Major mechanistic differences between the reactions of

hydroxylamine with phosphate di- and tri-esters

Michelle Medeiros[†], Eduardo H. Wanderlind[†], José R. Mora[†], Raphaell Moreira[†], Anthony J. Kirby^{*,§} and Faruk Nome^{*,†}.

[†] Instituto Nacional de Ciência e Tecnologia (INCT) de Catálise, Departamento de Química, Universidade Federal de Santa Catarina (UFSC), CEP 88040-900, Florianópolis, Santa Catarina (SC), Brazil [§] University Chemical Laboratory, Cambridge CB2 1EW, UK.

* Corresponding authors' email addresses: faruk.nome@ufsc.br; ajk1@cam.ac.uk

ELECTRONIC SUPPLEMENTARY INFORMATION

Contents.

1. Reaction of TPP with hydroxylamine

1.1. Kinetic data

Table S.1. Values of k_{obs} as a function of pH: and **S.1a.** Curve Fitting.

Table S.2. Values of k_{obs} as a function of [NH₂OH]

Figure S.1. Values of k_{obs} as a function of $[K_2HPO_4^2]$

Table S.3. Values of k_{obs} as a function of hydroxylamine derivative concentration.

Figure S.2. Plots of k_{obs} vs. hydroxylamine derivative concentration

Table S.4a. Kinetic isotope effect measurements.

Table S.4.b. Proton inventory for the reaction between hydroxylamine and **TPP**. **Figure S.3a** and **3b**. Proton inventory plots.

1.2. NMR data

Figure S.4 Progressive ¹H NMR spectra for the reaction of [NH₂OH] in presence of 0.3M of fumaric acid.

Figure S.5. Typical progressive ³¹P NMR spectra for the reaction with NH₂OH

1.3. Hydrazine and diimine trapping

Figure S.6. UV-Vis spectra of solutions of 4-(dimethylamino)benzaldehyde and the product mixture of the reaction with hydroxylamine: in the absence and presence of added fumaric acid.

2. Reaction of DPP with hydroxylamine

2.1. Kinetic data

Table S.5. Values of k_{obs} as a function of pH in the reaction with [NH₂OH] **Figure S.7**. Calculated compositions of **DPP** and hydroxylamine as a function of pH. **Table S.6**. Values of k_{obs} as a function of [NH₂OH] **Figure S.8**. Plot of k_{obs} vs. [NH₂OH]

2.2. NMR data

Figure S.9. Progressive ¹H NMR spectra for the reaction with NH₂OH. **Figure S.10**. Progressive ³¹P NMR spectra for the reaction with NH₂OH.

3. Theoretical calculations

3.1. Reaction of TPP with hydroxylamine

3.1.1 Cartesian coordinates for Mechanism 1 (TPP + NH₂OH):

3.1.1.1. Reactant	3.1.1.2. Transition State (TS1)
3.1.1.3. Intermediate	3.1.1.4. Transition State (TS2)
3.1.1.5 Product	

3.1.2. Cartesian coordinates for Mechanism 2 (TPP + NH₂OH):

Table S.7. Structural parameters of intermediate (**Int**), transition state (**TS2**) and products (**P**) for mechanism **1** in the reaction of **TPP** with hydroxylamine at the B3LYP/6-31++G(d,p) level of theory.

Table S.8. Structural parameters of intermediate (**Int**), alternative transition states (**TS4** and **TS5**) and products (**P**) for Mechanism **2** in the reaction of **TPP** with hydroxylamine at the B3LYP/6-31++G(d,p) level of theory.

3.2. Reaction of DPP with hydroxylamine

3.2.1 Cartesian coordinates for the reaction DPP + NH₂OH: **3.2.1.1** Reactant **3.2.1.2.** Transition State (TS)

3.2.1.3 Product

Table S.9. Structural parameters of reactant (**R2**), transition state (**TS**) and products (**P**) for the reaction of **DPP** with hydroxylamine calculated for mechanism **B** of Scheme 9 of the full paper at the B3LYP/6-31+G(d,p) level of theory

1. Reaction of TPP with hydroxylamine

1.1. Kinetic data

Table S.1. Values of k_{obs} as a function of pH in the reaction of **TPP** with hydroxylamine (0.5M), *I*=1.0 (KCl), 25°C.

рН	$k_{\rm obs},{\rm s}^{-1}$
4.0	2.30x10 ⁻³
4.5	1.79x10 ⁻³
5.0	2.61x10 ⁻³
5.2	3.23x10 ⁻³
5.5	5.30x10 ⁻³
6.0	9.77 x10 ⁻³
6.2	8.79x10 ⁻³
6.5	1.14x10 ⁻²
6.9	1.14x10 ⁻²
7.0	1.25x10 ⁻²
7.5	1.08x10 ⁻²
7.8	1.00x10 ⁻²
8.0	9.04x10 ⁻³
8.5	1.03x10 ⁻²
8.9	1.03x10 ⁻²
9.0	1.08x10 ⁻²

S.1a. Curve fitting for the data of Table S.1

These data were fit to equation 2 of the full paper, using values of k_0 , k_2 and k_3 and pK_{as}

for \mathbf{TPPH}^+ and \mathbf{NH}_3^+ OH measured in earlier experiments. (Table 1).

$$k_{\text{obs}} = k_{\text{H}}.\chi_{\text{TPPH+}} + [k_0 + (k_2 [\text{NH}_2\text{OH}].\chi_{\text{NH}_2\text{OH}} + k_3([\text{NH}_2\text{OH}].(\chi_{\text{NH}_2\text{OH}}))^2 + k_4([\text{NH}_2\text{OH}]^2.(\chi_{\text{NH}_2\text{OH}}).(\chi_{\text{NH}_3\text{OH}+}))^2].\chi_{\text{TPP}})$$
(2)

Figure S.1a shows how each of the various reactions contributes to the observed overall rate of release of 2-pyridone as the pH is varied. The coloured curves are calculated using the constants shown in Table 1 of the full paper, for the three separate reactions $(k_2, k_3 \text{ and } k_4)$ catalyzed by one and two molecules of hydroxylamine reacting with **TPP** and **TPPH**⁺ in the pH-range studied. The background hydrolysis rate is included in each case, showing how the reactions second order in hydroxylamine in particular dominate above pH 5, where significant amounts of the free base are present.

Figure S.1a. Breakdown of k_{obs} (black curve with data points) as a function of pH for the reaction of **TPP** with 0.5M NH₂OH, at 25°C and I = 1M (KCl). Values of $k_{\rm H}$ and k_4 (full paper, Table 1) were obtained by iterative fit and the errors are presented in the Table. For the 16-point (black) curve Reduced Chisq and R² are 7.09645x10⁻⁷ for 14 degrees of freedom, and 0.949, respectively.

Table S.2. Values of k_{obs} as a function of hydroxylamine concentration in the reaction with **TPP**, *I*=1.0 (KCl), at pH 8.5 and 25°C.

[NH ₂ OH], M	$k_{\rm obs},{\rm s}^{-1}$
0.05	2.60×10^{-4}
0.1	3.83x10 ⁻⁴
0.15	1.17×10^{-3}
0.2	1.73×10^{-3}
0.3	3.89x10 ⁻³
0.4	6.97x10 ⁻³
0.5	1.06×10^{-2}
0.6	1.53×10^{-2}
0.7	2.08×10^{-2}
0.8	2.68x10 ⁻²

0.005 0.004 0.003 0.003 0.002 0.001 0.001 0.001 0.001 0.003 0.002 0.001 0.003 0.003 0.003 0.002 0.003 0.003 0.003 0.003 0.002 0.003 0.003 0.002 0.003 0.003 0.003 0.002 0.003 0.003 0.002 0.001 0.003 0.003 0.002 0.001 0.003 0.003 0.002 0.003 0.003 0.003 0.001 0.003 0.003 0.003 0.001 0.0030

Figure S.1. Values of k_{obs} as a function of buffer [dipotassium hydrogen phosphate] concentration in the reaction of **TPP** with hydroxylamine 0.1M, at pH 8.5 and 25°C. The linear fit gives a k_2 value of 3.82×10^{-3} M⁻¹ s⁻¹.

[Nucleonhile] M		$k_{\rm obs},{\rm s}^{-1}$		
	MeNHOH	NMe ₂ OH	NH ₂ OMe	
0.05	2.47x10 ⁻⁴	8.32x10 ⁻⁵	3.00x10 ⁻⁵	
0.1	6.03x10 ⁻⁴	1.31x10 ⁻⁴	3.68x10 ⁻⁵	
0.15	9.32×10^{-4}	1.95×10^{-4}	4.09x10 ⁻⁵	
0.2	1.29x10 ⁻³	-	4.87x10 ⁻⁵	
0.25	1.76x10 ⁻³	2.86x10 ⁻⁴	5.28x10 ⁻⁵	
0.3	2.45x10 ⁻³	3.25x10 ⁻⁴	6.14x10 ⁻⁵	
0.35	2.99x10 ⁻³	-	6.41x10 ⁻⁵	
0.4	3.57x10 ⁻³	-	7.11x10 ⁻⁵	
0.45	4.67×10^{-3}	-	7.65x10 ⁻⁵	
0.5	5.42×10^{-3}	-	8.35x10 ⁻⁵	

Table S.3. Values of k_{obs} as a function of nucleophile concentration for the reactions of **TPP** with hydroxylamine derivatives: all at *I*=1.0 (KCl), pH 8.5 and 25°C.

Figure S.2. Plots of k_{obs} vs. nucleophile concentration for the reactions of **TPP** with the hydroxylamine derivatives: **(A)** (Me)₂NOH and NH₂OMe and **(B)** MeNHOH: all at *I*=1.0 (KCl), pH 8.5 and 25°C. Lines in **(A)** represent linear fits, curve fit in **(B)** is to eq. 1 (in main article). The derived data appear in **Table 2** in the main article.

Table S.4 Solvent deuterium isotope effect measurements

Conditions: T=25°C, Ionic strength = 1 M (KCl + NH₂OH). [NH₂OH]=0.5 M pH = 8.5 and pD = 8.5 (based on pD = pH_{rdg} + 0.4); 0.01M TRIS buffer.

 $k_{\rm obs}$ (H₂O) = 1.03e-2 s⁻¹

 k_{obs} (D₂O) = 6.13e-3 s⁻¹ (mean of 3 measurements)

gives k_{H20}/k_{D20} = 1.7

Table S.4 Proton inventory for the reaction between hydroxylamine and TPP

Conditions: as above at T=25°C, 0.01M TRIS buffer, $[NH_2OH]=0.5 \text{ M}$ Ionic strength = 1 M (KCl + NH₂OH), pH=8.5 and pD=8.5 (based on pD = pH_{rdg} + 0.4);.

V,H ₂ O (mL)	V, D ₂ O (mL)	Mols of H ₂ O	Mols of D ₂ O	n D ₂ O	$k_{\rm n},{\rm s}^{-1}$
-	2.0	0.000	0.110	1.000	6.24x10 ⁻³
0.5	2.5	0.028	0.138	0.833	7.11x10 ⁻³
1.0	2.0	0.055	0.110	0.666	7.30x10 ⁻³
1.5	1.5	0.083	0.083	0.499	8.41x10 ⁻³
2.0	1.0	0.111	0.055	0.333	8.96x10 ⁻³
2.5	0.5	0.138	0.028	0.166	9.67x10 ⁻³
2.0	-	0.111	0.000	0.000	1.06x10 ⁻²

Figure S.3a. Proton inventory plot for the reaction between hydroxylamine and TPP at 25° C, pH/ pD= 8.5 and $\mu = 1.0$ M.

Fitting curve to

$$k_{\rm n} = k_{\rm H} (1 - n + n.\phi_{\rm i}^{\rm T})^m$$

Gives:

 $R^2 = 0.9899$

 $\phi_i = 0.87$

m = 3.6 (between 3 and 4 protons)

$$k_{\rm H} = 0.0106 \pm 0.0002 {\rm M}^{-1} {\rm s}^{-1}$$

A test specifically for two in-flight protons shows an equally reasonable fit.

Since a plot of $(k_n/k_H)^{1/2}$ versus n_{D2O} is linear:

Figure S.3b. Proton inventory plot for the reaction between hydroxylamine and **TPP** with two mobile protons in the rate-determining transition state.

Intercept = 0.997 ± 0.007 Slope = -0.227 ± 0.011 R = 0.9943

1.2. NMR data

Figure S.4. Progressive ¹H NMR spectra for the reaction of **TPP** with hydroxylamine in presence of 0.3M of fumaric acid in D_2O , at pD=7.2 and 25°C.

Figure S.5. Typical progressive ³¹P NMR spectra for the reaction of **TPP** (0.02M) with hydroxylamine (0.1M) in D₂O, at pD=7.2 and 25°C. H₃PO₄ (85%) as external reference.

1.3. Hydrazine and diimine trapping

Figure S.6. UV-Vis spectra of solutions of 4-(dimethylamino)benzaldehyde and the product mixture of **TPP** reaction with hydroxylamine: (A) in the absence and (B) in presence of added fumaric acid. The band with maximum at 454nm in (A) is consistent with hydrazone formation.

2. Reaction of DPP with hydroxylamine

2.1. Kinetic data

Table S.5. Values of k_{obs} as a function of pH in the reaction of **DPP** with hydroxylamine (1M), <u>*I*=1.0 (KCl)</u>, 25°C.

рН	$k_{\rm obs},{\rm s}^{-1}$
5.0	1.23x10 ⁻⁴
5.5	1.10x10 ⁻⁴
6.0	8.27x10 ⁻⁵
6.3	8.59x10 ⁻⁵
6.6	5.57x10 ⁻⁵
7.0	1.92×10^{-5}
7.6	5.55x10 ⁻⁶
8.0	3.24x10 ⁻⁶
8.5	1.02×10^{-6}
9.0	4.27x10 ⁻⁷

Figure S.7. Calculated compositions of **DPP** and hydroxylamine as a function of pH. Values of pK_a used for **DPP** were: $pK_{a1}=0.33$ and $pK_{a2}=2.73$, and for hydroxylamine value was 6.06.

Table S.6. Values of k_{obs} as a function of hydroxylamine concentration in the reaction with **DPP**.

[NH ₂ OH], M	$k_{\rm obs},{\rm s}^{-1}$
0	5.50×10^{-6}
0.1	1.64×10^{-5}
0.2	3.01x10 ⁻⁵
0.3	4.11x10 ⁻⁵
0.4	5.52x10 ⁻⁵
0.5	6.70×10^{-5}
0.6	7.96x10 ⁻⁵
0.7	9.04x10 ⁻⁵
0.8	1.06×10^{-4}
0.9	1.20×10^{-4}

Figure S.8. Plot of k_{obs} vs. [NH₂OH] in the reaction of **DPP** at 25°C.

2.2. NMR data

Figure S.9. Progressive ¹H NMR spectra for the reaction of **DPP** with hydroxylamine (1M) in D_2O , at pD 5.0 and 25°C.

Figure S.10 Progressive ³¹P NMR spectra for the reaction of **DPP** with hydroxylamine (1M) in D_2O , at pD 5.0 and 25°C. Phosphoric acid (85%) was used as external reference. For assignments see the main text.

3. Theoretical calculations

3.1. Reaction of TPP with hydroxylamine 3.1.1 Cartesian coordinates for Mechanism **1** (**TPP** + NH₂OH): **3.1.1.1. Reactant 3.1.1.2. Transition**

3.1.1.1	. Reactant			3.1.1.2.	Transition	State (TS1)
Atom	Х	Y	Z	Atom	Х	Y	Z
Р	0.48017300	0.09257000	-0.18130200	Р	-0.14898500	-0.12874200	0.49757400
0	-0.07396400	0.10100700	1.20406000	0	-0.65599100	-0.44495800	1.92651800
0	-0.18974000	1.14185500	-1.18819200	0	0.80929400	-1.15787700	-0.37544800
0	0.41393900	-1.30241700	-0.96511100	0	-0.71200800	1.15919400	-0.37777600
0	2.02937900	0.47121500	-0.34188700	0	-1.43744300	-1.04296900	-0.26933300
C	-0.70875000	-2.15605000	-0.95775900	C	-0.14465600	2.41789100	-0.52853900
C	-1.66705600	-1.99831600	-1.95352400	C	0.46697500	2.71705300	-1.74624100
C	-1.72112500	-3.97680100	-0.05706600	C	0.13485100	4.53872800	0.26966200
C	-2.71336400	-2.92013900	-1.96875200	C	0.93100000	4.01693300	-1.92907900
Н	-1.58757700	-1.19706900	-2.67860200	Н	0.56726300	1.95320100	-2.50878900
С	-2.74248800	-3.93084200	-1.00337700	С	0.76459600	4.95046700	-0.90035200
Н	-1.70695600	-4.74608000	0.70891500	Н	-0.01582900	5.23016700	1.09363400
Н	-3.48959500	-2.85061300	-2.72401700	Н	1.41576000	4.29668600	-2.85919600
Н	-3.53766400	-4.66798000	-0.98216500	Н	1.11298200	5.97240700	-1.00228700
C	3.13750700	-0.24692000	0.12496900	C	-2.77345900	-0.90069600	-0.11173400
C	5.39905100	-0.48168900	-0.09569000	C	-4.81324400	-1.82025100	-0.69849900
C	4.24113300	-1.83372300	1.50368200	C	-4.79262700	0.11924600	0.68980400
C	5.43906200	-1.46568400	0.88668200	C	-5.52510000	-0.86132000	0.01180800
Н	6.30110700	-0.15812200	-0.60585100	Н	-5.32698800	-2.60786100	-1.24338200
Н	4.22606200	-2.59417700	2.27781200	Н	-5.30039900	0.89167500	1.25990400
C	-0.98181300	2.23720800	-0.79247300	C	2.10150900	-1.55585200	-0.07690400
C	-0.44342900	3.23917600	0.00959400	C	2,40454700	-2.18474800	1.13288600
C	-1.28014800	4.30918600	0.32313300	C	3.70492700	-2.64820500	1.30738500
Н	0.57888000	3.18498700	0.36559800	Н	1.64625600	-2.30559800	1.89785000
С	-2.99462700	3.26860500	-0.98988800	С	4.22255000	-1.85074200	-0.88961400
C	-2.58342400	4.32504400	-0.18125200	C	4.63821100	-2.47944300	0.27818100
Н	-0.91531200	5.11809400	0.94793500	Н	3.98433500	-3.14255000	2.23261100
Н	-3.99519000	3.24680200	-1.41042800	Н	4.90536100	-1.70277000	-1.72104100
Н	-3.26459600	5.13920500	0.04031000	Н	5.65901400	-2.83172200	0.37605600
С	3.05191500	-1.21227300	1.12525700	С	-3.40270900	0.11050300	0.63530900
Н	2.11111200	-1.46758500	1.59688900	Н	-2.82711300	0.86314600	1.15532200
0	-5.46237100	-0.87396600	0.80625000	0	1.33498500	0.72424300	0.90868400
Н	6.38112800	-1.92791500	1.15909200	Н	-6.60898900	-0.88219800	0.03358200
Ν	-2.20151000	2.22437100	-1.29993500	Ν	2.96772700	-1.39024300	-1.06960500
Ν	4.25771700	0.12320900	-0.47762800	Ν	-3.46958300	-1.84639500	-0.76303000
Ν	-0.69908600	-3.09902500	-0.03204800	Ν	-0.32831000	3.28582400	0.45943100
Ν	-4.27024900	-1.32911100	1.40898100	Ν	1.45333400	1.50556800	2.11591500
Н	-3.73979800	-1.93418400	0.77088700	Н	0.90883100	2.36237200	1.96668700
Н	-3.66020400	-0.53099100	1.68001800	Н	1.11382900	0.68158300	3.31828700
Н	-4.46862100	-1.88006300	2.25160700	Н	2.43906900	1.77390100	2.10221200
0	-2.63415000	0.93258500	2.13101100	0	0.61017000	-0.05339900	3.91937800
Н	-2.92101900	1.70440500	1.61970200	Н	1.23854300	-0.76502500	4.12663800
Н	-1.75566700	0.70244400	1.76679800	Н	-0.02706200	-0.35038500	2.99122000
0	1.21429700	1.03336100	3.61767500	0	-1.83332100	-3.72022000	-2.13912300
Н	0.82298100	0.74769900	2.77061600	Н	-0.93364200	-3.38922700	-2.00437800
Н	1.46141800	1.95837500	3.47678500	Н	-2.40805800	-3.06903100	-1.66221600
0	4.27766700	2.02737500	-2.64815900	0	2.40401000	-0.36709400	-3.66347800
Н	4.27212000	1.40226000	-1.88669300	Н	2.11939900	0.55394100	-3.57903000
Н	4.88157800	2.73704300	-2.38766500	Н	2.54824100	-0.67759600	-2.73609100

3.1.1.3. Intermediate

3.1.1.4. Transition State (TS2)

Atom	Х	Y	Z	Atom	Х	Y	Z
Р	-0.21754000	-0.31768900	1.01844800	Р	-0.30152400	-0.56567000	1.10568200
0	-0.42902700	-0.16484300	2.59497500	0	-0.46064500	-0.21926000	2.60972300
0	-1.31330900	0.08215500	-0.13491200	0	-1.25982800	0.03015100	-0.02943300
0	1.30639900	-0.75908400	0.55697000	0	1.22134900	-0.82046300	0.66050600
0	0.34419900	1.34271100	0.95898000	0	0.49156400	1.56948500	0.97800100
С	1.69562300	-1.79805600	-0.27008400	С	1.66634400	-1.80696500	-0.23195200
С	2.79779400	-2.55534400	0.13564600	С	2.78843500	-2.53343200	0.16113400
С	1.55999800	-2.85413200	-2.28665000	С	1.54401700	-2.81367500	-2.26496300
С	3.28821500	-3.50103300	-0.76054300	С	3.29316500	-3.45261800	-0.75587700
Н	3.24511200	-2.39426600	1.10970200	Н	3.23346200	-2.37966800	1.13710400
С	2.65878200	-3.65777700	-2.00060500	С	2.65931400	-3.60019000	-1.99415500
Н	1.03821900	-2.94372000	-3.23520300	Н	1.02105700	-2.89469600	-3.21310100
Н	4.14846100	-4.10740100	-0.49426700	Н	4.16670600	-4.04581500	-0.50464900
С	0.20351100	2.20310700	-0.09163700	С	0.28620700	2.34964800	-0.07083700
С	1.07615300	3.12512600	-2.01125900	С	1.04787400	3.19080000	-2.10490400
С	-1.01280700	3.95458100	-1.18923700	С	-1.05530900	3.96736200	-1.27918800
С	-0.00052400	3.99148900	-2.15610800	С	-0.07031100	3.99521700	-2.27896900
Н	1.89374100	3.12807800	-2.72691100	Н	1.84342200	3.18109600	-2.84656000
Н	-1.86847300	4.61960200	-1.25709100	Н	-1.94739900	4.58158200	-1.36711400
С	-2.60984600	-0.35917500	-0.33320200	С	-2.59092400	-0.34439200	-0.27591400
С	-2.95735500	-0.74129100	-1.62962600	С	-2.91172500	-0.68323500	-1.58721100
С	-4.29630400	-1.03813400	-1.86933600	С	-4.25023800	-0.96664600	-1.85084100
Н	-2.20557200	-0.78718400	-2.40874500	Н	-2.14844300	-0.71782000	-2.35501000
С	-4.74312600	-0.57000700	0.43687300	С	-4.72984600	-0.54620900	0.45977200
С	-5.21256900	-0.95387500	-0.81576800	С	-5.17987300	-0.90228800	-0.80828000
Н	-4.61839000	-1.33181300	-2.86357200	Н	-4.55951000	-1.23700400	-2.85546600
Н	-5.42054700	-0.49180600	1.28234000	Н	-5.41815600	-0.47957000	1.29685900
С	-0.91166900	3.05086300	-0.13823300	С	-0.88083400	3.14688000	-0.17502100
Н	-1.67154300	2.97816600	0.63142600	Н	-1.62134200	3.09626000	0.61647000
0	-0.85140000	-1.88723500	1.00248100	0	-0.93302000	-2.07651600	1.06656500
Н	-0.23195000	0.74547300	2.97346600	Н	-0.27908900	0.74061000	3.00303800
0	0.05031200	2.21081800	3.68531100	0	0.01384100	2.08469100	3.45045600
Н	-0.74349800	2.56764000	4.11336000	Н	-0.80493000	2.56025300	3.66080800
Н	0.16974200	2.74355200	2.88255200	Н	0.21219500	2.26812600	2.48873300
Н	-0.04000500	4.67973800	-2.99326400	Н	-0.16688700	4.62232400	-3.15853000
Ν	1.18425600	2.24007800	-0.99815000	Ν	1.23384000	2.38722800	-1.03745900
Н	-6.26401300	-1.17664200	-0.96071700	Н	-6.22957000	-1.11875000	-0.97341300
Ν	-3.45481100	-0.26136900	0.68445900	Ν	-3.44097800	-0.25824800	0.73135000
Н	3.00999300	-4.38271300	-2.72672700	Н	3.02092000	-4.30656700	-2.73322600
Ν	1.08254300	-1.92090100	-1.43983000	Ν	1.04877700	-1.91054300	-1.39470700
N	-0.28255430	-2.72712460	1.87803798	N	-0.30949800	-2.97966100	2.03709800
H	-0.99344030	-2.83380860	2.60412398	H	-1.08605600	-3.20328600	2.66278700
Н	-0.27464330	-3.60530460	1.35743798	H	-0.14912800	-3.81462200	1.47074100
0	3.77305600	1.15934400	-0.91588000		3.71767600	1.21810400	-0.91184300
Н	2.81746200	1.43278100	-0.91455200	H	2.7/940400	1.57729700	-0.93046300
Н	3.76536200	0.19150500	-0.88424500	Н	3.62864300	0.25448200	-0.88135600
0	4.85471200	2.13548700	1.44613500		4.83979800	2.12133100	1.44484000
H	4.44680300	1.77006600	0.62616800	H	4.41655100	1.77873900	0.62104000
H 	4.16030500	2.07708900	2.11749500	H 	4.14236800	2.08894400	2.11482900

3.1.1.5 Product

Atom	Х	Y	Z
	0.42418600	0.05222500	1 21001500
P	-0.42418600	-0.95222500	1.21881500
0	-0.30933900	-0.34130100	2.37333800
0	-1.21/39300	-0.21019300	0.02907200
0	1.10344000	-0.94888000	1.05730800
0 C	1.08118000	2.28438900	0.22150600
C	1.04392300	-1.85/44300	-0.23130600
C	2.80025600	-2.51/00000	0.15115200
C	1.00008300	-2.77555600	-2.3008/300
U U	3.30207300	-3.38123000	-0./8040/00
п	3.22199100	-2.3/388500	1.13935000
U U	2.75244400	-3.51910900	-2.03/52600
п	1.102/8600	-2.848/5800	-3.26029500
Н	4.25881200	-3.94100300	-0.54016400
C	0.5/205400	2.81606500	-0.0/503000
C	0.92270300	3.17239900	-2.32528000
C	-1.06196400	4.04899000	-1.32110500
C	-0.25935300	3.88915100	-2.45929400
Н	1.57759000	3.00996300	-3.17/04900
Н	-1.99841300	4.59583900	-1.37896800
C	-2.57824100	-0.41058700	-0.25243000
C	-2.91236700	-0.63992500	-1.58480800
C	-4.26401100	-0.81521900	-1.8/165600
Н	-2.145/6500	-0.68482900	-2.34881500
C	-4.73443000	-0.50512400	0.45848400
С	-5.19616800	-0.75187800	-0.83084400
Н	-4.58239700	-1.00408600	-2.89191900
Н	-5.42384400	-0.44291400	1.29501300
С	-0.65287000	3.50462600	-0.10998500
Н	-1.24508000	3.60976800	0.79255800
0	-0.99354600	-2.45437800	1.06478200
Н	-0.41207500	1.35335900	3.25880700
0	-0.19325400	2.29190700	3.43720700
Н	-1.04591300	2.74838300	3.49758400
Н	0.51046300	2.44728300	1.85316000
Н	-0.54502800	4.30370900	-3.41932400
Ν	1.33887200	2.64243200	-1.15801100
Н	-6.25645800	-0.88780400	-1.01347800
Ν	-3.43037800	-0.33093200	0.75447200
Н	3.15594000	-4.18492500	-2.79248900
Ν	1.05099300	-1.93202900	-1.40751500
Ν	-0.45624539	-3.27679103	2.01968768
Н	-1.28606739	-3.58786903	2.52851868
Н	-0.14878439	-4.07026403	1.45403868
0	3.75687300	1.24962700	-0.96867300
Н	2.87570500	1.71255000	-1.02999100
Н	3.54782400	0.30657100	-0.89200400
0	4.82755100	2.11974700	1.43717600
Н	4.42555700	1.79436400	0.59714000
Н	4.09321100	2.14884900	2.06678400
Н	3.54782400	0.30657100	-0.89200400
0	4.82755100	2.11974700	1.43717600
Н	4.42555700	1.79436400	0.59714000

3.1.2. Cartesian coordinates for Mechanism 2 (**TPP** + NH₂OH):

3.1.2.1 Reactant

3.1.2.2. Transition State (TS4)

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
 Р	-0.40844600	-0.35924600	-0.52060900	Р	-0.03672100	-0.57344300	0.18269800
0	0.67273600	0.20798300	-1.36851200	0	-0.54979200	-0.73172900	1.60976600
0	-0.80182500	0.46341100	0.81192500	0	1.05133600	-1.64779200	-0.46061300
0	-0.10785100	-1.80395900	0.11555300	0	-0.54836500	0.54802700	-0.92941900
0	-1.74481500	-0.61182800	-1.36304200	0	-1.19889500	-1.66655000	-0.58270400
С	1.17231600	-2.22121100	0.52766800	С	-0.22526900	1.89367000	-1.04521200
С	2.94193400	-2.24320600	2.10929300	С	0.63375600	2.27532300	-2.07808000
С	2.95701100	-3.56109600	0.10598100	С	-0.62823500	4.05204200	-0.42770700
С	3.59115200	-3.16179800	1.28022600	С	0.85833500	3.63686600	-2.25876100
Н	3.39784500	-1.91172900	3.03664400	Н	1.09981700	1.52569900	-2.70659500
Н	3.42287100	-4.28051500	-0.56039800	С	0.21877900	4.54965700	-1.41277100
Н	4.56397100	-3.56579500	1.53818300	Н	-1.15270300	4.72585100	0.24379800
С	-3.04362200	-0.91851600	-0.92598000	н	1.52005800	3,98023300	-3.04795800
C	-3.29692300	-1.55350400	0.28824400	Н	0.36676300	5.61902800	-1.51761900
C	-4.63065200	-1.82774600	0.58836200	С	-2.55013900	-1.59247500	-0.50915400
Н	-2 50117300	-1 83404900	0.96604800	C	-4 51103400	-2.61987800	-1 15136200
C	-5 24324600	-0.84736600	-1 50605900	C	-4 64998300	-0.62313900	0 14406900
C	-5 62753700	-1 47059400	-0 32232700	C	-5 30295200	-1 66337100	-0 52478100
н	-4 88080700	-2 32123300	1 52212900	н	-4 96858200	-3 45023800	-1 68318600
н	-5 98140300	-0 55543100	-2 24662800	н	-5 21734200	0.15105600	0.65275400
C II	-1 15753000	1 81381500	0.84596500	C	2 43622600	-1 62200700	-0.37179900
C	-1.75958600	3 72409500	-0 22978100	C	3 05603900	-2 23352700	0.71957700
C	-1 61013200	3 73289300	2 16273900	C	4 44805500	-2.23332700	0.72209700
C	-1.87753500	4 41605200	0.97052200	н	2 46098300	-2.29179800	1 52621100
н	-1.95559800	4.21340300	-1 17911600	C	4 42368300	-1.18522300	-1 40170200
н	-1 68972400	4 23736800	3 12035700	C	5 15142600	-1.75364200	-0.35938400
н	-2 17023800	5 46009600	0.97157000	н	4 97286000	-2 75656400	1 55095200
n C	1 69087800	-1 75603700	1 73260700	н	4.97280000	-0.76779900	-2 26653500
н	1 1/081200	-1.04589800	2 33855400	н	6 23/192/10	-0.70779900	-0.40036400
n C	1.14081200	2 30311400	2.55855400	II C	3 25988600	0.57708400	0.15007600
н	-1.01422100	1 81/00700	2.11111200	н	-2 74347300	0.21748700	0.13707000
н	-6 67456400	-1 67083800	-0 12370700	0	1 29518500	0.56727300	0.58485300
N	-1 40295900	2 42481000	-0.12570700	н	-6 38/183600	-1 73214400	-0 55788600
N	3 96204600	0.56722000	1 81106800	N N	3.07866200	1 11030000	1 / 1 00 0 3 0 0
N	1 75048000	3 00840300	0.27566600	N	3 16603400	2 50733700	1 15117600
N O	3 80808000	1 07347600	-0.27500000	N	-3.10003400	-2.39733700	-1.13117000
N	3 58826000	0.23642600	0.42980200	N	1 68208500	0.66026000	1 05218800
л Ц	3.58820900	0.23042000	-0.09074000	ц	2 57615200	1 16600000	1.95218800
и П	2 58001100	0.22435000	0.95250700	и П	0.85277000	1.10000,000	2 66176800
н	2.36901100 A 16946700	0.2240000	-0.93230700		1 86546600	-0.26627500	2.00170000
0	5 22007/00	1 75775200	-1.42401200		0.0740000	1 02824100	2.32303000
N	5.5200/400	2 54095600	-2.22300200		1 16707100	1.72024100	2.27027400
	3.343/0/00	2.34083000	-1.03903800		-1.10/0/100	1.23001000	3.3/93/400
п	4.94429700	2.14338900	-0.28230/00		-1.9123/400	1.90011100	3.11002000
п u	5 20015200	2.319/0300	1 22470500		-1.118/0400	0.40/89/00	2.08/00000
п 	3.29015300	3.32033900	-1.224/0300	п 	-1.3/928900	0.88029300	4.31132800

3.1.2.3 Intermediate

3.1.2.4. Transition State (TS5)

Atom	Х	Y	Z	Atom	Х	Y	Z
Р	-0.16470200	-0.40895500	0.35044200	Р	0.47937300	-0.24424700	-0.78386900
0	0.54534700	-0.90406500	1.69885900	0	-0.15709200	-0.93861300	-2.02237200
0	0.23681600	1.00152100	-0.39903000	0	-0.35149000	0.76652300	0.13444400
0	-1.20180700	-1.48140600	-0.35518500	0	1.53334800	-1.18631700	-0.02992300
0	1.00673300	-1.18635600	-0.68169500	0	-0.86088000	-1.70713700	0.44104200
С	-2.57625500	-1.38737900	-0.52091900	С	2.75472300	-0.78984300	0.53604600
С	-3.35087100	-2.43972300	-0.02872600	С	3.83444900	-1.64294800	0.31913600
С	-4.36931700	-0.35348000	-1.47510000	С	3.94391400	0.62633600	1.85374800
С	-4.71545800	-2.41114100	-0.29891300	С	5.03514700	-1.30076400	0.93586500
Н	-2.88992500	-3.23786200	0.54123400	Н	3.72779600	-2.52393700	-0.30256400
С	-5.24182100	-1.34305600	-1.03438000	С	5.09550200	-0.14205300	1.71762300
Н	-4.73403200	0.49037800	-2.05361900	Н	3.94521800	1.53243400	2.45203800
Н	-5.35848000	-3.20806400	0.06156100	Н	5.91068400	-1.92850000	0.80432700
С	2.26257100	-0.75832400	-1.01193500	С	-2.02078200	-1.33592900	0.96771900
C	3,89007600	-0.82319200	-2.63290900	C	-3.32604600	-1.05857200	2.86402200
C	4.36011600	0.32705100	-0.59443200	C	-4.29762000	-0.53093700	0.74773300
C	4.77916000	-0.07829900	-1.86552300	C	-4.42741800	-0.61204200	2.14205900
Н	4.17251300	-1.17007600	-3.62330000	Н	-3.38199100	-1.13959900	3.94764800
Н	5 01829100	0 90220400	0.05008600	Н	-5 12745500	-0 19048100	0 13382200
C	-0.04551200	2 30710900	-0.00297200	C	-0 64123000	2 11036800	-0 16819900
C	-0.86235100	3 07336700	-0.83445300	C	-0 31268500	3 05211300	0.802.04400
C	-1 04850800	4 41042900	-0 49170300	C	-0.67953600	4 37119300	0 54231400
Н	-1 32370200	2 63317000	-1 71031800	Н	0 20095000	2,75791000	1 70939500
C	0 38575400	4 05427900	1 39340300	C	-1 61435700	3 63524400	-1 53910700
C	-0 41639000	4 91480900	0 64918900	C	-1 34044700	4 67279000	-0.65236100
н	-1 67656100	5 04741200	-1 10675300	н	-0 44967200	5 15019200	1 26214400
н	0.90243700	4 40725200	2 28134300	Н	-2 12838000	3 82431700	-2.47665800
C	3 08795900	-0.01845400	-0.15011500	C	-3 09652800	-0 89365400	0 15561200
н	2.74841600	0 27022000	0 83624600	Н	-2.96472900	-0.84607200	-0 92049300
0	-1 35323000	0.43710800	1 20689700	0	1 40763700	0.89708600	-1 48673000
Н	1 23315700	-1 62413300	1 59329600	н	-0 51561600	-1 91346300	-1 92802500
0	2 31267600	-2 88464900	1 69370700	0	-0.93324600	-3 29168900	-1 60833300
Н	2.66761900	-3 08782700	0.81395400	н	-1.08702900	-2 97427500	-0 67392600
н	5 76341500	0 16945800	-2 24776000	Н	-5 34748800	-0 33985700	2 64842000
N	2 65125700	-1 15932400	-2.22683700	N	-2 14773500	-1 41015700	2 31339200
н	-0 53616100	5 94914800	0.95262100	Н	-1 64015300	5 68722100	-0.89128500
N	0 58223000	2 76060900	1 07299700	N	-1 27335800	2 35294700	-1 30149600
н	-6 30004200	-1 28069700	-1 26368700	н	6.01289200	0.15855600	2 21159900
N	-3 04225400	-0.37315700	-1 23586900	N	2 76966500	0.30492900	1 27273600
N	-2 03997100	-0 34310700	2 22303100	N	2.35740600	0.34663000	-2 45689400
н	-1 65847100	0.01995500	3.09895500	н	2.03550600	0.75532100	-3 33669100
н	-2 99418300	0.01474200	2 15844800	н	3 21457600	0.84341100	-2 20707000
N	3 49357800	-2 61589800	2.13044000	N	-2 22730700	-3 73114400	-2 11185400
н	3 41445300	-1 62360200	2.30213100	н	-2.22730700	_2 99103300	-2 75603000
н	3 30070700	-3 122309200	3 36701600	н	-1.980/1600	-4 52751600	-2 7003/800
11	5.50070700	-3.12232000	5.50/01000	11	-1.70041000	-+.52/51000	-2.70034600

3.1.2.5 Product

Atom	Х	Y	Z	
Р	-1.25696100	0.26620000	0.91391300	
0	-0.14613000	-0.21766600	1.78331800	
0	-0.85916100	1.19549200	-0.33630700	
0	-1.93056100	-1.00786500	0.20387200	
0	2.67121300	-2.91325000	-0.46587900	
С	-3.07094700	-1.08149300	-0.60310300	
С	-3.48178300	-2.37265600	-0.93429300	
С	-4.74863300	-0.09300200	-1.77324100	
С	-4.60867500	-2.48494700	-1.74237500	
Н	-2.93747800	-3.23586300	-0.56965300	
С	-5.25971300	-1.32255800	-2.17234300	
Н	-5.22105000	0.83415400	-2.08387300	
Н	-4.97382800	-3.46522800	-2.03176500	
С	3.59228100	-1.92566800	-0.63534500	
С	5.31468800	-1.13032400	-1.92395300	
С	4.65720600	0.12498600	0.00115900	
С	5.49612900	-0.01648600	-1.11180100	
Н	5.94179400	-1.28207100	-2.79838700	
Н	4.75816600	0.97815700	0.66555000	
C	-0.10511000	2 37125900	-0 27322900	
C	0 28749800	2 91093000	-1 49686200	
C	1 02531400	4 09029500	-1 45126000	
н	0.02298400	2 42319500	-2.42771000	
C	0.88111700	4 02136400	0 94044300	
C	1 33203200	4 65961200	-0 20965200	
н	1 35783500	4 55782200	-2 37255400	
Н	1 09327900	4 42715200	1 92495500	
C	3 68782700	-0.83857600	0.25188400	
н	3 01687400	-0 76279600	1 10078800	
0	-2 40003700	1 14837400	1.62595800	
н	0 57275200	-1 83035600	1 66763800	
0	1.03654800	-2 70188800	1.65580000	
н	2 11285200	-2 76188000	0.34382100	
н	6 26511100	0.71291700	-1 34139200	
N	4 38209900	-2 07711900	-1 70176300	
н	1.90653700	5 57625300	-0 13551500	
N	0 15974400	2 88155600	0.91547000	
н	-6 14094000	-1 36837100	-2 80268000	
N	-3 65597600	0.03631800	-0.99112400	
N	-2.969597000	0.03051000	2 78107700	
н	-2.79209000	1.08235100	3 54660400	
н	-2.79209000	0.48318600	2 58111000	
N	1 73794600	-2 84806800	2.91496300	
н	2 28127800	-2.0400000	2.71470300	
н	1 01076000	-1.96978000	3 63205700	
	1.01070900	-2.02009300	5.05205700	

Table S.7. Structural parameters of intermediate (Int), transition state (TS2) and products (P) for Mechanism 1 in the reaction of TPP with hydroxylamine at the B3LYP/6-31++G(d,p) level of theory.

Interatomic distances (Å)								
	P ₁ -O ₂	O ₂ -H ₃	H ₃ -O ₄	O ₄ -H ₅	H5-O6	H ₆ -O ₁		
Int	1.598	1.005	1.653	0.971	2.386	1.754		
TS2	1.552	1.053	1.447	0.999	1.688	2.281		
Р	1.488 1.831		0.980 1.740		0.992	3.573		
Dihedral angles								
	P ₁ -O ₂ -H ₃ -O ₄	O ₂ -H ₃ -O ₄ -H ₅	H ₃ -O ₄ -H ₅ -O ₆	O ₄ -H ₅ -O ₆ -P ₁	$H_5-O_6-P_1-O_2$	$O_6-P_1-O_2-H_3$		
TS2	-11.3 11.6		-13.3 18.2		-8.1	5.4		
Imaginary frequency (cm ⁻¹)								
193.10								

Table S.8. Structural parameters of intermediate (**Int**), alternative transition states (**TS4** and **TS5**) and products (**P**) for Mechanism **2** in the reaction of **TPP** with hydroxylamine at the B3LYP/6-31++G(d,p) level of theory.

Interatomic distances (Å)								
	P ₁ -O ₂ O ₂ -H ₃		H ₃ -O ₄ O ₄ -H ₅		H ₅ -O ₆	H ₆ -O ₁		
Int	t 1.602 1.001		1.663	0.970	2.935	1.744		
TS4	4 1.556 1.043		1.475	1.475 0.999		2.332		
TS5	5 1.510 1.601		1.070	1.027	2.938	2.228		
Р	1.491 1.770		0.987	1.698	0.995	5.239		
Dihedral angles								
	P ₁ -O ₂ -H ₃ -O ₄ O ₂ -H ₃ -O ₄ -H ₅ H ₃ -O ₄ -H ₅ -O ₆ O ₄ -H ₅ -O ₆ -P ₁ H ₅ -O ₆ -P ₁ -O ₂ O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -P ₁ -O ₂ -H ₃ -O ₄ -P ₁ -O ₂ -H ₃ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -P ₁ -O ₂ -H ₃ -O ₄ -P ₁ -O ₂ -H ₃ -O ₄ -P ₁ -O ₂ -H ₃ -O ₄ -P ₁ -O ₂ -H ₄ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -P ₁ -O ₂ -H ₄ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -H ₄ -O ₄ -H ₅ -O ₆ -P ₁ -O ₂ -P ₁ -O ₂ -H ₄ -O ₄ -H ₅ -O ₆ -P ₁ -O ₄ -P ₁ -O ₄ -P ₁ -O ₄ -H ₅ -O ₆ -P ₁ -O ₄ -P ₁ -O							
TS4	-8.7	38.4	-10.9	-6.0	24.4	-25.6		
	P ₁ -O ₂ -H ₃ -N ₄ O ₂ -H ₃ -N ₄ -H ₅		H ₃ -N ₄ -H ₅ -O ₆	N ₄ -H ₅ -O ₆ -P ₁	$H_5-O_6-P_1-O_2$	O ₆ -P ₁ -O ₂ -H ₃		
TS5	5 149.5 -151.7		24.0	-39.6	29.6	-28.7		
Imaginary frequency (cm ⁻¹)								
TS4 TS5								
168.9 160.0i								

3.2. Reaction of DPP with hydroxylamine

3.2.1 Cartesian coordinates for the reaction DPP + NH₂OH:

3.2.1.1 Reactant

3.2.1.2. Transition State (TS)

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
 Р	-0.43922800	-0.71497900	-0.07807800	 Р	0.76825900	-0.91439900	0.31669500
0	-0.41432600	-1.88861900	0.86083900	0	0.44002900	-2.16876200	-0.46397800
0	1.04840500	-0.65967600	-0.89727300	0	-0.91432100	-0.59833100	1.03472400
0	-0.35637200	0.62157700	0.86716800	0	0.64919700	0.40544800	-0.66634900
0	-1.43739300	-0.55758400	-1.18832500	0	1.44671200	-0.81798100	1.66171900
С	2.26963900	-0.73723900	-0.36267000	С	-2.05927600	-0.59764500	0.40252800
С	2.61713100	-0.72499100	0.98892300	С	-2.28872300	-0.60175200	-0.98786800
С	4.56958400	-0.88254500	-0.98089100	С	-4.43586500	-0.55758100	0.77198700
С	3.96376000	-0.79214300	1.32772400	С	-3.59074000	-0.58408200	-1.45983700
Н	1.84981700	-0.66098500	1.74784900	Н	-1.44717700	-0.61199700	-1.66528900
С	4.95742600	-0.87008700	0.33985500	С	-4.68866100	-0.56176500	-0.57785700
Н	5.24957900	-0.94130200	-1.82086500	Н	-5.20046900	-0.54055900	1.53826000
Н	4.24382500	-0.78087200	2.37580000	Н	-3.76251900	-0.58486700	-2.53161600
Н	6.00853900	-0.92061500	0.59394700	Н	-5.70902600	-0.54664800	-0.93919500
С	-0.59918100	1.93192100	0.46256700	С	0.77601600	1.74008800	-0.34454000
С	-0.09367700	2.44189500	-0.73494000	С	0.85440600	2.21652500	0.96891000
С	-0.35451500	3.78062500	-1.01952700	С	0.96269200	3.59377100	1.14616700
Н	0.48501200	1.82478000	-1.41111700	Н	0.83564500	1.54051900	1.81323700
С	-1.52932600	3.92810000	1.05897600	С	0.89599900	3.84766200	-1.22807800
С	-1.08771400	4.54471000	-0.10764200	С	0.98580700	4.43449100	0.03015700
Н	0.01716400	4.21971600	-1.94006800	Н	1.02722200	4.00189400	2.15025900
Н	-2.09704400	4.48351300	1.79969100	Н	0.90701200	4.45803100	-2.12667400
Н	-1.30850100	5.59040400	-0.29176600	Н	1.06861600	5.51114900	0.13029000
Ν	-1.29503300	2.63364500	1.34839700	Ν	0.79300600	2.52011200	-1.42337200
Ν	3.25141700	-0.81890500	-1.29079500	Ν	-3.15257400	-0.57806000	1.21667100
Ν	-3.84075800	-2.24209100	-0.98160600	Ν	3.64798700	-1.63337300	0.21748300
Н	-3.06349700	-1.59433500	-1.19518900	Н	3.38925700	-1.47250500	1.20263900
Н	-3.51994800	-2.83267400	-0.19245800	Н	3.53030300	-2.64122800	0.00300200
0	-5.02255300	-1.54205200	-0.64499600	0	2.79248800	-0.86908500	-0.59463300
Н	-3.98946800	-2.84454300	-1.79769600	Н	4.62360200	-1.35795900	0.07082700
Н	2.96974800	-0.82781000	-2.27100800	Н	-2.97584800	-0.57723600	2.22009100
0	-2.61819900	-3.54281700	1.35439500	0	2.39438600	-4.12324200	-0.58359700
Н	-1.85007900	-2.93805900	1.25479500	Н	1.64814900	-3.47915400	-0.61826400
Н	-3.09136800	-3.22918800	2.13855800	Н	2.58456100	-4.34685900	-1.50596300

3.2.1.3 Product

Atom	Х	Y	Z
Р	1.48141200	-0.95620900	0.12943100
0	0.75734600	-2.17791600	-0.37444400
0	-1.92378300	-0.27212000	1.61721800
0	0.77983000	0.32440400	-0.58887700
0	1.81879500	-0.77187400	1.58102300
С	-2.88289900	-0.39992500	0.80973900
С	-2.78446000	-0.37667300	-0.62278400
С	-5.28554300	-0.72586000	0.52905300
С	-3.90210800	-0.52204200	-1.41006500
Н	-1.79895000	-0.23795500	-1.05143600
С	-5.18817500	-0.70072500	-0.83572000
Н	-6.21646900	-0.85697800	1.06715600
Н	-3.79946300	-0.49947800	-2.49136800
Н	-6.07375300	-0.81472800	-1.44811800
С	0.98568000	1.67715700	-0.32293500
С	0.91454600	2.18439800	0.97551000
С	1.05611100	3.56203900	1.12879200
Н	0.74839800	1.52855800	1.82030300
С	1.28447900	3.74072000	-1.24744400
С	1.24286700	4.36182300	-0.00250200
Н	1.00823900	4.00269300	2.11985500
Н	1.42095000	4.32271800	-2.15422700
Н	1.34882900	5.43829900	0.07578100
Ν	1.16157400	2.40973300	-1.41552600
Ν	-4.16968200	-0.58185400	1.30018600
Ν	3.99842300	-1.64557500	-0.24031200
Н	4.18149700	-1.42636500	0.74875000
Н	3.72548500	-2.66278900	-0.36400400
0	2.96384500	-0.81233100	-0.74164900
Н	4.83000700	-1.42409800	-0.79885000
Н	-4.26679600	-0.60445900	2.31169900
0	2.79500600	-4.11420800	-0.54923400
Н	1.92471100	-3.65991200	-0.56721700
Н	2.91272100	-4.49090400	-1.43419700

Table S.9. Structural parameters of reactant (R2), transition state (TS) and products (P) for the reaction of **DPP** with hydroxylamine at the B3LYP/6-31+G(d,p) level of theory, calculated for mechanism **B** of Scheme 9.

Interatomic distances (Å)								
	O ₁ -P ₂	P ₂ -O ₃	P ₂ -O ₆	P ₂ -O ₇	P ₂ -O ₈	O ₃ -N ₄	N ₄ -H ₅	5 O ₉ -H ₁₀
R2	1.693	5.917	1.508	1.635	1.500	1.412	1.041	0.983
TS	1.840	2.234	1.518	1.648	1.508	1.405	1.037	0.985
Р	3.880	1.710	1.505	1.710	1.505	1.360	1.000	0.960
Dihedral angles								
	O ₁ -P ₂ -O ₃ -O	O ₆ O ₁ -P ₂ -	O ₃ -N ₄ C	O ₃ -N ₄ -H ₅ -O ₉	N ₄ -H ₅ -O	9-H ₁₀ H ₅ -O	9-H ₁₀ -O ₆	O ₆ -P ₂ -O ₃ -N ₄
TS	-140.18	131	.96	-30.61	-5.0	9 -2	8.16	-87.87
Imaginary frequency (cm ⁻¹)								
215.24								