Combination of Enzyme- and Lewis Acid-Catalyzed Reactions: A New Method for the Synthesis of 6,7-Dihydrobenzofuran-4(5*H*)-ones Starting from 2,5-Dimethylfuran and 1,3-Cyclohexanediones

Chimène Asta,^a Dietmar Schmidt,^a Jürgen Conrad,^a Wolfgang Frey^b and Uwe Beifuss^a*

 ^a Bioorganische Chemie, Institut f
ür Chemie, Universit
ät Hohenheim, Garbenstra
ße 30, D-70599 Stuttgart, Germany, Fax: (+49)711-459-22951; e-mail: <u>ubeifuss@unihohenheim.de</u>
 ^b Institut f
ür Organische Chemie, Universit
ät Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany

Supporting Information

Table of contents	S 1
NMR Spectra	S2
FIGURES 1-8. NMR spectra of compounds 5a-h	S3-S11
FIGURE 9. Structure of 5d derived from X-ray crystal structure analysis	S11

NMR spectra

All NMR data were processed with Spinworks 3.1.8., copyright © 2011, Kirk Marat, University of Manitoba

PPM8.8.6.6.6.5.2.8.4.8.8.2.8 30.6.2.8.4

PPM180160140120100 80 60 40 20

FIGURE 1. ¹H (300 MHz) and ¹³C (75MHz) NMR spectra of 5a in CDCl₃.

S3

P8.0.0.5.2.6.6.5.5.2.8.4.5.5.2.8 28 20.5.2.8.4

Ο

PPM180160140120100 80 60 40 20

FIGURE 2. ¹H (300 MHz) and ¹³C (75MHz) NMR spectra of **5b** in CDCl₃.

PP:848.3.2.02.4.4.2.0.8.6.4.2.0.2

0

PE00180160140120100 80 60 40 20

FIGURE 3. ¹H (300 MHz) and ¹³C (75MHz) NMR spectra of 5c in CDCl₃

FIGURE 3. ¹H (300 MHz) and ¹³C (75MHz) NMR spectra of 5c in CDCl₃.

 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N

____ Т P2M0180160140120100 80 60 40 20

FIGURE 4. ¹H (300 MHz) and ¹³C (75MHz) NMR spectra of 5d in CDCl₃.

+ + PP.BL D. B. G. G. G. D. 5. 2. 8. 4 3 8 - 2 8 3 8

PPM180160140120100 80 60 40 20

FIGURE 5. ¹H (300 MHz) and ¹³C (75MHz) NMR spectra of 5e in CDCl₃.

P8.8.0.6.6.6.5.5.4.8.4.8 \$ 2 8.40.6.0.6.0.8.4 0

Pł

FIGURE 6. ¹H (300 MHz) and ¹³C (75MHz) NMR spectra of **5f** in CDCl₃.

PEM6.6.5.5.2.8.4.6.8.2.2.2.2.3.3.1.6.2.8.4 0

н PPM180160140120100 80 60 40 20

FIGURE 7. ¹H (300 MHz) and ¹³C (75MHz) NMR spectra of 5g in CDCl₃.

PPMØ.8.6 6.6.2.8.4.0 8.2.8.4 0 8.2.8.4 Ο

P21010180160140120100 80 60 40 20

FIGURE 8. 1 H (300 MHz) and 13 C (75MHz) NMR spectra of **5h** in CDCl₃.

FIGURE 9. Structure of 5d derived from X-ray crystal structure analysis.