An Unusual 1, 2-Aryl Shift in Palladium-Catalyzed Cross-Coupling

Ethoxycarbonylation of Arylboronic Acids with α-Iminoesters

Cheng Qian,^a Jiayan Chen,^a Meiqin Fu, ^a Shiya Zhu,^a Wen-Hua Chen,^b Huanfeng Jiang,^a and Wei Zeng^{a, *}

^aSchool of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, P. R. China, 510641; E-mail: zengwei@scut.edu.cn

^bSchool of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China

Supporting Information

Table of Contents

1. General experimental information
1.1 Table 1. The effect of substituent groups on the aryl ring of arylboronic acid on the
cross-coupling ethoxy carbonylation of arylboronic acids with α -iminoesters2
1.2 Table 2. The effect of solvents on the cross-coupling ethoxycarbonylation of arylboronic
acids with α -iminoesters2
1.3. Table 3. Catalyst screening for the cross-coupling ethoxycarbonylation of arylboronic
acids with α -iminoesters2
1.4 Table 4. Ligand screening for the cross-coupling ethoxycarbonylation of arylboronic
acids with α -iminoesters
1.5. Table 5. The effect of temperature on the cross-coupling ethoxycarbonylation of
arylboronic acids with α -iminoesters
1.6. The mechanism exploration of Pd(II)-catalyzed cross-coupling ethoxycarbonylation of
arylboronic acids with α -iminoesters4
1.6.1 The GC spectra about the the reaction progress of α -iminoesters (1a) and phenylboronic
acid (2a) (see Scheme 1)
2. ¹ H NMR and ¹³ C NMR Spectrum for products

1. General experimental information

	MeO- N=C-CC H 1a	DOEt , R	Pd(OAC) ₂ /L 110°C,48h	OEt 3a
entry	Pd salts	R	L	Yield $(\%)^{b}$
1	$Pd(OAc)_2$	Br	Ph ₃ P	0
2	$Pd(OAc)_2$	Ι	Ph ₃ P	0
3	Pd(OAc) ₂	-B O		0
4	$Pd(OAc)_2$	B(OH) ₂		8

1.1 Table 1. ^aThe effect of substituent groups on the aryl ring of arylboronic acid on the cross-coupling ethoxycarbonylation of arylboronic acids with α -iminoesters

^aReaction conditions: **1a** (0.18 mmol), **2** (0.18 mmol), Pd(TFA)₂ (5 mol %), **L** (5 mol %), solvent: CH₃NO₂ (3.0 mL). All reactions were carried out at 110°C for 48 h in sealed tube. ^bIsolated yield after purification; L = ligand.

1.2 Table 2. ^a The effect of solvents on the cross-coupling ethoxycarbonylation of ary	lboronic
acids with α-iminoesters	

		B(OH) ₂	O.
	MeO-N=C-COOEt ₊	Pd(TFA) ₂ ,Bipy,Solvent 48h,T	OEt
	1a	2a	3a
entry	solvent	temp.($^{\circ}$ C) yield (%) ^b
1	CH ₃ NO	110	91
2	DMF	140)
3	toluene	140) 21
4	TCE	110	27
5	CH ₃ CN	100	23
6	CH ₃ OH	I 80	trace

^aReaction conditions: **1a** (0.18 mmol), **2a** (0.18 mmol), Pd(TFA)₂ (5 mol %), bipy (5 mol %), solvent (3.0 mL). All reactions were carried out at the given temperature for 48 h in sealed tube. ^bIsolated yield after purification. bipy = 2,2'-bipyridine.

1.3	. Table 3.	^a Catalyst	screening	for the	e cross-coupling	ethoxycarbony	lation of a	arylboronic
aci	ds with α-i	minoester	S					

	B(OF	H) ₂ O
MeO-	-N=C-COOEt +	Pd(Ⅱ) 48h,110 [°] C,CH ₃ NO ₂ OEt
	1a 2a	<u> </u>
entry	Pd salts	Yield $(\%)^{b}$
1	$Pd(OAc)_2$	8
2	$Pd(TFA)_2$	13
3	PdCl ₂	27
4	PdCl ₂ (CH ₃ CN) ₂	35
5	PdCl ₂ (PhCN) ₂	37
6	PdCl ₂ (PPh ₃)	

7	PdCl ₂ (CH ₂ CH ₃)(PPh ₂) ₂	<10
---	--	-----

^aReaction conditions: **1a** (0.18 mmol), **2a** (0.18 mmol), Pd salts (5 mol %), solvent: $CH_3NO_2(3.0 \text{ mL})$. All reactions were carried out at 110°C for 48 h in a sealed tube. ^bIsolated yield after purification.

1.4 Table 4.	^a Ligand	screening	for th	e cross-couplin	g ethoxycarb	onylation of	arylboronic
acids with a-	iminoeste	ers					

	B(OF	H) ₂ O	
		Pd(II), L 48h,110°C,CH ₃ NO ₂ OEt	
	la Za		
entry	Pd salts	ligand	Yield (%) ^b
1	$Pd(TFA)_2$	L ₁	61
2	$Pd(TFA)_2$	\mathbf{L}_{2}	16
3	$Pd(TFA)_2$	L ₃	11
4	Pd(TFA) ₂	\mathbf{L}_{4}	17
5	Pd(TFA) ₂	L ₅	<10
6	$Pd(TFA)_2$	L_6	35
7	Pd(TFA) ₂	L_7	91
8	Pd(TFA) ₂	L_8	81
9	$PdCl_2$	L_7	27
10	PdCl ₂ (CH ₃ CN) ₂	L_7	53
11	PdCl ₂ (PhCN) ₂	L_7	

^aReaction conditions: **1a** (0.18 mmol), **2a** (0.18 mmol), Pd(TFA)₂ (5 mol %), **L** (5 mol %), solvent (3.0 mL). All reactions were carried out at 110°C for 48 h in sealed tube. ^bIsolated yield after purification; **L** = ligand.

1.5. Table 5. ^aThe effect of temperature on the cross-coupling ethoxycarbonylation of arylboronic acids with α -iminoesters

	MeO	$\begin{array}{c} B(OH)_2 & O \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	OEt
	1a 2	2a 3a	
entry	solvent	Temp.(℃)	yield (%) ^b
1	CH ₃ NO ₂	60	0
2	CH ₃ NO ₂	90	$37^{c}(45^{c,d})$
3	CH ₃ NO ₂	100	56
4	CH ₃ NO ₂	110	91

5	CH ₃ NO ₂	120	77

^aReaction conditions: **1a** (0.174 mmol), **2a** (0.174 mmol), Pd(TFA)₂ (5 mol %), bipy (5 mol %), solvent: CH₃NO₂ (3.0 mL). All reactions were carried out at the given temperature for 48 h in sealed tube unless otherwise noted. ^bIsolated yield after purification. ^cThe reaction temperature is 90 °C. ^dThe yield of by product α - (4- methoxyphenylamino)- α - phenyl- acetic acid ethyl ester. bipy = 2,2'- bipyridine.

1.6. The mechanism exploration of Pd(II)-catalyzed cross-coupling ethoxycarbonylation of arylboronic acids with α -iminoesters

1.6.1 The GC spectra about the the reaction progress of α -iminoesters (1a) and phenylboronic acid (2a) (see Scheme 1)

Scheme 1

To the solution of α - iminoesters **1a** (0.2 mmol, 1.0 equiv) of CH₃NO₂ (2.0 mL), phenylboronic acid **2a** (0.2 mmol, 1.0 equiv), Pd(TFA)₂(0.01 mmol, 5 mol %) and bipy (0.01 mmol, 5 mol %) was added under Ar atmosphere. Then the mixture was stirred at 110 °C for a given time, the corresponding reaction progress was monitored by GC-MS. The effect of reaction time on the GC yield of **3a** and **3d** was listed in Table 7, and the corresponding GC spectra were shown in Figure 1-6. The GC-MS spectra of **3a** and **3d** were shown in Figure 7-8.

14	Tuble 7. The effect of federion on the Ge yield of bu and bu						
Enters	Reaction	ion Retention time (min) GC yield		ld (%)			
Entry	time (h)	3a	3d	3 a	3d		
1	2	2.72	6.31	15	70		
2	5	2.64	6.31	30	65		
3	8	2.65	6.32	46	48		
4	12	2.69	6.31	54	35		
5	26	2.64	6.37	87	5		
6	48	2.65	6.35	>95	0		

Table 7. The effect of reaction on the GC yield of **3a** and **3d**

Figure 1. The GC spectra from the reaction mixture which was carried out for 2 h.

As shown in Figure 1, the GC yield of intermediate (4-methoxy-phenylamino)-phenyl-acetic acid ethyl ester **3d** was up to 70%, and the GC yield of ethyl benzoate **3a** was just 15%.

Figure 2. The GC spectra from the reaction mixture which was carried out for 5 h.

As shown in **Figure 2**, the GC yield of intermediate (4-methoxy-phenylamino)-phenyl-acetic acid ethyl ester **3d** was lowered to 65%, and the GC yield of ethyl benzoate **3a** was up to 30%.

Figure 3. The GC spectra from the reaction mixture which was carried out for 8 h.

As shown in **Figure 3**, the GC yield of intermediate (4-methoxy-phenylamino)-phenyl-acetic acid ethyl ester **3d** was lowered to 48%, and the yield of ethyl benzoate **3a** was up to 46%.

Figure 4. The GC spectra from the reaction mixture which was carried out for 12 h.

As shown in **Figure 4**, the GC yield of intermediate (4-methoxy-phenylamino)-phenyl-acetic acid ethyl ester **3d** was lowered to 35%, and the GC yield of ethyl benzoate **3a** was up to 54%.

Figure 5. The GC spectra from the reaction mixture which was carried out for 26 h.

As shown in **Figure 5**, the GC yield of intermediate (4-methoxy-phenylamino)-phenyl-acetic acid ethyl ester **3d** was lowered to 5%, and the GC yield of ethyl benzoate **3a** was up to 87%.

Figure 6. The GC spectra from the reaction mixture which was carried out for 48 h. As shown in **Figure 6**, the intermediate (4-methoxy-phenylamino)-phenyl-acetic acid ethyl ester **3d** basically disappeared, and the GC yield of ethyl benzoate **3a** exceeded 95%.

Figure 7. The GC-MS spectra of 3a, FW of 3a is 150.13.

Figure 8. The GC-MS spectra of 3d, The FW of 3d is 286.32.

Conclusion: The above-mentioned GC-MS spectra indicated that ethyl 2-(4-methoxyphenylamino)-2-phenylacetate (**3d**) is a key intermediate which lead to the formation of ethyl benzoate (**3a**).

1.6.2 The electronic effect of substitutents on the aryl boronic acids of cross-coupling ethoxycarbonylation of arylboronic acids with α -iminoesters

To the solution of **2aa** (0.18 mmol, 1 equiv), substituted phenylboronic acid (0.036 mmol, 0.2 equiv), Pd(TFA)₂ (0.009 mmol, 5 mol %) and bipy (0.009 mmol, 5 mol %) was added in 3.0 mL of CH₃NO₂ under Ar, then the corresponding mixture was stirred at 110 $^{\circ}$ C for 48 h. After the reaction mixture was cooled to room temperature, then concentrated under vacuum and purified

by flash chromatography (eluting with eluent consisting of Hexane/EtOAc, 20:1) to give the pure product of **3g**.

EtO ₂ C MPHN He +	B(OH) ₂ B(OH) ₂ Pd (TFA) ₂ (5 L ₇ (5 mol %) CH ₃ NO ₂ , 11	5 mol %) 0 °C, 48 h Me
2aa		3g
Entry	R	Yield
1	4-CH ₃	82%
2	4-H	85%
3	4-Cl	84%
4	4-CF ₃	64%

2. ¹H NMR and ¹³C NMR Spectrum for products

2) ¹H NMR and ¹³C NMR Spectrum for isopropyl benzoate **3b** (Using CDCl₃ as solvent)

3) ¹H NMR and ¹³C NMR Spectrum for benzyl benzoate **3c** (Using CDCl₃ as solvent)

. 100 90 f1 (ppm)

4). ¹H NMR and ¹³C NMR Spectrum for ethyl 2-((4-methoxyphenyl) amino)-2-(*p*-tolyl) acetate **P2a** (Using CDCl₃ as solvent)

5). ¹H NMR and ¹³C NMR Spectrum for benzil **3a-1** (Using CDCl₃ as solvent)

6) ¹H NMR and ¹³C NMR Spectrum for 4-methoxybenzoate **3d** (Using CDCl₃ as solvent)

7) ¹H NMR and ¹³C NMR Spectrum for ethyl 3-methoxybenzoate 3e (Using CDCl₃ as solvent)

8). ¹H NMR and ¹³C NMR Spectrum for ethyl 2-methoxybenzoate **3f** (Using CDCl₃ as solvent)

9). ¹H NMR and ¹³C NMR Spectrum for ethyl 4-methylbenzoate **3g** (Using CDCl₃ as solvent)

10).¹H NMR and ¹³C NMR Spectrum for ethyl 3-methylbenzoate **3h** (Using CDCl₃ as solvent)

11).¹H NMR and ¹³C NMR Spectrum for ethyl 4-(trifluoromethyl) benzoate **3i** (Using CDCl₃ as solvent)

12).¹H NMR and ¹³C NMR Spectrum for ethyl 3-nitrobenzoate **3j** (Using CDCl₃ as solvent)

14).¹H NMR and ¹³C NMR Spectrum for ethyl 4-chlorobenzoate **3k** (Using CDCl₃ as solvent)

15).¹H NMR and ¹³C NMR Spectrum for ethyl 3-chlorobenzoate **3l** (Using CDCl₃ as solvent)

16).¹H NMR and ¹³C NMR Spectrum for ethyl 4-fluorobenzoate **3m** (Using CDCl₃ as solvent)

17). ¹H NMR and ¹³C NMR Spectrum for ethyl [1,1'-biphenyl]-4-carboxylate 3n (Using CDCl₃ as solvent)

18)¹H NMR and ¹³C NMR Spectrum for ethyl 1-naphthoate **30** (Using CDCl₃ as solvent)

19). ¹H NMR and ¹³C NMR Spectrum for ethyl phenanthrene-9-carboxylate 3p (Using CDCl₃ as solvent)

20)¹H NMR and ¹³C NMR Spectrum for ethyl 4-(benzyloxy)-3-fluorobenzoate 3q (Using CDCl₃ as solvent)

21). ¹H NMR and ¹³C NMR Spectrum for 4-ethyl 1-methyl 2-methoxyterephthalate 3r (Using CDCl₃ as solvent)

23). ¹H NMR and ¹³C NMR Spectrum for ethyl benzo[d][1,3]dioxole-5-carboxylate **3t** (Using $CDCl_3$ as solvent)

30

24).¹H NMR and ¹³C NMR Spectrum for ethyl thiophene-3-carboxylate 3u (Using CDCl₃ as solvent)

25).¹H NMR and ¹³C NMR Spectrum for ethyl thiophene-2-carboxylate 3v (Using CDCl₃ as solvent)

27). ¹H NMR and ¹³C NMR Spectrum for ethyl 2-((4-methoxyphenyl)amino)-2-(p-tolyl) acetate **2aa** (Using CDCl₃ as solvent)

28). ¹H NMR and ¹³C NMR Spectrum for 4-methoxy-N-(2-nitroethyl) benzenamine **4b** (Using CDCl₃ as solvent)

29). ¹H NMR and ¹³C NMR spectrum for **P2b** (Using CDCl₃ as solvent)

30). ¹H NMR and ¹³C NMR spectrum for **P2c** (Using CDCl₃ as solvent)

31). ¹H NMR and ¹³C NMR spectrum for P2d (Using CDCl₃ as solvent)

32). ¹H NMR and ¹³C NMR spectrum for **P2e** (Using CDCl₃ as solvent)

33). ¹H NMR and ¹³C NMR spectrum for **P2f** (Using CDCl₃ as solvent)