Supporting Information

Orthogonally Protected D-Galactosamine Thioglycoside Building Blocks via Highly Regioselective, Double serial and Double Parallel Inversions of β -D-Thiomannoside

Madhu Emmadi and Suvarn S. Kulkarni*

Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.

suvarn@chem.iitb.ac.in

Table of Contents

I. Experimental procedures:

General methods	S3
Synthesis of compound 2a	S4
Synthesis of compound 2b	S5
Synthesis of compound 5a	S5
Synthesis of compound 5b	S6
Synthesis of compound 6a	S7
Synthesis of compound 6b	S8
Synthesis of compound 8a	S8
Synthesis of compound 8b	S9
Synthesis of compound 9	S10
Synthesis of compound 10	S11
Synthesis of compound 11.	S11
Synthesis of compound 13.	S12
Synthesis of compound 15	S13
Synthesis of compound 16	S14
Synthesis of compound 17	S14

II. Spectra:

¹ H NMR spectrum of compound 2a	S16
¹³ C NMR spectrum of compound 2a	S17
¹ H NMR spectrum of compound 2b	S18
¹³ C NMR spectrum of compound 2b	S19
¹ H NMR spectrum of compound 5a	S20
¹³ C NMR spectrum of compound 5a	S21
¹ H NMR spectrum of compound 5 b	S22
¹³ C NMR spectrum of compound 5b	S23
¹ H NMR spectrum of compound 6a	S24
¹³ C NMR spectrum of compound 6a	S25
¹ H- ¹ H COSY spectrum of compound 6a	S26
¹ H NMR spectrum of compound 6b	S27
¹³ C NMR spectrum of compound 6b	S28
¹ H- ¹ H COSY spectrum of compound 6b	S29
¹ H NMR spectrum of compound 8a	S30
¹³ C NMR spectrum of compound 8a	S31
¹ H- ¹ H COSY spectrum of compound 8a	S32
¹ H NMR spectrum of compound 8b	S33
¹³ C NMR spectrum of compound 8b	S34
¹ H- ¹ H COSY spectrum of compound 8b	S35
¹ H NMR spectrum of compound 9	S36
¹³ C NMR spectrum of compound 9	S37
¹ H- ¹ H COSY spectrum of compound 9	S38
¹ H NMR spectrum of compound 10	S39
¹³ C NMR spectrum of compound 10	S40
¹ H NMR spectrum of compound 11	S41
¹³ C NMR spectrum of compound 11	S42
¹ H NMR spectrum of compound 13	S43
¹³ C NMR spectrum of compound 13	S44
¹ H- ¹³ C COSY spectrum of compound 1 3	S45
¹ H- ¹ H COSY spectrum of compound 13	S46
¹ H- ¹ H COSY spectrum of compound 13	S47

¹ H NMR spectrum of compound 15	S48
¹³ C NMR spectrum of compound 15	S49
¹ H- ¹ H COSY spectrum of compound 15	S50
¹ H NMR spectrum of compound 16	S51
¹³ C NMR spectrum of compound 16	S52
¹ H- ¹ H COSY spectrum of compound 16	S53
¹ H NMR spectrum of compound 17	S54
¹³ C NMR spectrum of compound 17	S55
¹ H- ¹ H COSY spectrum of compound 17	S56

Experimental Section

General Methods. All reactions were conducted under a dry nitrogen atmosphere. Solvents (CH₂Cl₂ >99%, THF 99.5%, Acetonitrile 99.8%, DMF 99.5%) were purchased in capped bottles and dried under sodium or CaH₂. All other solvents and reagents were used without further purification. All glasswares used were oven dried before use. TLC was performed on pre-coated Aluminium plates of Silica Gel 60 F254 (0.25 mm, E. Merck). Developed TLC plates were visualized under a shortwave UV lamp and by heating plates that were dipped in ammonium molybdate/cerium (IV) sulfate solution. Silica gel column chromatography was performed using Silica Gel (100-200 mesh) and employed a solvent polarity correlated with TLC mobility. NMR experiments were conducted on 400 MHz instrument using CDCl₃ (D, 99.8%) as solvent. Chemical shifts are relative to the deuterated solvent peaks and are in parts per million (ppm). ¹H-¹H COSY and HSQC were used to confirm proton assignments. Mass spectra were acquired in the ESI mode. Specific rotation experiments were measured at 589 nm (Na) and 25 °C. IR spectra were recorded on an FT-IR spectrometer using CSCl plates.

Phenyl 3-*O*-Acetyl-6-*O*-*t*-butyldiphenylsilyl-1-thio-β-D-mannopyranoside (2a).

To a solution of **1** (1.2 g, 4.5 mmol) in pyridine (4.8 mL, 59.1 mmol) was added *tert*butyldiphenylsilyl chloride (2.4 mL, 9.1 mmol). After 12 h, reaction mixture was concentrated and the residue was dissolved in CHCl₃ and washed with water. Separated aqueous layer was washed with CHCl₃ twice. Combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*.

The crude product so obtained was dissolved in THF (40 ml) and to this clear solution, Me₂SnCl₂ (50 mg, 0.2 mmol) and DIPEA (1.6 mL, 9.1 mmol) were added. After 2 min, AcCl (0.35 mL, 5.0 mmol) was added and the solution was stirred at rt for 1.5 h. After complete consumption of the starting material, the reaction was quenched with 3% HCl and extracted with EtOAc (30 mL). Separated organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography on silica gel (40% ethyl acetate: pet ether) to obtain 2a as a white foam (2.1 g, 84%): $[\alpha]_{D}^{20}$ -50.2 (c 3.53, CHCl₃); IR (CHCl₃) v 3475, 3019, 2932, 1733, 1428, 1216, 1114, 1067, 758, 669 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.71-7.68 (m, 5H, ArH), 7.48-7.35 (m, 10H, ArH), 4.91 (s, 1H, H-1), 4.84 (dd, J =10.0, 3.2 Hz, 1H, H-3), 4.30-4.28 (m, 1H, H-2), 4.14-4.09 (m, 1H, H-4), 3.97 (d, J = 4.8 Hz, 2H, H-6a, H-6b), 3.50-3.45 (m, 1H, H-5), 2.79 (bs, 1H, OH), 2.25 (d, J = 6.2 Hz, 1H, OH), 2.18 (s, 3H, CH₃), 1.07 (s, 9H, Si(CH₃)₃); δ 171.1, 135.9, 135.8, 135.7, 134.0, 132.9, 132.7, 131.5, 131.3, 130.1, 129.2, 128.0, 127.86, 127.81, 87.2, 79.7, 77.0, 70.7, 67.0, 64.9, 26.8, 21.3, 19.3; HR-ESI-MS (m/z): $[M + Na]^+$ calcd. for C₃₀H₃₆O₆NaSSi, 575.1900; found, 575.1860.

Phenyl 3-*O*-Benzoyl-6-*O*-*t*-butyldiphenylsilyl-1-thio-β-D-mannopyranoside (2b).

The same procedure as described for **2a** was followed for preparation of **2b**, starting from **1** (0.57 g, 2.1 mmol) via selective TBDPS protection at O6 followed by benzoylation at O3 using BzCl (0.27 mL, 2.3 mmol) to obtain **2b** as a white amorphous solid (1.12 g, 87%): $[\alpha]^{20}_{D}$ -30.2 (*c* 2.22, CHCl₃); IR (CHCl₃) v 3412, 3019, 2929, 1719, 1216, 1048, 759, 669 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.12-8.10 (m, 2H, ArH), 7.73-7.72 (m, 4H, ArH), 7.71-7.24 (m, 14H, ArH), 5.09 (dd, *J* = 9.8, 3.2 Hz, 1H, H-3), 5.00 (d, *J* = 0.8 Hz, 1H, H-1), 4.43-4.41 (m, 1H, H-2), 4.25 (dt, *J* = 9.8, 3.2 Hz, 1H, H-4), 4.05-3.98 (m, 2H, H-6), 3.59-3.54 (m, 1H, H-5), 2.89 (d, *J* = 3.2 Hz, 1H, OH), 2.41 (d, *J* = 6.4 Hz, 1H, OH), 1.08 (s, 9H, Si(*CH*₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 135.87, 135.0, 134.2, 133.7, 133.0, 132.9, 131.5, 130.1, 130.09, 129.6, 129.3, 128.7, 128.0, 127.8, 87.3, 79.7, 76.9, 70.9, 67.2, 64.9, 27.0, 19.4; HR-ESI-MS (*m*/*z*): [M + Na]⁺ calcd. for C₃₅H₃₈O₆NaSSi, 637.2056; found, 637.2054.

Phenyl 3-*O*-Acetyl-2,4-diazido-2,4-dideoxy-6-*O*-*t*-butyldiphenylsilyl-1-thio- β -D-galactopyranoside (5a).

Trifluoromethanesulfonic anhydride (0.27 mL, 1.6 mmol) was added drop wise at -10 $^{\circ}$ C to a stirred solution of phenyl 3-*O*-acetyl-6-*O*-*t*-butyldiphenylsilyl-1-thio- β -D-mannopyranoside **2a** (0.15 g, 0.27 mmol) and pyridine (0.28 mL, 3.5 mmol) in CH₂Cl₂ (8 mL) and the solution was gradually brought to 10 °C. After 2 h the reaction mixture was concentrated *in vacuo* and the crude product was used for the next step without purification.

The crude product was dissolved in DMF (3 mL) and to this, NaN_3 (0.2 g, 3.2 mmol) was added. This reaction mixture was stirred at rt for 10 h and then it was diluted with EtOAc and washed with water. Separated aqueous layer was washed

twice with EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography (10% ethyl acetate: pet ether) to obtain **5a** as a pale yellowish liquid (0.134 g, 85%): $[\alpha]^{20}_{D}$ -8.9 (*c* 4.0, CHCl₃); IR (CHCl₃) v 3013, 2931, 2858, 2114, 1750, 1472, 1428, 1363, 1275, 1217, 1113, 822, 759, 608, 505 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.63 (m, 4H, ArH), 7.58-7.51 (m, 2H, ArH), 7.47-7.37 (m, 6H, ArH), 7.31-7.28 (m, 3H, ArH), 4.95 (dd, *J* = 10.0, 3.6 Hz, 1H, H-3), 4.39 (d, *J* = 10.0 Hz, 1H, H-1), 4.16 (d, *J* = 3.6 Hz, 1H, H-4), 3.84-3.70 (m, 2H, H-6a, 6b), 3.72-3.62 (m, 2H, H-2, H-5), 2.19 (s, 3H, CH₃), 1.05 (s, 9H, (*CH₃*)₃CSi); ¹³C NMR (100 MHz, CDCl3) δ 170.0, 135.7, 133.4, 132.94, 132.89, 131.2, 130.1, 129.2, 128.6, 128.0, 86.9, 77.2, 75.2, 62.3, 59.9, 59.6, 27.0, 20.8, 19.3; HR-ESI-MS (*m*/*z*): [M + Na]⁺ calcd. for C₃₀H₃₄N₆O₄NaSSi, 625.2029; found, 625.2028.

Phenyl 2,4-Diazido-3-*O*-benzoyl-2,4-dideoxy-6-*O*-*t*-butyldiphenylsilyl-1-thio- β -D-galactopyranoside (5b).

The same procedure as described for **5a** was followed for triflation of **2b** (2.25 g, 3.66 mmol) and its double displacement with NaN₃ to afford **5b** as a pale yellowish liquid (2.0 g, 84%): $[\alpha]^{20}_{D}$ -18.1 (*c* 0.68, CHCl₃); IR (CHCl₃) v 3019, 2928, 2115, 1726, 1216, 1112, 758, 669 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 6.8 Hz, 2H, ArH), 7.66-7.60 (m, 5H, ArH), 7.56-7.40 (m, 10H, ArH), 7.38-7.31 (m, 3H, ArH), 5.24 (dd, *J* = 10.0, 3.5 Hz, 1H, H-3), 4.52 (d, *J* = 10.0 Hz, 1H, H-1), 4.29 (d, *J* = 3.5 Hz, 1H, H-4), 3.90-3.69 (m, 3H, H-6a, 6b & H-5), 3.74 (t, *J* = 10.0 Hz, 1H, H-2), 1.05 (s, 9H, (*CH*₃)₃CSi); ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 135.6, 134.0, 133.3, 132.9, 132.8, 131.2, 130.2, 130.1, 129.2, 128.8, 128.6, 128.5, 128.0, 86.9, 77.3, 75.3, 62.3, 60.3, 59.9, 26.9, 19.3; HR-ESI-MS (*m*/*z*): [M + Na]⁺ calcd. For C₃₅H₃₆N₆O₄NaSSi 687.2186, found 687.2171.

Phenyl 3-O-Acetyl-2-azido-2-deoxy-6-O-t-butyldiphenylsilyl-1-thio- β -D-

galactopyranoside (6a).

Trifluoromethanesulfonic anhydride (2.9 mL, 17.5 mmol) and pyridine (2.9 mL, 37.6 mmol) were added sequentially at -10 $^{\circ}$ C to a stirred solution of **2a** (1.6 g, 2.9 mmol) in CH₂Cl₂ (65 mL). Then the reaction mixture was gradually warmed to 10 $^{\circ}$ C. After 2 h, reaction mixture was diluted with CH₂Cl₂ and washed successively with 1M HCl, aq. NaHCO₃ and brine. Separated organic layer was dried over Na₂SO₄ and concentrated.

The crude product so obtained was dissolved in acetonitrile (60 mL) and to this, TBAN₃ (0.74 g, 2.6 mmol) was added at -30 °C and this reaction was stirred at the same temperature for 20 h. TBANO₂ (2.4 g, 8.6 mmol) was added and the reaction mixture was stirred at rt for 1 h. Reaction mixture was diluted with EtOAc and washed with water. Separated organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography on silica gel (1:9 ethyl acetate: pet ether) to obtain **6a** as a pale yellowish viscous liquid (1.0 g, 60%): [α]²⁵_D +11.4 (*c* 0.12, CHCl₃); IR (CHCl₃) v 3455, 3019, 2932, 2115, 1748, 1523, 1427, 1364, 1217, 928, 770, 669, 623 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.76-7.74 (m, 2H, ArH), 7.69-7.66 (m, 2H, ArH), 7.64-7.61 (m, 2H, ArH), 7.46-7.37 (m, 6H, ArH), 7.30-7.24 (m, 3H, ArH), 4.77 (dd, J = 10.0, 2.8 Hz, 1H, H-3), 4.47 (d, J = 10.0 Hz, 1H, H-1), 4.28 (d, J = 2.8 Hz, 1H, H-4), 4.02 (dd, J = 11.2, 4.0 Hz, 1H, H-6a), 3.92 (dd, J = 11.2, 4.0 Hz, 1H, H-6b), 3.85 (t, J = 10.0 Hz, 1H, H-2), 3.61 (bs, 1H, OH), 3.51 (t, J = 4.0 Hz, 1H, H-5), 2.17 (s, 3H, CH₃), 1.07 (s, 9H, $(CH_3)_3$ CSi); 13 C NMR (100 MHz, CDCl₃) δ 170.3, 135.8, 135.7, 133.6, 132.4, 132.0, 131.2, 130.27, 130.23, 129.24, 128.5, 128.1, 128.0, 86.5, 76.7, 75.8, 68.4, 65.2, 59.2, 26.8,

21.2, 19.2; HR-ESI-MS (m/z): [M + Na]⁺ calcd. For C₃₀H₃₅N₃O₅NaSSi 600.1964, found 600.1980.

Phenyl 2-Azido-3-*O*-benzoyl-2-deoxy-6-*O*-*t*-butyldiphenylsilyl-1-thio- β -D-galactopyranoside (6b).

The same procedure as described for **6a** was followed for double serial displacement of **2b** (0.14 g, 0.23 mmol) to obtain **6b** as a pale yellowish viscous liquid (89 mg, 61%): $[\alpha]^{25}_{D}$ +36.6 (*c* 0.61, CHCl₃); IR (CHCl₃) v 3464, 3019, 2931, 2115, 1721, 1602, 1428, 1268, 1216, 1113, 929, 770, 669, 622, 505 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 6.8 Hz, 2H, ArH), 7.76-7.55 (m, 7H, ArH), 7.47-7.36 (m, 8H, ArH), 7.33-7.24 (m, 3H, ArH), 4.98 (dd, *J* = 10.0, 2.8 Hz, 1H, H-3), 4.55 (d, *J* = 10.0 Hz, 1H, H-1), 4.44 (d, *J* = 2.8 Hz, 1H, H-4), 4.05-3.93 (m, 3H, H-6a, 6b & H-2), 3.60 (t, *J* = 4.0 Hz, 1H, H-5), 3.33 (bs, 1H, OH) 1.06 (s, 9H, (*CH*₃)₃CSi); ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 135.8, 135.7, 133.7, 133.5, 132.5, 132.2, 131.5, 130.24, 130.21 130.1, 129.4, 129.2, 128.6, 128.5, 128.12, 128.09, 86.8, 77.5, 76.6, 68.2, 64.9, 59.7, 26.9, 19.2; HRMS calcd for C₃₅H₃₇O₅SN₃Si [M + Na]⁺ 662.2121, found 662.2112.

Phenyl 3-*O*-Acetyl-4-azido-4-deoxy-6-*O*-*t*-butyldiphenylsilyl-1-thio- β -D-galactopyranoside (8a).

Trifluoromethanesulfonic anhydride (0.27 mL, 1.62 mmol) and pyridine (0.28 mL, 3.5 mmol) were added sequentially at -10 $^{\circ}$ C to a stirred solution of **2a** (0.15 g, 0.27 mmol) in CH₂Cl₂ (8 mL). Then the reaction mixture was gradually warmed to 10 $^{\circ}$ C. After 2 h, it was diluted with CH₂Cl₂ and washed successively with 1M HCl, aq. NaHCO₃ and brine. Separated organic layer was dried over Na₂SO₄, concentrated.

The crude product so obtained was dissolved in acetonitrile (3 mL) and to this, TBANO₂ (0.23 g, 0.8 mmol) was added at 0 $^{\circ}$ C and this reaction was stirred at the

same temperature for 30 min. After that, TBAN₃ (0.23 g, 0.8 mmol) was added at 0 °C and the reaction mixture was brought to rt. After stirring at rt for 3 h, reaction mixture was diluted with EtOAc and washed with water. Separated organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography on silica gel (1:9 ethyl acetate: pet ether) to obtain **8a** as a pale yellowish viscous liquid (84 mg, 54%): $[\alpha]^{20}_{D}$ +3.9 (*c* 1.47, CHCl₃); IR (CHCl₃) v 2929, 2851, 2109, 1744, 1218, 1113, 768, 702 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.67-7.65 (m, 4H, ArH), 7.50-7.38 (m, 9H, ArH), 7.29-7.27 (m, 2H, ArH), 5.07 (dd, *J* = 9.6, 3.4 Hz, 1H, H-3), 4.50 (d, *J* = 9.6 Hz, 1H, H-1), 4.19 (d, *J* = 3.4 Hz, 1H, H-4), 3.85-3.76 (m, 3H, H-2, H-6a & H-6b), 3.70 (t, *J* = 6.4 Hz, 1H, H-5), 2.19 (s, 3H, CH₃), 1.06 (s, 9H, (*CH₃*)₃CSi); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 135.7, 133.0, 132.9, 132.8, 131.6, 130.1, 129.2, 128.4, 128.0, 89.3, 77.28, 76.0, 67.5, 62.4, 60.3, 26.9, 20.9, 19.3; HR-ESI-MS (*m*/*z*): [M + Na]⁺ calcd. for C₃₀H₃₅N₃O₅NaSSi, 600.1964, found 600.1965.

Phenyl 4-Azido-3-*O*-benzoyl-4-deoxy-6-*O*-*t*-butyldiphenylsilyl-1-thio- β -D-galactopyranoside (8b).

The same procedure as described for **8a** was followed for a double serial inversion of **2b** (0.24 g, 0.4 mmol) to obtain **8b** as a pale yellowish viscous liquid (0.14 g, 56%): $[\alpha]^{20}_{\text{D}}$ -28.2 (*c* 0.95, CHCl₃); IR (CHCl₃) v 2929, 2111, 1726, 1216, 1113, 768, 669 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.14-8.12 (m, 2H, ArH), 7.68-7.58 (m, 5H, ArH), 7.52-7.36 (m, 10H, ArH), 7.30-7.27 (m, 3H, ArH), 5.40 (dd, *J* = 9.6, 3.6 Hz 1H, H-3), 4.59 (d, *J* = 9.6 Hz, 1H, H-1), 4.28 (d, *J* = 3.6 Hz, 1H, H-4), 3.97 (t, *J* = 9.6 Hz, 1H, H-5), 3.89-3.77 (m, 3H, H-5, H-6a & H-6b), 1.06 (s, 9H, (*CH₃*)₃CSi); ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 135.7, 133.8, 133.0, 132.8, 131.8, 130.3, 130.1, 129.2, 129.1, 128.7, 128.3, 128.0, 89.5, 77.4, 76.2, 68.0, 62.4, 60.8, 27.0, 19.3; HR-ESI-MS (m/z): $[M + Na]^+$ calcd. for C₃₅H₃₇N₃O₅NaSSi, 662.2121, found 662.2158.

Phenyl 4-*O*-Acetyl-2-azido-2-deoxy-6-*O*-*t*-butyldiphenylsilyl-1-thio- β -D-galactopyranoside (9).

Trifluoromethanesulfonic anhydride (0.73 mL, 4.3 mmol) and pyridine (0.75 mL, 9.3 mmol) were added sequentially at -10 $^{\circ}$ C to a stirred solution of **2a** (0.4 g, 0.72 mmol) in CH₂Cl₂ (20 mL). Then the reaction mixture was gradually warmed to 10 $^{\circ}$ C over 2 h. After complete consumption of starting material, the reaction mixture was diluted with CH₂Cl₂ and washed successively with 1M HCl, aq. NaHCO₃ and brine. Separated organic layer was dried over Na₂SO₄, and concentrated.

The crude product which was obtained after removal of solvents was dissolved in acetonitrile (30 mL) and to this, TBAN₃ (0.2 g, 0.72 mmol) was added at -30 °C and the reaction was stirred at the same temperature for 20 h. Reaction mixture was concentrated to 4 mL and to this, water (0.28 mL, 15.9 mmol) was added and the reaction mixture was kept for reflux at 65 °C for 1 h. The reaction mixture was diluted with EtOAc and washed with water. Separated organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography on silica gel (1:9 ethyl acetate: pet ether) to obtain **9** as a pale yellowish viscous liquid (0.23 g, 56%): $[\alpha]^{20}_{D}$ -2.5 (*c* 0.56, CHCl₃); IR (CHCl₃) v 2930, 2857, 2113, 1744, 1472, 1373, 1233, 1112, 758, 703, 504 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.61 (m, 6H, ArH), 7.57-7.37 (m, 6H, ArH), 7.29-7.27 (m, 3H, ArH), 5.43 (d, *J* = 3.2 Hz, 1H, H-4), 4.46 (d, *J* = 10.0 Hz, 1H, H-1), 3.80-3.77 (m, 2H, H-3 & H-5), 3.75-3.68 (m, 2H, H-6a & H-6b), 3.48 (t, *J* = 10.0 Hz, 1H, H-2), 2.01 (s, 3H, CH₃), 1.04 (s, 9H, (*CH₃*)₃CSi); ¹³C NMR (100 MHz, CDCl₃): δ 171.7, 135.7, 133.1, 133.0, 132.9, 131.9, 130.08, 130.04, 129.1, 128.3, 128.0, 127.97,

127.96, 86.8, 77.3, 73.5, 69.1, 62.6, 61.6, 26.9, 20.8, 19.2; HR-ESI-MS (m/z): [M + Na]⁺ calcd. for C₃₀H₃₅N₃O₅NaSSi, 600.1964; found, 600.1940.

Phenyl 4-*O*-Acetyl-2-azido-3-*O*-chloroacetyl-2-deoxy-6-*O*-*t*-butyldiphenylsilyl-1thio-β-D-galactopyranoside (10).

To a clear solution of **9** (0.4 g, 0.69 mmol) in CH₂Cl₂ (4 mL), ClAcCl (0.16 mL, 2.0 mmol), and pyridine (0.0.16 mL, 2.0 mmol) were added at 0 °C. After 30 min, the reaction mixture was concentrated *in vacuo* and chromatographed on silica gel (8% ethyl acetate: pet ether) to obtain desired product **10** as a foam (0.38 g, 85%): $[\alpha]^{20}_{D}$ - 21.0 (*c* 0.63, CHCl₃); IR (CHCl₃) v 3019, 2929, 2126, 1745, 1216, 1045, 760, 670 cm⁻¹;¹H NMR (400 MHz, CDCl₃) δ 7.63-7.55 (m, 6H, ArH), 7.46-7.36 (m, 6H, ArH), 7.35-7.27 (m, 3H, ArH), 5.52 (d, *J* = 3.0 Hz, 1H, H-4), 4.92 (dd, *J* = 10.0, 3.0 Hz, 1H, H-3), 4.51 (d, *J* = 10.0 Hz, 1H, H-1), 4.03 (d, *J* = 1.4 Hz, 2H, CH₂ of ClAc), 3.80-3.74 (m, 2H), 3.66-3.60 (m, 2H) 1.96 (s, 3H, CH₃), 1.07 (s, 9H, (*CH₃*)₃CSi); ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 166.4, 135.76, 135.75, 133.4, 132.9, 132.8, 131.4, 130.0, 129.2, 128.6, 128.0, 86.9, 77.1, 75.2, 66.3, 61.4, 59.7, 40.6, 26.8, 20.7, 19.2; HR-ESI-MS (*m*/z): [M + Na]⁺ calcd. for C₃₂H₃₆N₃O₆NaSSiCl, 676.1680; found, 676.1728.

Phenyl 4-*O*-Acetyl-2-azido-3-*O*-chloroacetyl-2-deoxy-1-thio- β -D-galactopyranoside (11).

A solution of TBAF (0.18 mL, 0.18 mmol) and AcOH (20 μ L, 0.35 mmol) with pH 7 was added at 0 °C to a solution of **10** (24 mg, 0.035 mmol) in THF (1 mL) and the reaction mixture was stirred at the same temperature overnight. After complete consumption of starting material solvents were removed *in vacuo* and the residue was chromatographed on silica gel (40% ethyl acetate: pet ether) to obtain **11** as a pale yellowish liquid (12 mg, 82%): $[\alpha]^{20}_{D}$ -12.2 (*c* 0.36, CHCl₃); IR (CHCl₃) v 2926, 2854, 2114, 1745, 1375, 1232, 1077, 758 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.61-

7.58 (m, 2H, ArH), 7.37-7.35 (m, 3H, ArH), 5.36 (d, J = 3.2 Hz, 1H, H-4), 4.93 (dd, J = 10.0, 3.2 Hz, 1H, H-3), 4.56 (d, J = 10.0 Hz, 1H, H-1), 4.03 (d, J = 1.8 Hz, 2H, CH₂ of ClAc), 3.78-3.69 (m, 3H), 3.53-3.50 (m, 1H), 2.11 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 166.4, 133.6, 131.0, 129.3, 128.9, 86.8, 77.4, 74.8, 67.1, 61.0, 59.8, 40.5, 20.7; HR-ESI-MS (m/z): [M + Na]⁺ calcd. for C₁₆H₁₈N₃O₆NaSCl, 438.0503; found, 438.0509.

Phenyl 2-Azido-3-*O*-benzoyl-2,4,6-trideoxy-4-phthalimido- α -D-galactopyranosyl-(1 \rightarrow 4)-3-*O*-acetyl-2-azido-2-deoxy-6-*O*-*t*-butyldiphenylsilyl-1-thio- β -D-

galactopyranoside (13). Bromine (26 μ L, 0.49 mmol) was added to a solution of 12 (0.11 g, 0.22 mmol) in CH₂Cl₂ (3 mL) at 0 °C. After 90 min, toluene was added, the mixture was concentrated and the residue was co-evaporated twice with toluene.

A solution of acceptor **6a** (65 mg, 0.11 mmol) in CH₂Cl₂ (1 mL) was added to a suspension of glycosyl bromide, 3 Å MS (0.25 g) and sym. collidine (28 μ L, 0.2 mmol) in CH₂Cl₂ (1 mL) and kept stirring at -30 °C for 30 min. Then, silver triflate (0.11 g, 0.45 mmol) was added and stirring was continued at the same temperature. After 2 h, triethylamine was added and the reaction mixture was diluted with CH₂Cl₂, filtered through celite, and concentrated. The residue was purified by column chromatography on silica gel (20% ethyl acetate: pet ether) to obtain the desired product **13** as a foam (57 mg, 81%): $[\alpha]^{20}_{D}$ +184.2 (*c* 1.67, CHCl₃); IR (CHCl₃) ν 2930, 2857, 2111, 1720, 1365, 1329, 1266, 1218, 1106, 1067, 758, 724, 504 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.90-7.88 (m, 2H, ArH), 7.81 (bs, 2H, ArH) 7.73-7.62 (m, 9H, ArH), 7.52-7.29 (m, 11H, ArH), 5.48 (dd, *J* = 11.0, 6.7 Hz, 1H, H-3'), 5.19 (d, *J* = 4.0 Hz, 1H, H-1'), 5.06 (d, *J* = 6.7, 3.7 Hz, 1H, H-4'), 4.88 (dd, *J* = 11.0, 4.0 Hz, 1H, H-2'), 4.83 (dd, *J* = 10.0, 2.6 Hz, 1H, H-3), 4.40 (d, *J* = 10.0 Hz, 1H, H-1), 4.29 (qd, *J* = 6.5, 3.7 Hz, 1H, H-5'), 4.27 (d, *J* = 2.6 Hz, 1H, H-4), 4.13-4.10 (m, 1H, H-1), 4.29

6b), 4.08-3.94 (m, 1H, H-6a), 3.64-3.57 (m, 2H, H-2, H-5), 2.13 (s, 3H, CH₃), 1.09 (s, 9H, $(CH_3)_3$ CSi), 0.98 (d, J = 6.5 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 168.7, 165.1, 135.8, 135.7, 134.6, 134.3, 133.7, 133.1, 130.2, 130.17, 130.10, 129.8, 129.2, 128.9, 128.6, 128.1, 128.0, 123.7, 99.0, 85.7, 79.0, 74.8, 73.6, 70.1, 63.9, 61.6, 60.0, 59.5, 52.0, 27.0, 21.3, 19.3, 16.7; HR-ESI-MS (m/z): [M + Na]⁺ calcd. for C₅₁H₅₁N₇O₁₀NaSSi, 1004.3085; found, 1004.3015.

N-(Benzyloxycarbonyl)-O-(4-O-acetyl-2-azido-3-O-chloroacetyl-2-deoxy-6-O-t-butyldiphenylsilyl- α -D-galactopyranosyl)-L-serine methylester (15).

Tf₂O (19 μ L, 0.11 mmol) was added at -60 °C to a cooled solution of **10** (0.05 g, 0.08 mmol) and Ph₂SO (0.05 g, 0.22 mmol) in CH₂Cl₂ (4 mL). After 10 min, L-serine derivative 14 (0.04 g, 0.16 mmol) in CH₂Cl₂ (1 mL) was added slowly. After stirring the reaction mixture at the same temperature for 1 h, it was diluted with CH₂Cl₂ and washed with aq. NaHCO₃ and brine. Separated organic layer dried over Na₂SO₄, concentrated and chromatographed on silica gel (25% ethyl acetate: pet ether) to afford the desired product **15** as a foam (0.05 g, 74%): $[\alpha]^{20}_{D}$ +52.6 (c 1.83, CHCl₃); IR (CHCl₃) v 3018, 2929, 2113, 1749, 1216, 1046, 759, 668 cm⁻¹;¹H NMR (400 MHz, CDCl₃) δ 7.63-7.58 (m, 5H, ArH), 7.44-7.31 (m, 10H, ArH), 5.66 (d, J = 8.4 Hz, 1H, NH), 5.59 (d, *J* = 3.2 Hz, 1H, H-4), 5.36 (dd, *J* = 11.0, 3.2 Hz, 1H, H-3), 5.09 (ABq, J = 11.3, 5.4 Hz, 2H, CH₂), 4.91 (d, J = 3.6 Hz, 1H, H-1), 4.58-4.55 (m, 1H, -CH), 4.09-4.02 (m, 5H, H-5, -CH₂, -CH₂), 3.79 (s, 3H), 3.75-3.63 (m, 1H, H-6a), 3.61-3.54 (m, 2H, H-2, H-6b), 1.98 (s, 3H, CH₃), 1.01 (s, 9H, (CH₃)₃CSi); ¹³C NMR (100 MHz, CDCl₃) § 170.3, 170.2, 166.4, 156.2, 136.1, 135.72, 135.71, 132.9, 132.8, 130.8, 130.08, 130.05, 128.7, 128.4, 128.3, 128.0, 99.2, 70.3, 69.5, 67.4, 67.2, 61.2, 57.6, 54.4, 53.0, 40.6 26.8, 20.7, 19.1; HRMS calcd for $C_{38}H_{46}O_{11}SiClN_4$ [M + H]⁺ 797.2621, found 797.2600.

N-(Benzyloxycarbonyl)-*O*-(4-*O*-acetyl-2-azido-2-deoxy-6-*O*-*t*-butyldiphenylsilyl- α -D-galactopyranosyl)-L-serine methylester (16).

Thiourea (0.15 g. 1.9 mmol) was added to a clear solution of **15** (0.23 g, 0.28 mmol) in pyridine (2.8 mL) and EtOH (2.8 mL) and the reaction mixture was kept for reflux at 80 °C. After 30 min, solvents were removed and the crude product was chromatographed on silica gel (30% ethyl acetate: pet ether) to afford **16** as a viscous liquid (0.15 g, 78%): $[\alpha]^{20}_{D}$ +30.2 (*c* 1.06, CHCl₃); IR (CHCl₃) v 3018, 2975, 2112, 1735, 1427, 1216, 1047, 758, 669 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.63-7.59 (m, 5H, ArH), 7.42-7.31 (m, 10H, ArH), 5.68 (d, *J* = 8.4 Hz, 1H, NH), 5.47 (d, *J* = 3.0 Hz, 1H, H-4), 5.12-5.03 (m, 2H, -CH₂), 4.86 (d, *J* = 3.6 Hz, 1H, H-1), 4.57-4.55 (m, 1H, -CH), 4.22 (dd, *J* = 10.6, 3.0 Hz, 1H, H-3), 4.02-3.90 (m, 3H, H-5, -CH₂), 3.78 (s, 3H, CH₃), 3.74-3.58 (m, 2H, H-6a, H-6b), 3.40 (dd, *J* = 10.6, 3.6 Hz, 1H, H-2), 2.01 (s, 3H, CH₃), 1.02 (s, 9H, (*CH₃*)₃CSi); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 170.4, 156.1, 135.7, 133.0, 132.9, 130.1, 130.0, 128.7, 128.4, 128.3, 128.0, 99.3, 70.1, 69.7, 69.4, 67.5, 67.4, 61.4, 60.2, 54.4, 53.0, 26.8, 20.9, 19.2; HRMS calcd for C₃₆H₄₄O₁₀SiN₄ [M + Na]⁺ 743.2719, found 743.2706.

N-(Benzyloxycarbonyl)-O-(4-O-acetyl-2-azido-3-O-chloroacetyl-2-deoxy-α-Dgalactopyranosyl)-L-serine methylester (17).

A solution of TBAF (4.2 mL, 4.2 mmol) and AcOH (0.48 mL, 8.27 mmol) with pH 7 was added at 0 °C to a clear solution of **15** (0.156 g, 0.195 mmol) in THF (22 mL) and the reaction mixture was stirred at the same temperature overnight. After complete consumption of starting material, solvents were removed in vacuum and chromatographed to obtain **17** as a pale yellowish liquid (0.33 mg, 72%): $[\alpha]^{20}_{D}$ +126.5 (*c* 6.63, CHCl₃); IR (CHCl₃) v 3016, 2955, 2113, 1746, 1524, 1438, 1235, 1068, 754, 667 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.30 (m, 5H, ArH), 6.02 (d,

J = 8.0 Hz, 1H, NH), 5.40 (d, J = 3.0 Hz, 1H, H-4), 5.32 (dd, J = 11.0, 3.0 Hz, 1H, H-3), 5.12 (s, 2H, -CH₂), 5.01 (d, J = 3.4 Hz, 1H, H-1), 4.58-4.56 (m, 1H, -CH), 4.15-4.04 (m, 5H, H-5, -CH₂, -CH₂), 3.78 (s, 3H, CH₃), 3.74-3.73 (m, 2H, H-2, H-6a), 3.65-3.57 (m, 1H, H-6b), 2.12 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 170.4, 166.5, 156.1, 136.2, 128.7, 128.3, 99.2, 70.7, 69.8, 69.7, 67.9, 67.4, 60.9, 57.6, 54.5, 53.1, 40.6, 20.8; HRMS calcd for C₂₂H₂₇O₁₁ClN₄ [M + Na]⁺ 581.1263, found 581.1269.

.:

---- .

SSK-6-ME-609-COSY

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013

