results.

Screening of Solvents:

After the selection of catalyst, the coupling reaction was performed in different solvents. Methanol was found to be superior to all the tested solvents which afforded the coupling product in 76% yield in just 4h.

Supplementary Table S2: Screening of solvents

Entry	Solvent	Remaining aniline (%)	Product 4 (%, NMRYield)
1	CH ₃ CN	86	14
2	DMSO	34	66(4h)
3	DMF	56	44(4h)
4	Toluene	77	23
5	CHCl ₃	83	17
6	EtOAc	35	65
7	MeOH	25	75 (4h)

Conditions: **3** (0.49 mmol), *p*-nitroaniline (0.49 mmol), solvent (10 ml), TFA (0.049 mmol).

Screening of Temperatures:

After performing the reaction at different temperatures, room temperature was found to be optimal for the reaction.

Supplementary Table S3: Screening of temperature

Entry	Temp.	Time (h)	Remaining aniline (%)	Product 4 (%, NMRYield)
1	r.t.	4	25	75
2	40°C	3	30	70
3	0°C	15	35	65
4	-40°C	15	80	20

Conditions: **3** (0.49 mmol), *p*-nitroaniline (0.49 mmol), MeOH (10 ml), TFA (0.049 mmol).

Screening of catalyst loading:

Entry	Catalyst (mol%)	Remaining aniline (%)	Product 4 (%, NMRYield)
1	3	40	60
2	5	12	66
3	10	24	76
4	20	30	70

Conditions: **3** (0.49 mmol), *p*-nitroaniline (0.49 mmol), MeOH (10 ml), TFA (3-20 mol%).

Screening of catalyst loading at higher concentration:

Supplementary Table S5: Screening of catalyst loading at higher concentration

Entry	Cat. (mol%)	Remaining aniline (%)	Product 4 (%, NMRYield)
1	10	14	86
2	5	33	67
3	3	34	66
4	1	35	65

Conditions: 3 (0.49 mmol), p-nitroaniline (0.49 mmol), MeOH (0.5 ml), TFA (3-20 mol%).

Optimization of reaction time at higher substrate concentration:

Supplementary Table S6: Optimization of time at higher substrate concentration

Entry	time	Remaining aniline (%)	Product 4 (%, NMRYield)
1	2 h	13	87
2	1h	35	65
3	30 min	37	63

Conditions: 3 (0.49 mmol), p-nitroaniline (0.49 mmol), MeOH (0.5 ml), TFA (0.049 mmol).

Synthetic procedures

Synthesis of starting materials

The different tetrahydrocarbazole and indol derivatives were synthesized by Fischer Indole Synthesis using standard procedures.^{1,2}

General procedure for the synthesis of hydroperoxides:³

The desired substrate (1 g) was dissolved in toluene (100 ml). To this solution was added rose bengal (2 mg). The resultant reaction mixture was irradiated with a 23 watt lamp under an atmosphere of O_2 . The progress of the reaction was controlled by ¹HNMR. After full conversion of the substrate, the precipitated solid was filtered to afford the desired product in quantitative yields. All hydroperoxides looked pink because of the presence of rose bengal.

General procedures, reaction of hydroperoxides with N-H nucleophiles

Method A (MeOH/TFA)

The hydroperoxide (0.49 mmol, 1.0 equiv.) was dissolved in methanol (0.5 ml). To this reaction mixture was added the desired nucleophile (0.49 mmol, 1.0 equiv.) followed by the addition of TFA (3.7 μ L, 0.049 mmol, 0.1 equiv.). After 2-4 h, the solvent was reduced to dryness and the resulting solid was purified by column chromatography or by recrystallization.

Method B (AcOH)

The hydroperoxide (0.49 mmol, 1.0 equiv.) was dissolved in acetic acid (0.5 ml). To this reaction mixture was added the desired nucleophile (0.49 mmol, 1.0 equiv.). After 2-4 h, the solvent was reduced to dryness and the resulting solid was purified by column chromatography or by recrystallization.

Comparison of two-step and one-pot methods

Two-step method: The hydroperoxide **3** is synthesized in toluene as described above and employed in the coupling step as isolated compound. Using this procedure, a yield of 86% over two steps was achieved for the coupling of tetrahydrocarbazole **2** and *p*-nitroaniline (Supplementary Figure S1a).

One-pot method with exchange of solvent: after synthesis of the peroxide **3** in toluene according to the procedure described above, toluene is removed under vacuum and the resulting mixture is directly employed in the next step. Using this procedure, a yield of 85% over two steps was achieved for the coupling of tetrahydrocarbazole **2** and *p*-nitroaniline (Supplementary Figure S1b).

One-pot method without change of solvent:

The indole derivative (0.49 mmol) was dissolved in methanol (10 ml). To this solution was added phthalocyanine (2 mg). The resultant reaction mixture was irradiated with a 500 watt lamp under an atmosphere of oxygen for 40 hours at -40°C. The progress of the reaction was controlled by 1H NMR. After full conversion of the substrate, aniline (1.0 equiv.) and TFA (10 mol%) was added and the mixture was stirred at ambient temperature. After 3 hours, the solvent was reduced to dryness and the resulting solid was purified by column chromatography or by recrystallization. Using this procedure, a yield of 82% was achieved for the coupling of tetrahydrocarbazole 2 and *p*-nitroaniline (Supplementary Figure S1c).

Supplementary Figure S1 Investigation of the reaction sequence. a), Two-step protocol with isolation of intermediate hydroperoxide **3**. **b**), One-pot, two-step protocol exchanging the solvent without isolation of hydroperoxide **3**. **c**), One-pot, two-step protocol in methanol without need to exchange the solvent.

Structure determination of the coupling products

Position of the new C-N bond

To determine the structure of the coupling products and unambiguously distinguish it from all the other possible isomers, a detailed NMR analysis of product **4** was performed. With the help of ¹⁵N-HMBC, it was possible to assign the hydrogen atoms directly connected to nitrogen (Supplementary Figure S2). The correct regioisomer was confirmed by Nuclear Overhauser effect spectroscopy (NOESY), which showed the long range coupling of indolic N-H with the aniline N-H and methyne C-H (Supplementary Figure S3).

Supplementary Figure S2: ¹⁵N-HMBC of 4 in DMSO (to determine the *N*-bound hydrogen atoms)

Supplementary Figure S3: NOESY of 4 in DMSO (to determine the position of the new C-N bond)

Additionally, the structures of several products were determined by X-ray crystallography, giving consistent results (see below).

Relative configuration of the diastereomers of 15 and 16

The reaction of phenyl substituted tetrahydrocarbazole hydroperoxide with *p*-nitroaniline led to the formation of two diastereomers with a ratio of 85:15. It was possible to isolate the major diastereomer by column chromatography. The configuration of the major diastereomer was determined by assigning all protons by H,H-COSY, HMBC and HSQC and determining the coupling constants between H_a - H_b/H_c and H_d - H_b/H_c and H_d - H_e/H_f (Supplementary Figure S4 and Supplementary Table S7).

Supplementary Figure S4: ¹H NMR in DMSO of the major diastereomer of 15

a	~	• • • • · · · · · · · · · · · · · · · ·	a	
Sunnlementary Table 879	• Chemical shifts and	counting constants	for the major	diastereomer of 15
Supplementary rable 57	Chemical sinits and	couping constants.	for the major	ulasici conici ol 13.

Entry	Proton	Chemical shift (ppm)	Multiplicity	Coupling constant (<i>J</i> , <i>Hz</i>)
1	b	2.09-2.11	d	13.4
2	с	2.28-2.34	td	13.1, 4.2
3	f	2.71-2.76	dd	15.4, 11.4
4	e	3.03-3.07	dd	15.5, 4.7
5	d	3.22-3.28	tdd	13.9, 4.9, 2.9
6	а	5.05	m	<6

Proton H_b shows a broad doublet at 2.09-2.11 ppm with the coupling constant value of 13.4 Hz (geminal coupling with H_c). The additional coupling of H_b with H_d and H_a can be observed in H,H-COSY spectrum (Supplementary Figure S5). H_a shows a multiplet at 5.05 ppm, however, by carefully examining the spectra it can be seen that coupling constant value is not greater than 6 Hz which proves the equatorial-axial and equatorial-equatorial relation of H_a with H_b and H_c , respectively.

The absence of an axial-axial coupling constant between H_a and H_b / H_c and the presence of an axial-axial coupling constant between $H_d - H_b / H_c$ and $H_d - H_e / H_f$ indicates that the aniline substituent is in an axial position and the phenyl ring in an equatorial one. Accordingly, the relationship between the phenyl and aniline substituents is *trans*.

Supplementary Figure S5: Expansion of H,H COSY in DMSO of the major diastereomer of 15

The relative configuration of the major diastereomer of **16** was determined in the same way (Supplementary Figure S6, Supplementary Table S8).

Supplementary Figure S6: Expansion of ¹H NMR in DMSO of the major diastereomer of 16

Entry	Proton	Chemical shift (ppm)	Multiplicity	Coupling constant (<i>J</i> , <i>Hz</i>)
1	с	1.61-1.67	td	13.1, 4.5
2	b	1.88-1.90	d	13.2
3	f	2.18-2.21	dd	15.4, 10.4
4	e	2.81-2.85	dd	15.2, 4.5
5	d	2.05-2.12	m	-
6	а	5.05	m	<6

a 1						~
Supplementary	Table S8: C	hemical shifts and	coupling cons	tants for the ma	aior diastereomer of 10	6.
Suppremental	14010 001 0	nonnour sinnos una	coupling com	curres for the ma	ajor anastereomer or re	

Reduction of hydroperoxides to alcohols in DMSO-d₆

A reduction of the hydroperoxide group in **3** and its derivatives to the alcohol was observed in DMSO by measuring the ¹H NMR spectra at different time intervals. For example, the chloro tetrahydrocarbazole hydroperoxide was completely reduced to the corresponding alcohol after 72 hours in DMSO-d₆ (Supplementary Figure S7). This generally caused problems of obtaining clean ¹³C-NMR spectra, since these required longer acquisition times. Alternative solvents were less suited for the characterization of the hydroperoxides, either because the solubility was too low, decomposition reactions occurred or the hydroperoxide group was not detectable.

Supplementary Figure S7 Reduction of a tetrahydrocarbazole hydroperoxide in DMSO-d₆

Characterization of the coupling products

N-(4-Nitrophenyl)-2,3,4,9-tetrahydro-1H-carbazol-1-amine (4):

Synthesized according to Method A, $R_f = 0.60$ (hexane/ethy acetate 70:30).

Purification: Over the course of the reaction, the precipitation of a large proportion of the desired coupling product was observed. The complete precipitation could be achieved by using a mixture of hexane/ethyl acetate. Yellow solid, Yield: 86%.

¹**H NMR (500 MHz, DMSO-d6):** δ 10.93 (s, 1H), 8.04 (d, *J* = 8.8 Hz, 2H), 7.75 (d, *J* = 8.1 Hz, 1H), 7.44 (d, *J* = 7.8 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.06 (t, *J* = 7.4 Hz, 1H), 6.97 (t, *J* = 7.4 Hz, 1H), 6.83 (d, *J* = 8.9 Hz, 2H), 4.98-4.96 (m, 1H), 2.76-2.72 (m, 1H), 2.66-2.60 (m, 1H), 2.07-2.02 (m, 1H), 1.93-1.84 (m, 3H), ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 153.6, 136.0, 135.5, 133.0, 126.4, 126.3, 121.2, 118.2, 118.0, 111.1, 110.7, 45.6, 29.2, 20.6, 19.6 ppm;

HR-MS (ESIpos) m/z: M^+ calcd. for $C_{18}H_{17}N_3O_2Na_1$ [M+Na]⁺: 330.121296; found: 330.120960.

4-(2,3,4,9-Tetrahydro-1H-carbazol-1-ylamino)benzonitrile (5):

Synthesized according to Method B, $R_f = 0.62$ (hexane/ethy acetate 70:30).

Purification: Over the course of the reaction, the precipitation of a large proportion of the desired coupling product was observed. The complete precipitation could be achieved by using a mixture of hexane/ethyl acetate, white solid, Yield: 80%.

¹**H NMR (500 MHz, DMSO-d6):** δ 10.89 (s, 1H), 7.48 (d, *J* = 8.6 Hz, 2H), 7.43 (d, *J* = 7.8 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 1H), 7.13 (d, *J* = 8.1 Hz, 1H), 7.05 (t, *J* = 7.2 Hz, 1H), 6.96 (t, *J* = 7.2 Hz, 1H), 6.81 (d, *J* = 8.8 Hz, 2H), 4.88-4.87 (m, 1H), 2.75-2.70 (m, 1H), 2.64-2.59 (m, 1H), 2.02-1.96 (m, 1H), 1.95-1.90 (m, 1H), 1.87-1.80 (m, 2H) ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 151.2 , 136.0, 133.5, 133.3, 126.4, 121.0, 120.6, 118.1, 117.8, 111.1, 110.5, 95.4, 45.2, 28.9, 20.6, 19.6 ppm;

HR-MS (ESIpos) m/z: M^+ calcd. for $C_{19}H_{17}N_3Na_1$ [M+Na]⁺: 310.131469; found: 310.131446

N-Phenyl-2,3,4,9-tetrahydro-1H-carbazol-1-amine (6):

Synthesized according to Method B, $R_f = 0.78$ (hexane/ethy acetate 70:30).

Purification: The crude product was purified via column chromatography (silica gel,

hexane/ethylacetate/triethylamine 90:5:5) to afford the desired product as white solid, Yield: 60%.

¹**H NMR (500 MHz, DMSO-d6):** δ 10.84 (s, 1H), 7.41 (d, *J* = 7.4 Hz, 1H), 7.29 (d, *J* = 7.3 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 2H), 7.03 (t, *J* = 7.5 Hz, 1H), 6.95 (t, *J* = 7.4 Hz, 1H), 6.73 (d, *J* = 8.1 Hz, 2H), 6.54 (t, *J* = 7.3 Hz, 1H), 5.92 (d, *J* = 8.8 Hz, 1H), 4.78-4.76 (m, 1H), 2.73-2.69 (m, 1H), 2.64-2.59 (m, 1H), 2.0-1.91 (m, 2H), 1.86-1.77 (m, 2H), ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 147.8, 136.0, 134.8, 128.9, 126.6, 120.8, 118.0, 117.7, 15.6, 112.6, 111.0, 110.0, 45.8, 28.9, 20.8, 19.8, ppm;

HR-MS (ESIneg) m/z: M⁺ calcd. for C₁₈H₁₇N₂ [M-H]⁻: 261.139722; found: 261.139424

6-Chloro-N-(4-nitrophenyl)-2,3,4,9-tetrahydro-1H-carbazol-1-amine (7):

Synthesized according to Method A, $R_f = 0.49$ (hexane/ethy acetate 70:30).

Purification: Over the course of the reaction, the precipitation of a large proportion of the desired coupling product was observed. The complete precipitation could be achieved by using a mixture of hexane/ethyl acetate. Yellow solid, Yield: 85%.

¹**H NMR (500 MHz, DMSO-d6):** *δ* 11.16 (s, 1H), 8.04 (d, *J* = 7.5 Hz, 2H), 7.76 (d, *J* = 6.7 Hz, 1H), 7.41 (s, 1H), 7.30 (d, *J* = 7.7 Hz, 1H), 7.06 (d, *J* = 7.2 Hz, 1H), 6.83 (d, *J* = 7.5 Hz, 2H), 4.89 (m, 1H), 2.70 (m, 1H), 2.63 (m, 1H), 2.04 (m, 1H), 1.91-1.85 (m, 3H) ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 153.6, 135.7, 135.0, 134.5, 126.6, 126.3, 122.9, 121.1, 117.3, 112.6, 110.7, 45.6, 29.2, 20.4, 19.6 ppm;

HR-MS (ESIpos) m/z: M^+ calcd. for $C_{18}H_{16}N_3O_2Cl_1Na_1[M+Na]^+$: 364.082326; found: 364.082303

6-Chloro-N-(2-nitrophenyl)-2,3,4,9-tetrahydro-1H-carbazol-1-amine (8):

Synthesized according to Method A, $R_f = 0.55$ (hexane/ethy acetate 70:30).

Purification: Over the course of the reaction, the precipitation of a large proportion of the desired coupling product was observed. The complete precipitation could be achieved by using a mixture of hexane/ethyl acetate, yellow solid, Yield: 55%;

¹**H NMR** (**500 MHz**, **DMSO-d6**): δ 11.20 (s, 1H), 8.23 (d, *J* = 7.8 Hz, 1H), 8.12 (d, *J* = 8.6 Hz, 1H), 7.60 (t, *J* = 7.6 Hz, 1H), 7.49 (s, 1H), 7.34 (d, *J* = 8.6 Hz, 1H), 7.30 (d, *J* = 8.6 Hz, 1H), 7.08 (d, *J* = 8.5 Hz, 1H), 6.77 (t, *J* = 7.7 Hz, 1H), 5.22 (d, *J* = 5.7 Hz, 1H), 2.76-2.73 (m, 1H), 2.64-2.61 (m, 1H), 2.16-2.15 (m, 1H), 1.99-1.88 (m, 3H), ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 144.2, 136.8, 134.8, 134.6, 131.3, 127.6, 126.3, 123.1, 121.3, 117.5, 115.8, 114.8, 112.7, 111.1, 46.2, 29.3, 20.2, 20.1 ppm;

HR-MS (ESIpos) m/z: M^+ calcd. for $C_{18}H_{16}N_3O_2Cl_1Na_1[M+Na]^+$: 364.082326; found: 364.082303

6,8-Dimethyl-N-(4-nitrophenyl)-2,3,4,9-tetrahydro-1H-carbazol-1-amine (9):

Synthesized according to Method A, $R_f = 0.63$ (hexane/ethy acetate 70:30).

Purification: Over the course of the reaction, the precipitation of a large proportion of the desired coupling product was observed. The complete precipitation could be achieved by using a mixture of hexane/ethyl acetate. Yellow solid, Yield: 86%.

¹**H NMR (500 MHz, DMSO-d6):** δ 10.71 (s, 1H), 8.03 (d, J = 8.6 Hz, 2H), 7.74 (d, J = 8.0 Hz, 1H), 6.90 (s, 1H), 6.81 (d, J = 8.7 Hz, 2H), 6.52 (s, 1H), 4.91-4.90 (m, 1H), 3.00 (d, J = 15.8 Hz, 1H), 2.89-2.85 (m, 1H), 2.54 (s, 3H), 2.31 (s, 3H), 1.97-1.83 (m, 4H) ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 153.5, 136.6, 135.5, 131.5, 129.9, 129.1, 126.3, 123.3, 121.3, 111.0, 108.8, 45.6, 28.6, 23.1, 21.3, 19.8, 19.5, ppm;

HR-MS (ESIpos) m/z: M^+ calcd. for $C_{20}H_{21}N_3O_2Na_1$ [M+Na]⁺: 358.152592; found: 358.152310

1-(5-Nitroindolin-1-yl)-2,3,4,9-tetrahydro-1H-carbazole (10):

Synthesized according to Method A, $R_f = 0.63$ (hexane/ethy acetate 70:30).

Purification: Over the course of the reaction, the precipitation of a large proportion of the desired coupling product was observed. The complete precipitation could be achieved by using a mixture of hexane/ethyl acetate. Orange solid, Yield: 95%.

¹**H NMR** (**500 MHz**, **DMSO-d6**): δ 10.90 (s, 1H), 7.97 (dd, J = 8.9 Hz , J = 2.4 Hz, 1H), 7.86 (d, J = 2.2 Hz, 1H), 7.42 (d, J = 7.8 Hz, 1H), 7.27 (d, J = 8.0 Hz, 1H), 7.05 (t, J = 7.8 Hz, 1H), 6.97 (t, J = 7.8 Hz, 1H), 6.53 (d, J = 8.9 Hz, 1H), 5.21-5.19 (m, 1H), 3.68-3.63 (q, J = 18.7 Hz , J = 9.3 Hz, 1H), 3.47-3.41 (q, J = 17.8 Hz , J = 8.8 Hz, 1H), 3.05 (t, J = 8.6 Hz, 2H), 2.70-2.64 (m, 2H), 2.09-2.02 (m, 2H), 1.91-1.85 (m, 2H), ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 156.5 (q), 136.3 (q), 136.2 (q), 131.5 (q), 130.7 (q), 126.6 (q), 126.4 (t), 121.1 (t), 120.1 (t), 118.3 (t), 118.0 (t), 111.6 (q), 111.1 (t), 104.0 (t), 49.9 (t), 48.8 (s), 26.3 (s), 26.1 (s), 21.9 (s), 20.4 (s) ppm;

HR-MS (ESIpos) m/z: M^+ calcd. for $C_{20}H_{19}N_3O_2Na_1$ [M+Na]⁺: 356.136948; found: 356.137207.

6-Fluoro-1-(5-nitroindolin-1-yl)-2,3,4,9-tetrahydro-1H-carbazole (11):

Synthesized according to Method A, $R_f = 0.58$ (hexane/ethy acetate 70:30).

Purification: Over the course of the reaction, the precipitation of a large proportion of the desired coupling product was observed. The complete precipitation could be achieved by using a mixture of hexane/ethyl acetate. Orange solid, Yield: 55%.

¹**H NMR (500 MHz, DMSO-d6):** *δ* 11.01 (s, 1H), 7.97 (dd, *J* = 8.9 Hz , *J* = 2.3 Hz, 1H), 7.87 (s, 1H), 7.25 (dd, *J* = 8.8 Hz, *J* = 4.5 Hz, 1H), 7.18 (dd, *J* = 9.8 Hz, *J* = 2.4 Hz, 1H), 6.89 (td, *J* = 9.2 Hz, *J* = 2.4 Hz, 1H), 6.53 (d, *J* = 8.9 Hz, 1H), 5.22-5.19 (m, 1H), 3.65 (q, *J* = 9.3Hz, 1H), 3.41 (q, *J* = 8.8 Hz, 1H), 3.06 (t, *J* = 8.7 Hz, 2H), 2.62-2.61 (m, 2H), 2.06-2.03 (m, 2H), 1.94-1.82 (m, 2H), ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 157.6, 156.5, 155.7, 136.4, 133.8, 132.9, 130.7, 128.8, 128.1, 126.9, 126.8, 126.4, 125.3, 120.2, 112.0, 111.9, 111.8, 109.1, 108.9, 104.0, 102.9, 102.7, 49.9, 48.7, 26.3, 25.9, 21.8, 20.3 ppm;

HR-MS (ESIpos) m/z: M^+ calcd. for $C_{20}H_{18}F_1N_3O_2Na_1$ [M+Na]⁺: 374.127526; found: 374.127686

5-Chloro-1-(5-nitroindolin-1-yl)-2,3,4,9-tetrahydro-1H-carbazole (12):

Synthesized according to Method A, $R_f = 0.60$ (hexane/ethy acetate 70:30).

Purification: Over the course of the reaction, the precipitation of a large proportion of the desired coupling product was observed. The complete precipitation could be achieved by using a mixture of hexane/ethyl acetate, Orange solid, Yield: 70%;

¹**H NMR** (**500 MHz**, **DMSO-d6**): δ 11.34 (s, 1H), 7.97 (dd, J = 8.9 Hz , J = 1.8 Hz, 1H), 7.84 (s, 1H), 7.43 (d, J = 7.8 Hz, 1H), 7.15 (d, J = 7.6 Hz, 1H), 6.99 (t, J = 7.7 Hz, 1H), 6.49 (d, J = 8.9 Hz, 1H), 5.16-5.15 (m, 1H), 3.68-3.62 (q, J = 9.2 Hz, 1H), 3.48-3.42 (q, J = 8.8 Hz, 1H), 3.05 (t, J = 8.6 Hz, 2H), 2.74-2.67 (m, 2H), 2.08-1.92 (m, 2H), 1.86-1.85 (m, 2H), ppm; ¹³C NMR (125 MHz, DMSO-d6): δ 156.4, 136.0, 133.1, 132.8, 130.8, 128.6, 126.5, 121.0, 120.0, 119.4, 117.1, 115.6, 113.2, 103.7, 49.3, 49.2, 26.4, 26.2, 21.2, 20.4 ppm; **HR-MS** (ESIpos) m/z: M⁺ calcd. for C₂₀H₁₈N₃Cl₁O₂Na₁ [M+Na]⁺: 390.097970; found: 390.097825

Methyl 1-(6-chloro-2,3,4,9-tetrahydro-1H-carbazol-1-yl)-1,2,3,4-tetrahydroquinoline-6-carboxylate (13):

Synthesized according to Method A, $R_f = 0.48$ (hexane/ethy acetate 70:30).

Purification: Over the course of the reaction, the precipitation of a large proportion of the desired coupling product was observed. The complete precipitation could be achieved by using a mixture of hexane/ethyl acetate. White solid, Yield: 55%.

¹H NMR (500 MHz, DMSO-d6): δ 11.07 (s, 1H), 7.63 (m (br), 1H), 7.56 (s, 1H), 7.45 (s 1H), 7.26 (d, J = 8.5 Hz, 1H), 7.03 (dd, J = 8.5 Hz, J = 1.1 Hz, 1H), 6.98 (m, br, 1H), 5.40 (m, br, 1H), 3.75 (s, 3H), 3.04-2.91 (m, 2H), 2.75-2.66 (m, 4H), 2.09-1.70 (m, 6H), ppm; ¹³C NMR (125 MHz, DMSO-d6): δ 166.3, 134.6, 130.2, 129.0, 127.9, 122.9, 121.8, 120.7, 117.1, 115.3, 112.5, 109.7, 109.6, 51.1, 27.7, 21.8, 20.8, 20.3, ppm; HR-MS (ESIpos) m/z; M⁺ calcd. for C₂₃H₂₃Cl₁N₂O₂Na₁ [M+Na]⁺: 417.134022; found:

417.134037

3-Methyl-*N*-(4-nitrophenyl)-2,3,4,9-tetrahydro-1H-carbazol-1-amine (14):

Synthesized according to Method A, $R_f = 0.50$ (hexane/ethy acetate 70:30) as a mixture of diastereomers (*trans:cis* 83:17) in 67% yield. The ratio of diastereomers was determined by ¹H-NMR analysis of the crude reaction mixture, the major diastereomer was assigned as *trans* based on comparison with product **20**.

Purification: Over the course of the reaction, the precipitation of a large proportion of the desired coupling product was observed. The complete precipitation could be achieved by using a mixture of hexane/ethyl acetate. Yellow solid, Yield: 67%.

Major Diastereomer (*trans*): ¹**H NMR (500 MHz, DMSO-d6)**: 10.98 (s, 1H), 8.04 (d, *J* = 8.7 Hz, 2H), 7.77 (d, *J* = 7.8, 1H), 7.45 (d, *J* = 7.8, 1H), 7.30 (d, *J* = 8.1, 1H), 7.07 (t, *J* = 7.4, 1H), 6.97 (t, *J* = 7.4 Hz, 1H), 6.81 (d, *J* = .8.8 Hz, 2H), 4.-94 (br, m, 1H), 2.87 (dd, *J* = 15.3 Hz, *J* = 4.5 Hz, 1H), 2.22 (dd, *J* = 15.3, *J* = 10.4, 1H), 2.3-2.10 (m, 1H), 1.93 (d, *J* = 13.2 Hz, 1H), 1.72 (dt, *J* = 13.0 Hz, *J* = 4.3 Hz, 1H) 1.10 (d, *J* = 6.6 Hz, 3H)ppm;

Minor Diastereomer (*cis*): ¹**H NMR** (**500 MHz, DMSO-d6**): 10.85 (s, 1H), 8.04-803 (m, 2H), 7.79 (d, *J* = 8.8, 1H), 7.40 (d, *J* = 7.7, 1H), 7.31-7.29 (m, 1H), 7.06-7.02 (m, 1H), 6.97-6.94 (m, 1H), 6.84-6.81 (m, 2H), 5.11-5.09 (br, m, 1H), 2.87-2.81 (m, 1H), 2.28-2.19 (m, 2H), 2.3-2.12-2.10 (m, 1H), 1.46-1.39 (3, 1H), 1.14 (d, *J* = 6.6 Hz, 3H)ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 153.2, 136.4, 135.5, 132.4, 126.3, 126.2, 121.3, 118.2, 118.0, 111.1,111.0, 45.1, 37.2, 29.2, 25.1, 21.6 ppm;

HR-MS (ESIpos) m/z: M^+ calcd. for $C_{19}H_{19}N_3O_2Na_1$ [M+Na]⁺: 344.136948; found: 344.137078

N-(4-Nitrophenyl)-3-phenyl-2,3,4,9-tetrahydro-1H-carbazol-1-amine (15):

Synthesized according to Method A, reaction time was 12 h, $R_f = 0.60$ (hexane/ethy acetate 70:30).

Purification: Over the course of the reaction, the precipitation of a large proportion of the desired coupling product was observed. The complete precipitation could be achieved by using a mixture of hexane/ethyl acetate, yielding a yellow solid as a mixture of diastereomers (*trans:cis* 91:09) in 67% yield. The ratio of diastereomers was determined by ¹H-NMR analysis of the crude reaction mixture. The major diastereomer could be isolated via column chromatography (silica gel, hexane/ethylacetate/triethylamine 90:5:5) in 45% yield.

Major Diastereomer (trans):

¹**H NMR** (**500 MHz, DMSO-d6**): δ 11.08 (s, 1H), 8.03 (d J = 9.0 Hz, 2H), 7.91(d, J = 7.7, 1H), 7.48(d, J = 7.8, 1H), 7.35-7.31 (m, 5H), 7.24-7.21 (m, 1H), 7.10 (t, J =.8.1 Hz), 6.90 (t, J =.7.8 Hz), 6.84 (d, J = 9.1, 2H), 5.06-5.05 (m, 1H), 3.28-3.22 (m, 1H), 3.05 (dd, J = 15.4, J = 4.7, 1H), 2.74 (dd, J = 15.4, J = 11.3, 1H), 2.31 (dt, J = 13.0, J = 4.2, 1H), 2.10 (d, J = 13.4, 1H) ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 153.1, 145.9, 136.4, 135.7, 132.1, 128.4, 127.0, 126.8, 126.3, 126.2, 126.1, 121.5, 118.4, 118.1, 111.1, 111.0, 45.2, 36.34, 35.7, 29.3 ppm;

HR-MS (ESIpos) m/z: M^+ calcd. for $C_{24}H_{21}N_3O_2Na_1$ [M+Na]⁺: 406.152595; found: 406.152717

4-(3-Methyl-2,3,4,9-tetrahydro-1H-carbazol-1-ylamino)benzonitrile (16):

Synthesized according to Method A, $R_f = 0.50$ (hexane/ethy acetate 70:30).

Purification: Over the course of the reaction, the precipitation of a large proportion of the desired coupling product was observed. The complete precipitation could be achieved by using a mixture of hexane/ethyl acetate, yielding a white solid as a mixture of diastereomers

(*trans:cis* 65:35) in 80% yield. The ratio of diastereomers was determined by ¹H-NMR analysis of the crude reaction mixture. The major diastereomer could be isolated via column chromatography (silica gel, hexane/ethylacetate/triethylamine 90:5:5) in 47% yield.

Major Diastereomer (trans):

¹**H NMR** (**500 MHz**, **DMSO-d6**): 10.93 (s, 1H), 7.48 (d, J = 8.7 Hz, 2H), 7.42 (d, J = 7.8, 1H), 7.27 (dt, J = 7.8, J = 0.8, 1H), 7.13 (d, J = 8.0, 1H), 7.06 (td, J = 8.1, J = 1.1, 1H), 6.96 (td, J = 7.9 Hz, J = 0.9, 1H), 6.79 (d, J = .8.9 Hz, 2H), 4.87-4.84 (m, 1H), 2.85 (dd, J = 15.3 Hz, J = 4.5 Hz, 1H), 2.21 (dd, J = 15.1, J = 10.5, 1H), 2.13-2.09 (m, 1H), 1.91 (d, J = 13.2 Hz, 1H), 1.67 (dt, J = 13.1 Hz, J = 4.4 Hz, 1H), 1.09 (d, J = 6.5 Hz, 3H) ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 150.9, 136.4, 133.4, 132.9, 126.2, 121.2, 120.7, 118.2, 117.9, 111.1, 110.9, 95.4, 44.7, 36.7, 29.3, 25.1, 21.6, ppm;

HR-MS (ESIpos) m/z: M⁺ calcd. for C₂₀H₁₉N₃Na₁ [M+Na]⁺: 324.147117; found: 324.146804

1-Saccharinyl-2,3,4,9-tetrahydro-1H-carbazole (17):

Synthesized according to Method A (without TFA), $R_f = 0.50$ (hexane/ethy acetate 70:30).

Purification: The desired product was precipitated by using a mixture of hexane/ethyl acetate. Yield: 52%.

¹**H NMR (500 MHz, DMSO-d6):** δ 10.80 (s, 1H), 8.28 (d, J = 7.6 Hz, 1H), 8.11 (d, J = 7.6 Hz, 1H), 8.05 (t, J = 7.6 Hz, 1H), 8.00 (t, J = 7.6 Hz, 1H), 7.43 (d, J = 7.54 Hz, 1H), 7.26 (d, J = 7.9 Hz, 1H), 7.06 (t, J = 7.6 Hz, 1H), 6.98 (t, J = 7.5 Hz, 1H), 5.71 (t, J = 7.6 Hz, 1H), 2.71 (m, 2H), 2.44 (q, J = 8.3 Hz, 1H), 2.28-2.26 (m, 1H), 2.19-2.18 (m, 1H), 1.96-1.90 (m, 1H) ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 158.2 , 136.9, 136.2, 135.5, 135.0, 129.7, 126.6, 124.9, 121.2, 121.1, 118.3, 118.0, 111.7, 111.1, 47.6, 28.4, 22.2, 20.2 ppm;

HR-MS (ESIpos) m/z: M^+ calcd. for $C_{19}H_{16}N_2O_3S_1Na_1$ [M+Na]⁺: 375.077386; found: 375.077706

N-(4-Fluorophenyl)-2,3,4,9-tetrahydro-1H-carbazol-1-amine (18):

Synthesized according to Method B, $R_f = 0.79$ (hexane/ethy acetate 70:30).

Purification: The crude product was purified via column chromatography (silica gel,

hexane/ethylacetate/triethylamine 90:5:5) to afford the desired product as white solid, Yield: 65%.

¹**H NMR (500 MHz, DMSO-d6):** δ 10.83 (s, 1H), 7.41 (d, *J* = 7.8 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.04 (t, *J* = 7.9 Hz, 1H), 6.97-6.92 (m, 3H), 6.73 (dd, *J* = 8.9 Hz, *J* = 4.6 Hz, 2H), 5.88 (d, *J* = 8.9 Hz, 1H), 4.74-4.71 (m, 1H), 2.73-2.68 (m, 1H), 2.64-2.59 (m, 1H), 1.98-1.93 (m, 2H), 1.86-1.77 (m, 2H), ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 155.0, 153.2, 144.5, 136.0, 134.8, 126.6, 120.8, 118.0, 117.7, 115.3, 115.1, 113.4, 113.3, 111.0, 110.0, 46.3, 28.8, 20.8, 19.8 ppm;

HR-MS EI (DE) m/z: M⁺ calcd. for C₁₈H₁₇N₂F₁ [M]⁺: 280.137580; found: 280.137313

Phenyl (4-(2,3,4,9-tetrahydro-1H-carbazol-1-ylamino)phenyl)methanone (19):

Synthesized according to Method A, $R_f = 0.62$ (hexane/ethy acetate 70:30).

Purification: Over the course of the reaction, the precipitation of a large proportion of the desired coupling product was observed. The complete precipitation could be achieved by using a mixture of hexane/ethyl acetate, white solid, Yield: 70%.

¹**H NMR (500 MHz, DMSO-d6):** δ 10.91 (s, 1H), 7.64-7.58 (m, 5H), 7.53 (t, J = 7.6 Hz, 2H), 7.43 (d, J = 7.8 Hz, 1H), 7.30 (d, J = 8.0 Hz, 1 H), 7.18 (d, J = 8.3 Hz, 1H), 7.06 (t, J = 7.5 Hz, 1H), 6.97 (t, J = 7.4 Hz, 1H), 6.82 (d, J = 8.8 Hz, 2H), 4.93-4.92 (m, 1H), 2.76-2.71 (m, 1H), 2.65-2.61 (m, 1H), 2.05-1.84 (m, 4H), ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 193.3, 152.0, 139.0, 136.1, 133.6, 132.5, 131.1, 128.8, 128.2, 126.5, 123.7, 121.0, 118.2, 117.9, 111.1, 110.5, 45.5, 29.2, 20.7, 19.7, ppm;

HR-MS (ESIpos) m/z: M^+ calcd. for $C_{25}H_{22}N_2Na_1O_1$ [M+Na]⁺: 389.162429; found: 389.162734

1-(4-Cyanophenylamino)-2,3,4,9-tetrahydro-1H-carbazole-6-carbonitrile (20):

Synthesized according to Method B, reaction time was 12 h, $R_f = 0.43$ (hexane/ethy acetate 70:30).

Purification: Over the course of the reaction, the precipitation of a large proportion of the desired coupling product was observed. The complete precipitation could be achieved by using a mixture of hexane/ethyl acetate. White solid, Yield: 50%.

¹**H NMR (500 MHz, DMSO-d6):** δ 11.56 (s, 1H), 7.99 (s, 1H), 7.49 (d, *J* = 8.3 Hz, 2H), 7.42 (q, *J* = 18.6 Hz, *J* = 8.4 Hz, 1H), 7.16 (d, *J* = 8.4 Hz, 1H), 6.81 (d, *J* = 8.4 Hz, 2H), 4.94-4.92 (m, 1H), 2.76-2.73 (3, 1H), 2.66-2.63 (m, 1H), 2.04-1.99 (m, 1H), 1.91-1.82 (m, 3H) ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 151.2 , 137.9, 136.5, 133.5, 126.4, 123.9, 123.7, 120.9, 120.6, 112.3, 111.8, 100.1, 95.8, 45.2, 28.9, 20.3, 19.5 ppm;

HR-MS (ESIpos) m/z: M⁺ calcd. for C₂₀H₁₆N₄Na₁ [M+Na]⁺: 335.126711; found: 335.126902

4-(6-Chloro-2,3,4,9-tetrahydro-1H-carbazol-1-ylamino)benzonitrile (21):

Synthesized according to Method B, $R_f = 0.60$ (hexane/ethy acetate 70:30).

Purification: Over the course of the reaction, the precipitation of a large proportion of the desired coupling product was observed. The complete precipitation could be achieved by using a mixture of hexane/ethyl acetate. White solid, Yield: 88%.

¹**H NMR (500 MHz, DMSO-d6):** *δ* 11.12 (s, 1H), 7.48 (t, *J* = 8.5 Hz, 3H), 7.30 (d, *J* = 8.5 Hz, 1H), 7.15 (d, *J* = 8.4 Hz, 1H), 7.05 (dd, *J* = 8.5 Hz, *J* = 1.8Hz, 1H), 6.81 (d, *J* = 8.7 Hz, 2H), 4.90-4.88 (m, 1H), 2.71-2.68 (m, 1H), 2.62-2.58 (m, 1H), 2.03-1.98 (m, 1H), 1.94-1.87 (m, 1H) 1.83-1.81 (m, 2H) ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 151.2 , 135.6, 134.5, 133.4, 127.6, 122.8, 120.9, 120.6, 117.2, 112.6, 110.5, 95.6, 45.3, 29.0, 20.4, 19.7 ppm;

HR-MS (ESIpos) m/z: M^+ calcd. for $C_{19}H_{16}N_3Cl_1O_2Na_1[M+Na]^+$: 344.092495; found: 344.092205

4-(6-Bromo-2,3,4,9-tetrahydro-1H-carbazol-1-ylamino)benzonitrile (22):

Synthesized according to Method A, reaction time was 12 h, $r_f = 0.44$ (EtOAc/Isohexane, 30:70).

Purification: Over the course of the reaction, the precipitation of a large proportion of the desired coupling product was observed. The complete precipitation could be achieved by using a mixture of hexane/ethyl acetate. Off white solid, Yield: 80%.

¹**H NMR** (500 MHz, DMSO-d6): δ 11.14 (s, 1H), 7.61 (s, 1H), 7.49 (d, *J* = 8.5 Hz, 2H), 7.26 (d, *J* = 8.5 Hz, 2H), 7.16 (t, *J* = 8.6 Hz, 2 H), 6.81 (d, *J* = 8.6 Hz, 2H), 4.88-4.90 (m, 1H), 2.68-2.71 (m, 1H), 2.58-2.61 (m, 1H), 1.98-2.03 (m, 1H), 1.89-1.92 (m, 1H), 1.81-1.83 (m, 2H) ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 151.2 (q), 135.4.0 (q), 134.7 (q), 133.4 (t), 128.4 (t), 123.5 (t), 120.7 (q), 120.2 (t), 113.0 (t), 110.8 (q), 110.5 (q), 95.7 (q), 45.3 (q), 29.0 (s), 20.4 (s), 19.7 (s) ppm;

HRMS-(EI) (m/z): M+ calcd for C₁₉H₁₆Br₁N₃Na₁, 388.041988; found 388.041996.

4-((3-Methyl-1H-indol-2-yl)(phenyl)methylamino)benzonitrile (23):

Synthesized according to Method B, $R_f = 0.45$ (hexane/ethy acetate 70:30).

Purification: The crude product was purified via column chromatography (aluminium oxide, hexane/ethylacetate 90:10) to afford the desired product as white solid, Yield: 67%;

¹**H NMR (500 MHz, DMSO-d6):** δ 10.74 (s, 1H), 7.46-7.41 (m, 5H), 7.36 (t, J = 7.3 Hz, 2H), 7.32 (d, J = 5.0 Hz, 1H), 7.28 (d, J = 7.6 Hz, 2H), 7.02 (t, J = 7.4 Hz, 1H), 6.95 (t, J = 7.4 Hz, 1H), 6.74 (d, J = 8.1 Hz, 2H), 5.93 (d, J = 4.9 Hz, 1H), 2.24 (s, 3H), ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 151.3, 140.7, 135.4, 134.4, 133.1, 128.6, 128.5, 127.3, 127.2, 120.9, 120.4, 118.2, 117.9, 112.9, 111.1, 106.1, 96.7, 53.8, 8.4 ppm;

HR-MS (ESIpos) m/z: M⁺ calcd. for C₂₀H₂₁N₃Na₁ [M+Na]⁺: 360.147112; found: 360.147287

4-(1-(3-Ethyl-1H-indol-2-yl)propylamino)benzonitrile (24):

Synthesized according to Method B, $R_f = 0.45$ (hexane/ethy acetate 70:30).

Purification: The crude product was purified via column chromatography (florisil,

hexane/ethylacetate/triethylamine 90:10) to afford the desired product as white solid, Yield: 60%.

¹**H NMR (500 MHz, DMSO-d6):** δ 10.61 (s, 1H), 7.43 (d, *J* = 8.11 Hz, 1H), 7.39 (d, *J* = 8.8 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 1H), 7.00 (t, *J* = 7.2 Hz, 1H), 6.93 (t, *J* = 7.2 Hz, 1H), 6.90 (d, *J* = 6.2 Hz, 1H), 6.6 (d, *J* = 6.7 Hz, 2H), 4.57 (q, *J* = 6.8 Hz, 1H), 2.80 (qd, *J* = 7.3 Hz, *J* = 3.3 Hz, 2H), 1.98 (s, *J* = 7.2 Hz, 1H), 1.86 (s, *J* = 7.2 Hz, 1H), 1.17 (t, *J* = 7.5 Hz, 3H), 0.92 (t, *J* = 7.4 Hz, 3H), ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 151.5, 135.4, 134.7, 133.1, 127.7, 120.5, 118.1, 118.0, 112.7, 112.3, 111.0, 96.0, 51.1., 28.7, 16.9, 15.7, 10.9 ppm;

HR-MS (ESIpos) m/z: M⁺ calcd. for C₂₀H₂₁N₃Na₁ [M+Na]⁺: 326.162768; found: 326.162661

6-Bromo-N-(4-fluorophenyl)-2,3,4,9-tetrahydro-1H-carbazol-1-amine (25):

Synthesized according to Method B, reaction time was 12 h, $R_f = 0.78$ (hexane/ethy acetate 70:30).

Purification: The crude product was purified via column chromatography (silica gel,

hexane/ethylacetate/triethylamine 90:5:5) to afford the desired product as white solid, Yield: 55%;

¹**H NMR (500 MHz, DMSO-d6):** δ 11.09 (s, 1H), 7.58 (d, *J* = 1.7 Hz, 1H), 7.25 (d, *J* = 8.5 Hz, 1H), 7.14 (dd, *J* = 8.5 Hz, *J* = 1.8 Hz, 1H), 6.94 (t, *J* = 9.8 Hz, *J* = 8.9 Hz, 2H), 6.72 (dd, *J* = 4.59 Hz, *J* = 8.9 Hz, 2H), 5.91 (d, *J* = 8.8 Hz, 1H), 4.75-4.74 (m, 1H), 2.69-2.65 (m, 1H), 2.61-2.57 (m, 1H), 2.00-1.91 (m, 2H), 1.79-1.77 (m, 3H) ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 155.1, 153.3, 144.4, 136.7, 134.7, 128.5, 123.2, 120.1, 115.3, 115.2, 113.5., 113.4, 113.0, 110.6, 110.0, 46.4, 28.8, 20.5, 19.8 ppm;

6-Bromo-N-(4-chlorophenyl)-2,3,4,9-tetrahydro-1H-carbazol-1-amine (26):

Synthesized according to Method B, reaction time was 12 h, $R_f = 0.78$ (hexane/ethy acetate 70:30).

Purification: The crude product was purified via column chromatography (Aluminium oxide, hexane/ethylacetate 90:5) to afford the desired product as white solid, Yield: 70%.

¹**H NMR (500 MHz, DMSO-d6):** *δ* 11.11 (s, 1H), 7.59 (d, *J* = 1.8 Hz, 1H), 7.26 (d, *J* = 8.5 Hz, 1H), 7.15 (dd, *J* = 8.5 Hz, *J* = 1.9 Hz , 1H), 7.12 (d, *J* = 8.8 Hz, 2H), 6.74 (d, *J* = 8.9 Hz, 2H), 6.23 (d, *J* = 8.8 Hz, 1H), 4.77-4.75 (m, 1H), 2.69-2.66 (m, 1H), 2.62-2.57 (m, 1H), 1.99-1.91 (m, 2H), 1.81-1.78 (m, 2H) ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 146.7, 136.3, 134.7, 128.6, 128.4, 123.2, 120.1, 118.9, 113.9, 113.0, 110.7, 110.1, 45.9, 28.8, 20.5, 19.8, ppm;

HR-MS (ESIpos) m/z: M⁺ calcd. for C₁₈H₁₆Br₁Cl₁N₂ [M]⁺: 374.018554; found: 374.018317

6-Chloro-N-(4-(trifluoromethyl)phenyl)-2,3,4,9-tetrahydro-1H-carbazol-1-amine (27):

Synthesized according to Method B, $R_f = 0.78$ (hexane/ethy acetate 70:30).

Purification: The crude product was purified via column chromatography (silica gel,

hexane/ethylacetate/triethylamine 90:5:5) to afford the desired product as white solid, Yield: 68%.

¹**H NMR (500 MHz, DMSO-d6):** *δ* 11.11 (s, 1H), 7.46 (d, *J* = 1.9 Hz, 2H), 7.40 (d, *J* = 8.5 Hz, 1H), 7.31 (d, *J* = 8.5 Hz, 1H), 7.05 (dd, *J* = 8.5 Hz, *J* = 2.0 Hz , 1H), 6.83 (t, *J* = 8.2 Hz, 3H), 4.88-4.86 (m, 1H), 2.71-2.67 (m, 1H), 2.63-2.61 (m, 1H), 2.02-1.99 (m, 1H), 1.94-1.92 (m, 1H), 1.85-1.81 (m, 2H) ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 150.7, 136.0, 134.5, 127.7, 126.3, 126.2, 125.2 (quatret), 122.8, 120.8, 117.2, 115.1 (quatret), 112.6, 111.7, 110.4, 45.5, 28.9, 20.5, 19.7, ppm;

HR-MS (ESIpos) m/z: M^+ calcd. for $C_{19}H_{16}Cl_1F_3N_2Na_1$ [M+Na]⁺: 387.084631; found: 387.084784

6-Bromo-N-phenyl-2,3,4,9-tetrahydro-1H-carbazol-1-amine (28):

Synthesized according to Method B, reaction time was 12 h, $R_f = 0.79$ (hexane/ethy acetate 70:30).

Purification: The crude product was purified via column chromatography (silica gel,

hexane/ethylacetate/triethylamine 90:5:5) to afford the desired product as white solid, Yield: 60%

¹**H NMR (500 MHz, DMSO-d6):** *δ* 11.10 (s, 1H), 7.59 (d, *J* = 1.7 Hz, 1H), 7.26 (d, *J*=8.56 Hz, 1 H), 7.15 (dd, *J*= 8.51 Hz , *J*=1.90 Hz, 1 H), 7.10 (t, *J* = 7.4 Hz, 2H), 6.73 (d, *J* = 7.9 Hz, 2H), 6.56 (t, *J* = 7.3 Hz, 1H), 5.97 (d, *J* = 8.9 Hz, 1H), 4.79-4.77 (m, 1H), 2.70-2.66 (m, 1H), 2.62-2.57 (m, 1H), 2.02-1.93 (m, 2H), 1.85-1.77 (m, 2H), ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 147.8, 136.8, 134.7, 128.5, 123.1, 120.1, 115.8, 113.0, 112.6, 110.6, 110.0, 45.9, 28.9, 20.5, 19.9, ppm;

HR-MS (ESIpos) m/z: M^+ calcd. for $C_{18}H_{17}Br_1N_2Na_1$ [M+Na]⁺: 363.046740; found: 363.046458

Characterization of hydroperoxides

Low solubility and stability (in acidic and basic solvents) are the main problems associated with these hydroperoxides. DMSO was found to be a suitable solvent for the measurement of NMR spectra. However, in DMSO these hydroperoxides are reduced to the corresponding alcohol (see above). Therefore, it was not possible to measure clean carbon spectra for some of these compounds.

4a-Hydroperoxy-2,3,4,4a-tetrahydro-1H-carbazole (3):

Synthesized according to the general procedure for the synthesis of hydroperoxides.

Purification: The crude product was purified by simple filtration as pink solid in quantitative yield.

¹**H NMR** (**500 MHz, DMSO-d6**): δ 11.66 (s, 1H), 7.42 (dd, J = 10.2 Hz , J = 7.5 Hz, 2H), 7.34 (t, J = 7.5 Hz, 1H), 7.20 (t, J = 7.4 Hz , 1H), 2.71-2.68 (m, 2H), 2.50-2.47 (m, 1H), 2.13(d, J = 13.5 Hz, 1H), 1.76 (ddt, J = 27.0 Hz, J = 13.5 Hz, J = 3.5 Hz, 1H), 1.55 (d, J =13.4 Hz, 1H), 1.39-1.29 (m, 1H), 1.17 (dt, J = 14.2 Hz, J = 4.1 Hz, 1H), ppm; ¹³C NMR (125 MHz, DMSO-d6): δ 184.1, 153.9, 138.9, 129.1, 125.0, 122.7, 119.7, 91.1, 35.3, 29.2, 27.9, 20.3, ppm; HR-MS EI (DE) m/z: M⁺ calcd. for C₁₂H₁₃N₁O₂[M]⁺: 203.094626; found: 203.094831

6-Chloro-4a-hydroperoxy-2,3,4,4a-tetrahydro-1H-carbazole:

Synthesized according to the general procedure for the synthesis of hydroperoxides.

Purification: The crude product was purified by simple filtration as pink solid in quantitative yield.

¹**H NMR (500 MHz, DMSO-d6):** *δ* 11.80 (s, 1H), 7.48 (d, *J* = 1.2 Hz, 1H), 7.43-7.40 (m, 2H), 2.71-2.69 (m, 2H), 2.50-2.49 (m, 1H), 2.13(d, *J* = 12.0 Hz, 1H), 1.74 (qt, *J* = 13.5 Hz, *J* = 3.5 Hz, 1H), 1.55 (d, *J* = 13.4 Hz, 1H), 1.39-1.30 (m, 1H), 1.20 (dt, *J* = 14.2 Hz, *J* = 4.1 Hz, 1H), ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 185.2, 152.7, 141.1, 129.8, 129.0, 123.2, 121.0, 91.4, 35.1, 29.3, 27.9, 20.2 ppm;

HR-MS (ESIpos) m/z: M^+ calcd. for $C_{12}H_{12}N_1O_2Cl_1Na_1$ [M+Na]⁺: 260.044876; found: 260.044990

5-Chloro-4a-hydroperoxy-2,3,4,4a-tetrahydro-1H-carbazole

Synthesized according to general procedure for the synthesis of hydroperoxide.

Purification: The crude product was purified by simple filtration as pink solid in quantitative yield.

¹**H NMR (500 MHz, DMSO-d6):** *δ* 11.82 (s, 1H), 7.40 (t, *J* = 7.1 Hz, 2H), 7.63 (t, *J* = 7.6 Hz, 1H), 2.76-2.72 (m, 2H), 2.48-2.45 (m, 1H), 2.16-2.13 (m, 1H), 1.75 (qt, *J* = 13.5 Hz, 3.5 Hz, 1H), 1.56 (d, *J* = 13.4 Hz, 1H), 1.26-1.21 (m, 1H), 1.21 (dt, *J* = 14.2 Hz, *J* = 4.4 Hz, 1H), ppm;

HR-MS (ESIpos) m/z: M^+ calcd. for $C_{12}H_{12}N_1O_2Cl_1Na_1 [M+Na]^+$: 260.044876; found: 260.044990

4a-Hydroperoxy-6,8-dimethyl-2,3,4,4a-tetrahydro-1H-carbazole

Synthesized according to general procedure for the synthesis of hydroperoxide.

Purification: The crude product was purified by simple filtration as pink solid in quantitative yield.

¹**H NMR (500 MHz, DMSO-d6):** *δ* 10.35 (s, 1H), 6.82 (s, 1H), 6.45 (s, 1H), 2.86 (m, 2H), 2.63 (m, 2H), 2.49 (s, 3H), 2.28 (s, 3H), 1.56 (d, *J* = 13.2 Hz, 1H), 1.77-1.75 (m, 4H), ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 136.0, 132.7, 128.6, 128.3, 124.1, 121.0, 108.3, 108.2, 23.5, 23.1, 22.9, 22.4, 21.2, 19.4, ppm;

HR-MS (ESIpos) m/z: M^+ calcd. for $C_{14}H_{17}N_1O_2Na_1$ [M+Na]⁺: 254.115174; found: 254.115345

4a-Hydroperoxy-3-methyl-2,3,4,4a-tetrahydro-1H-carbazole:

Synthesized according to the general procedure for the synthesis of hydroperoxides.

Purification: The crude product was purified by simple filtration as pink solid in quantitative vield.

¹**H NMR (500 MHz, DMSO-d6):** δ 11.77 (s, 1H), 7.40 (t, *J* = 7.7 Hz, 2H), 7.34 (dt, , *J* = 7.5 Hz, *J* = 1.0 Hz, 1H), 7.20 (t, *J* = 7.4 Hz, 1H), 2.76 (dt, , *J* = 13.2 Hz, *J* = 5.4 Hz 1H), 2.65-2.62 (m, 1H), 2.41(d, *J* = 14.4 Hz, 1H), 2.08-2.06 (m, 2H), 1.09 (dq, *J* = 13.4 Hz, *J* = 4.1 Hz, 1H), 0.94 (d, *J* = 14.4 Hz, 1H), 0.89 (d, *J* = 6.5 Hz, 3H), ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 184.3, 154.0, 138.8, 129.1, 125.1, 122.6, 119.7, 91.2, 42.9, 36.1, 28.5, 26.9, 20.4, ppm;

HR-MS (ESIpos) m/z: M^+ calcd. for $C_{13}H_{15}N_1O_2Na_1$ [M+Na]⁺: 240.099500; found: 240.099752

4a-Hydroperoxy-3-phenyl-2,3,4,4a-tetrahydro-1H-carbazole:

Synthesized according to the general procedure for the synthesis of hydroperoxides.

Purification: The crude product was purified by simple filtration as pink solid in quantitative yield.

¹**H NMR (500 MHz, DMSO-d6):** δ 11.77 (s, 1H), 7.40 (t, J = 7.7 Hz, 2H), 7.34 (dt, J = 7.5 Hz, J = 1.0 Hz, 1H), 7.20 (t, J = 7.4 Hz, 1H), 2.76 (dt, J = 13.2 Hz, J = 5.4 Hz 1H), 2.65-

2.62 (m, 1H), 2.41(d, *J* = 14.4 Hz, 1H), 2.08-2.06 (m, 2H), 1.09 (dq, *J* = 13.4 Hz, *J* = 4.1 Hz, 1H), 0.94 (d, *J* = 14.4 Hz, 1H), 0.89 (d, *J* = 6.5 Hz, 3H), ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 183.3, 154.1, 144.0, 138.5, 139.3, 128.4, 127.0, 126.3, 125.2, 122.9, 119.8, 91.1, 41.4, 38.1, 35.5, 28.9, ppm;

HR-MS (ESIpos) m/z: M^+ calcd. for $C_{18}H_{17}N_1O_2Na_1$ [M+Na]⁺: 302.115151; found: 302.115128

4a-Hydroperoxy-2,3,4,4a-tetrahydro-1H-carbazole-6-carbonitrile:

Synthesized according to the general procedure for the synthesis of hydroperoxides, but using a 500 watt halogen lamp at -40°C.

Purification: The crude product was purified by simple filtration as pink solid in quantitative yield.

¹**H NMR (500 MHz, DMSO-d6):** δ 11.88 (s, 1H), 7.1 (s, 1H), 7.87 (d, *J* = 7.9 Hz, 1H), 7.61 (d, *J* = 7.9 Hz, 1H), 2.77-2.74 (m, 2H), 2.53-2.52 (m, 1H), 2.16 (d, *J* = 11.9 Hz, 1H), 1.75 (q, *J* = 10.2 Hz, 1H), 1.57 (d, *J* = 13.0 Hz, 1H), 1.41-1.32 (m, 1H), 1.20 (dt, *J* = 14.2 Hz, *J* = 4.0 Hz, 1H), ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 188.9, 157.6 140.0, 134.6, 126.5, 120.8, 119.1, 107.5, 93.3, 29.5, 27.9, 20.1 ppm;

HR-MS (ESIpos) m/z: M^+ calcd. for $C_{13}H_{12}N_2O_2Na_1$ [M+Na]⁺: 251.07097; found: 251.079211

6-Bromo-4a-hydroperoxy-2,3,4,4a-tetrahydro-1H-carbazole:

Synthesized according to the general procedure for the synthesis of hydroperoxides.

Purification: The crude product was purified by simple filtration as pink solid in quantitative yield.

¹**H NMR (500 MHz, DMSO-d6):** δ 11.78 (s, 1H), 7.41 (dd, J = 8.1 Hz, J = 4.5 Hz , 1H), 7.29 (d, J = 7.7 Hz, 1H), 7.16 (t, J = 9.0 Hz, 1H), 2.70-2.67 (m, 2H), 2.50-2.46 (m, 1H), 2.12 (d, J

= 12.2 Hz, 1H), 1.74 (q, *J* = 13.5 Hz, 1H), 1.56 (d, *J* = 13.2 Hz, 1H), 1.38-1.30 (m, 1H), 1.20 (dt, *J* = 14.2 Hz, *J* = 4.0 Hz, 1H), ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 184.5, 184.4, 161.3, 159.4, 150.0, 141.1, 141.0, 120.6, 120.5, 115.4, 115.2, 110.9, 110.6, 91.4, 35.1, 29.2, 27.9, 20.2, ppm;

HR-MS (ESIpos) m/z: M^+ calcd. for $C_{12}H_{12}Br_1N_1O_2Na_1$ [M+Na]⁺: 303.994376; found: 303.994445

6-Fluoro-4a-hydroperoxy-2,3,4,4a-tetrahydro-1H-carbazole:

Synthesized according to the general procedure for the synthesis of hydroperoxides.

Purification: The crude product was purified by simple filtration as pink solid in quantitative yield.

¹**H NMR (500 MHz, DMSO-d6):** δ 11.81 (s, 1H), 7.61 (s , 1H), 7.54 (d, J = 8.10 Hz, 1H), 7.37 (d, J = 8.1 Hz, 1H), 2.69 (dd, J = 8.7 Hz, J = 3.7 Hz, 2H), 2.50-2.48 (m, 1H), 2.12 (d, J = 12.3 Hz, 1H), 1.74 (q, J = 13.5 Hz, 1H), 1.55 (d, J = 13.1 Hz, 1H), 1.36-1.32 (m, 1H), 1.21 (dt, J = 14.2 Hz, J = 3.8 Hz, 1H), ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 185.0, 153.0, 141.4, 131.9, 125.9, 121.5, 118.1, 91.4, 35.1, 29.2, 27.8, 20.2, ppm;

HR-MS EI(DE) m/z: M^+ calcd. for $C_{12}H_{12}F_1N_1O_2$ [M]: 221.08507; found: 221.085092

3-Ethyl-3-hydroperoxy-2-propyl-3H-indole:

Synthesized according to the general procedure for the synthesis of hydroperoxides but using a 500 watt halogen lamp at -40°C.

Purification: The crude product was purified by simple filtration as pink solid in quantitative yield.

¹**H NMR (500 MHz, DMSO-d6):** *δ* 11.60 (s, 1H), 7.38-7.35 (m, 2H), 7.33 (td, *J* = 7.6 Hz, *J* = 1.2 Hz, 1H), 7.20 (td, *J* = 7.3 Hz, *J* = 0.90 Hz, 1H), 2.60 (dt, *J* = 17.9 Hz, *J* = 7.3 Hz, 1H), 2.40 (dt, *J* = 18.0 Hz, *J* = 7.4 Hz, 1H), 1.94-1.89 (m, 1H), 1.80-1.70 (m, 3H), ppm;

HR-MS (CI(DE)) m/z: M^+ calcd. for $C_{16}H_{15}N_1O_2Na_1$ [M+H]⁺: 220.133752; found: 220.133523

2-Benzyl-3-hydroperoxy-3-methyl-3H-indole:

Synthesized according to the general procedure for the synthesis of hydroperoxides but using 500 watt halogen lamp at -40°C.

Purification: The crude product was purified by simple filtration as pink solid in quantitative yield.

¹**H NMR (500 MHz, DMSO-d6):** δ 11.81 (s, 1H), 7.42 (d, J = 7.1 Hz, 1H), 7.36-7.30 (m, 6H), 7.26-7.19 (m, 2H), 3.94 (q, J = 16.0 Hz, 2H), 3.04 (s, 3H), ppm;

¹³C NMR (125 MHz, DMSO-d6): δ 184.7, 153.2, 138.6, 136.6, 129.7, 129.3, 128.1, 126.3, 125.5, 122.5, 119.8, 92.7, 34.4, 19.0 ppm;

HR-MS (ESIpos) m/z: M^+ calcd. for $C_{16}H_{15}N_1O_2Na_1$ [M+Na]⁺: 276.099501; found: 276.099676

X-ray Data

1-Saccharinyl-2,3,4,9-tetrahydro-1H-carbazole (17)

Crystallized from DMSO-d₆.

914987		
$C_{19}H_{16}N_2O_3S\cdot C_2H_6SO$		
colourless		
430.53 g · mol ⁻¹		
100 K		
0.71073 Å		
MONOCLINIC		
$P2_1/n$, (no. 14)		
a = 11.338(2) Å	α= 90°.	
b = 7.9222(17) Å	$\beta = 94.389(4)^{\circ}.$	
c = 22.498(5) Å	$\gamma = 90^{\circ}$.	
2014.9(7) Å ³		
4		
1.419 Mg · m ⁻³		
0.295 mm ⁻¹		
904 e		
0.260 x 0.203 x 0.061 mm ³		
1.82 to 35.06°.		
$-18 \le h \le 18, -12 \le k \le 12, -36 \le l \le 36$		
70025		
$8855 [R_{int} = 0.0296]$		
7748		
100.0 %		
Gaussian		
0.99 and 0.96		
Full-matrix least-squares on F ²		
8855 / 0 / 268		
1.101		
$R_1 = 0.0434$	$wR^2 = 0.1124$	
$R_1 = 0.0513$	$wR^2 = 0.1176$	
1.230 and -0.678 e · Å ⁻³		
	914987 $C_{19} H_{16} N_2 O_3 S \cdot C_2 H_6 S$ colourless 430.53 g · mol ⁻¹ 100 K 0.71073 Å MONOCLINIC P2₁/n, (no. 14) a = 11.338(2) Å b = 7.9222(17) Å c = 22.498(5) Å 2014.9(7) Å ³ 4 1.419 Mg · m ⁻³ 0.295 mm ⁻¹ 904 e 0.260 x 0.203 x 0.061 m 1.82 to 35.06°. -18 $\leq h \leq 18, -12 \leq k \leq 1$ 70025 8855 [R _{int} = 0.0296] 7748 100.0 % Gaussian 0.99 and 0.96 Full-matrix least-square 8855 / 0 / 268 1.101 R ₁ = 0.0434 R ₁ = 0.0513 1.230 and -0.678 e · Å ⁻³	

Supplementary Figure S8 X-ray structure of 1-saccharinyl-2,3,4,9-tetrahydro-1H-carbazole (17)

4-(6-Chloro-2,3,4,9-tetrahydro-1H-carbazol-1-ylamino)benzonitrile (21)

Crystallized from DMSO-d₆.

CCDC reference number	914988		
Empirical formula	$C_{21}H_{22}ClN_{3}OS$		
Color	colourless		
Formula weight	399.93 g · mol ⁻¹		
Temperature	100 K		
Wavelength	1.54178 Å		
Crystal system	TRICLINIC		
Space group	P1, (no. 2)		
Unit cell dimensions	$a = 10.3396(3) \text{ Å}$ $\alpha = 83.171(2)^{\circ}$		
	$b = 11.1324(3) \text{ Å} \qquad \beta = 75.762(2)^{\circ}$		
	$c = 18.1230(5) \text{ Å}$ $\gamma = 89.106(2)^{\circ}$		
Volume	2007.42(10) Å ³		
Ζ	4		
Density (calculated)	1.323 Mg · m ⁻³		
Absorption coefficient	2.777 mm ⁻¹		
F(000)	840 e		
Crystal size	0.33 x 0.30 x 0.08 mm ³		
--	---	---	
θ range for data collection	2.53 to 64.60°		
Index ranges	$-10 \le h \le 11, -12 \le k \le 13, -21 \le l \le 2$	1	
Reflections collected	41515		
Independent reflections	$6514 [R_{int} = 0.0823]$		
Reflections with $I \ge 2\sigma(I)$	5028		
Completeness to $\theta = 64.60^{\circ}$	96.5 %		
Absorption correction	Gaussian		
Max. and min. transmission	0.87 and 0.60		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	6514 / 0 / 491		
Goodness-of-fit on F ²	1.024		
Final R indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0414$ $wR^2 = 0.094$	6	
R indices (all data)	$R_1 = 0.0622$ $wR^2 = 0.105$	1	
Largest diff. peak and hole	0.238 and -0.368 e · Å-3		

Supplementary Figure S9 X-ray structure of 4-(6-chloro-2,3,4,9-tetrahydro-1H-carbazol-1-ylamino)benzonitrile (21)

4-((3-Methyl-1H-indol-2-yl)(phenyl)methylamino)benzonitrile (23)

Crystallized from EtOAc/pentane.

CCDC reference number	915539	
Empirical formula	$C_{25} H_{23} N_3 O$	
Color	colourless	
Formula weight	381.46 g · mol ⁻¹	
Temperature	100 K	
Wavelength	0.71073 Å	
Crystal system	MONOCLINIC	
Space group	p 2 ₁ /c, (no. 14)	
Unit cell dimensions	a = 13.8860(15) Å	α=90°.
	b = 9.6705(10) Å	β=99.869(2)°.
	c = 15.6885(16) Å	$\gamma = 90^{\circ}$.
Volume	2075.5(4) Å ³	
Ζ	4	
Density (calculated)	1.221 Mg · m ⁻³	
Absorption coefficient	0.076 mm ⁻¹	
F(000)	808 e	
Crystal size	$0.22 \ x \ 0.15 \ x \ 0.07 \ mm^3$	
θ range for data collection	2.48 to 34.34°.	
Index ranges	$-22 \le h \le 22, -15 \le k \le 1$	5, $-24 \le l \le 24$
Reflections collected	70526	
Independent reflections	8678 [R $_{int} = 0.0410$]	
Reflections with $I > 2\sigma(I)$	6665	
Completeness to $\theta = 34.34^{\circ}$	99.9 %	
Absorption correction	Gaussian	
Max. and min. transmission	0.99572 and 0.98700	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	8678 / 0 / 291	
Goodness-of-fit on F ²	1.028	
Final R indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0462$	$w R^2 = 0.1233$
R indices (all data)	$R_1 = 0.0659$	$w R^2 = 0.1384$
Largest diff. peak and hole	0.512 and -0.323 e \cdot Å^-3	

Supplementary Figure S10: X-ray structure of 4-((3-methyl-1H-indol-2-yl)(phenyl)methylamino)benzonitrile (23)

4-(1-(3-Ethyl-1H-indol-2-yl)propylamino)benzonitrile (24)

Crystallized from DMSO-d₆.

CCDC reference number	915538	
Identification code	7982	
Empirical formula	$\rm C_{22}H_{27}N_3OS$	
Color	pale yellow	
Formula weight	381.52 g · mol ⁻¹	
Temperature	100 K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_1/n$, (no. 14)	
Unit cell dimensions	a = 17.059(2) Å	α= 90°.
	b = 7.2199(9) Å	β= 99.489(2)°.
	c = 17.196(2) Å	$\gamma = 90^{\circ}$.
Volume	2089.0(4) Å ³	

Ζ	4
Density (calculated)	1.213 Mg · m ⁻³
Absorption coefficient	0.171 mm ⁻¹
F(000)	816 e
Crystal size	0.30 x 0.05 x 0.03 mm ³
θ range for data collection	2.402 to 30.744°.
Index ranges	$\text{-}24 \leq h \leq 24, \text{-}10 \leq k \leq 10, \text{-}24 \leq l \leq 24$
Reflections collected	43886
Independent reflections	$6489 [R_{int} = 0.0845]$
Reflections with $I \ge 2\sigma(I)$	4506
Completeness to $\theta = 25.242^{\circ}$	99.9 %
Absorption correction	Gaussian
Max. and min. transmission	1.00 and 0.99
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6489 / 0 / 256
Goodness-of-fit on F ²	1.011
Final R indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0491$ $wR^2 = 0.1164$
R indices (all data)	$R_1 = 0.0851$ $wR^2 = 0.1354$
Largest diff. peak and hole	0.550 and -0.473 e · Å ⁻³

Supplementary Figure S11 X-ray structure of 4-(1-(3-ethyl-1H-indol-2-yl)propylamino)benzonitrile (24)

Copies of the NMR spectra

N-(4-Nitrophenyl)-2,3,4,9-tetrahydro-1H-carbazol-1-amine (4)

Supplementary Figure S14: dept 135 NMR in DMSO of 4

4-(2,3,4,9-Tetrahydro-1H-carbazol-1-ylamino)benzonitrile (5)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

Supplementary Figure S17: dept 135 NMR in DMSO of 5

6-Chloro-N-(4-nitrophenyl)-2,3,4,9-tetrahydro-1H-carbazol-1-amine (7):

Supplementary Figure S23: dept 135 NMR in DMSO of 7

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

6,8-Dimethyl-*N*-(4-nitrophenyl)-2,3,4,9-tetrahydro-1H-carbazol-1-amine (9)

1-(5-Nitroindolin-1-yl)-2,3,4,9-tetrahydro-1H-carbazole (10)

Supplementary Figure S32: dept 135 NMR in DMSO of 10

6-Fluoro-1-(5-nitroindolin-1-yl)-2,3,4,9-tetrahydro-1H-carbazole (11)

Supplementary Figure S35: dept 135 NMR in DMSO of 11

5-Chloro-1-(5-nitroindolin-1-yl)-2,3,4,9-tetrahydro-1H-carbazole (12)

Supplementary Figure S38: dept 135 NMR in DMSO of 12

3-Methyl-N-(4-nitrophenyl)-2,3,4,9-tetrahydro-1H-carbazol-1-amine (14)

Supplementary Figure S44: dept 135 NMR of 14 (mixture of diastereomers)

Supplementary Figure S46: ¹H NMR in DMSO of 15 (major diastereomer)

Supplementary Figure S48: dept 135 NMR in DMSO of 15 (major diastereomer)

4-(-3-Methyl-2,3,4,9-tetrahydro-1H-carbazol-1-ylamino)benzonitrile (16)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

Supplementary Figure S54: dept 135 NMR of 17

N-(4-Fluorophenyl)-2,3,4,9-tetrahydro-1H-carbazol-1-amine (18)

Phenyl(4-(2,3,4,9-tetrahydro-1H-carbazol-1-ylamino)phenyl)methanone (19)

Supplementary Figure S59: ¹³C NMR in DMSO of 19

Supplementary Figure S62: ¹³C NMR in DMSO of 20

Supplementary Figure S63: dept 135 NMR in DMSO of 20

4-(6-Chloro-2,3,4,9-tetrahydro-1H-carbazol-1-ylamino)benzonitrile (21)

4-(6-Bromo-2,3,4,9-tetrahydro-1H-carbazol-1-ylamino)benzonitrile (22)

4-((3-Methyl-1H-indol-2-yl)(phenyl)methylamino)benzonitrile (23)

Supplementary Figure S72: dept 135 NMR in DMSO of 26

4-(1-(3-Ethyl-1H-indol-2-yl)propylamino)benzonitrile (24)

Supplementary FigureS 75: dept 135 NMR in DMSO of 27

6-Bromo-N-(4-fluorophenyl)-2,3,4,9-tetrahydro-1H-carbazol-1-amine (25)

Supplementary Figure S78: dept 135 NMR in DMSO of 25

6-Bromo-N-(4-chlorophenyl)-2,3,4,9-tetrahydro-1H-carbazol-1-amine (26)

Supplementary Figure S80: ¹³C NMR in DMSO of 26

Supplementary Figure S81: dept 135 NMR in DMSO of 26

6-Chloro-N-(4-(trifluoromethyl)phenyl)-2,3,4,9-tetrahydro-1H-carbazol-1-amine (27)

Supplementary Figure S83: ¹³C NMR in DMSO of 27

6-Bromo-N-phenyl-2,3,4,9-tetrahydro-1H-carbazol-1-amine (28)

4a-Hydroperoxy-2,3,4,4a-tetrahydro-1H-carbazole (3)

6-Chloro-4a-hydroperoxy-2,3,4,4a-tetrahydro-1H-carbazole

Supplementary Figure S91: ¹³C NMR in DMSO of 6-chloro-4a-hydroperoxy-2,3,4,4a-tetrahydro-1Hcarbazole (short NMR without DEPT due to slow decomposition)

5-Chloro-4a-hydroperoxy-2,3,4,4a-tetrahydro-1H-carbazole

Supplementary Figure S92: ¹H NMR in DMSO of 5-chloro-4a-hydroperoxy-2,3,4,4a-tetrahydro-1Hcarbazole (relative fast decomposition in DMSO)

4a-Hydroperoxy-6,8-dimethyl-2,3,4,4a-tetrahydro-1H-carbazole

Supplementary Figure S93: ¹H NMR in DMSO of 4a-hydroperoxy-6,8-dimethyl-2,3,4,4a-tetrahydro-1H-carbazole

Supplementary Figure S94: ¹³C NMR in DMSO of 4a-hydroperoxy-6,8-dimethyl-2,3,4,4a-tetrahydro-1H-carbazole

4a-Hydroperoxy-3-methyl-2,3,4,4a-tetrahydro-1H-carbazole

Supplementary Figure S95: ¹H NMR in DMSO of 4a-hydroperoxy-3-methyl-2,3,4,4a-tetrahydro-1H-carbazole

Supplementary Figure S96: ¹³C NMR in DMSO of 4a-hydroperoxy-3-methyl-2,3,4,4a-tetrahydro-1Hcarbazole (short NMR without DEPT due to slow decomposition)

4a-Hydroperoxy-3-phenyl-2,3,4,4a-tetrahydro-1H-carbazole

Supplementary Figure S97: ¹H NMR in DMSO of 4a-hydroperoxy-3-phenyl-2,3,4,4a-tetrahydro-1H-carbazole

Supplementary Figure S98: ¹³C NMR in DMSO of 4a-hydroperoxy-3-phenyl-2,3,4,4a-tetrahydro-1Hcarbazole (short NMR without DEPT due to slow decomposition)

4a-Hydroperoxy-2,3,4,4a-tetrahydro-1H-carbazole-6-carbonitrile

Supplementary Figure S99: ¹H NMR in DMSO of 4a-hydroperoxy-2,3,4,4a-tetrahydro-1H-carbazole-6-carbonitrile

Supplementary Figure S100: ¹³C NMR in DMSO of 4a-hydroperoxy-2,3,4,4a-tetrahydro-1H-carbazole-6carbonitrile (short NMR without DEPT due to slow decomposition)

6-Bromo-4a-hydroperoxy-2,3,4,4a-tetrahydro-1H-carbazole

Supplementary Figure S101: ¹H NMR in DMSO of 6-bromo-4a-hydroperoxy-2,3,4,4a-tetrahydro-1H-carbazole

carbazole (short NMR without DEPT due to slow decomposition)

Supplementary Figure S103: ¹H NMR in DMSO of 6-fluoro-4a-hydroperoxy-2,3,4,4a-tetrahydro-1Hcarbazole

Supplementary Figure S104: ¹³C NMR in DMSO of 6-fluoro-4a-hydroperoxy-2,3,4,4a-tetrahydro-1Hcarbazole (short NMR without DEPT due to slow decomposition)

Supplementary Figure S106: ¹³C NMR in DMSO of 3-ethyl-3-hydroperoxy-2-propyl-3H-indole (short NMR without DEPT due to slow decomposition)

Supplementary Figure S108: ¹³C NMR in DMSO of 2-benzyl-3-hydroperoxy-3-methyl-3H-indole (short NMR without DEPT due to slow decomposition)

Supplementary References

- Varma, P. P., Sherigara, B. S., Mahadevan, K. M. & Hulikal, V. Efficient and Straightforward Synthesis of Tetrahydrocarbazoles and 2,3-Dimethyl Indoles Catalyzed by CAN. *Synthetic Communications* 39, 158-165, (2008).
- 2 Stadlbauer, W., Van Dang, H. & Berger, B. S. Synthesis and reactions of 4-hydroxy-8,9,10,11tetrahydropyrido[3,2,1-jk]carbazol-6-ones. *Journal of Heterocyclic Chemistry* 47, 807-824, (2010).
- Mateo, C. A., Urrutia, A., Rodríguez, J. G., Fonseca, I. & Cano, F. H. Photooxygenation of 1,2,3,4 Tetrahydrocarbazole: Synthesis of Spiro[cyclopentane-1,2'-indolin-3'-one]. J. Org. Chem. 61, 810 812, (1996).