Synthesis and Biological Evaluation of Flexible and Conformationally Constrained LpxC Inhibitors

Marius Löppenberg, Hannes Müller, Carla Pulina, Alberto Oddo, Mark Teese, Joachim Jose, Ralph Holl*

Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149 Münster, Germany

Supplementary Information

Synthetic Procedures

General

Unless otherwise mentioned, THF was dried with sodium/benzophenone and was freshly distilled before use. Thin layer chromatography (tlc): Silica gel 60 F254 plates (Merck). Flash chromatography (fc): Silica gel 60, $40-64 \mu \mathrm{~m}$ (Macherey-Nagel); parentheses include: diameter of the column, fraction size, eluent, R_{f} value. Melting point (m.p.): Melting point apparatus SMP 3 (Stuart Scientific), uncorrected. Optical rotation α [deg] was determined with a Polarimeter 341 (Perkin Elmer); path length 1 dm , wavelength 589 nm (sodium D line); the unit of the specific rotation $[\alpha]_{D}^{20}$ [deg $\left.\mathrm{mL} \cdot \mathrm{dm}^{-1} \cdot \mathrm{~g}^{-1}\right]$ is omitted; the concentration of the sample $\mathrm{c}\left[\mathrm{mg} \cdot \mathrm{mL}^{-1}\right]$ and the solvent used are given in brackets. ${ }^{1} \mathrm{H}$ NMR (400 MHz), ${ }^{13} \mathrm{C}$ NMR (100 MHz):

Mercury plus 400 spectrometer (Varian); δ in ppm related to tetramethylsilane; coupling constants are given with 0.5 Hz resolution. Where necessary, the assignment of the signals in the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra was performed using ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSEY NMR spectra as well as NOE (nuclear Overhauser effect) difference spectroscopy. IR: IR Prestige-21(Shimadzu). HRMS: MicrOTOF-QII (Bruker). HPLC methods for the determination of product purity: Method 1: Merck Hitachi Equipment; UV detector: L-7400; autosampler: L-7200; pump: L-7100; degasser: L-7614; column: LiChrospher ${ }^{\circledR} 60$ RP-select $B(5 \mu \mathrm{~m})$; LiCroCART ${ }^{\circledR}$ 250-4 mm cartridge; flow rate: $1.00 \mathrm{~mL} / \mathrm{min}$; injection volume: $5.0 \mu \mathrm{~L}$; detection at $\lambda=210$ nm for 30 min ; solvents: A : water with $0.05 \%(\mathrm{~V} / \mathrm{V})$ trifluoroacetic acid; B : acetonitrile with $0.05 \%(V / V)$ trifluoroacetic acid: gradient elution: (A \%): $0-4 \mathrm{~min}: 90 \%, 4-29$ min: gradient from 90% to $0 \%, 29-31$ min: $0 \%, 31-31.5$ min: gradient from 0% to 90 \%, 31.5 - 40 min: 90 \%. Method 2: Merck Hitachi Equipment; UV detector: L7400; pump: L-6200A; column: phenomenex Gemini ${ }^{\circledR} 5 \mu \mathrm{~m}$ C6-Phenyl $110 \AA ̊$; LC Column $250 \times 4.6 \mathrm{~mm}$; flow rate: $1.00 \mathrm{~mL} / \mathrm{min}$; injection volume: $5.0 \mu \mathrm{~L}$; detection at λ $=254 \mathrm{~nm}$ for 20 min ; solvents: A : acetonitrile : 10 mM ammonium formate $=10: 90$ with 0.1 \% formic acid; B : acetonitrile : 10 mM ammonium formate $=90: 10$ with 0.1 \% formic acid; gradient elution: (A \%): 0-5 min: $100 \%, 5-15 \mathrm{~min}$: gradient from 100% to $0 \%, 15-20 \mathrm{~min}: 0 \%, 20-22 \mathrm{~min}$: gradient from 0% to $100 \%, 22-30$ $\min : 100 \%$.

(3aS,6R,6aS)-6-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-4-(3-iodophenyl)-2,2-

 dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-ol (5b)Under N_{2} atmosphere a 1.6 M solution of n-butyllithium in hexanes $(2.0 \mathrm{~mL}, 3.2$ mmol) was added to a solution of 1,3 -diiodobenzene ($2.97 \mathrm{~g}, 9 \mathrm{mmol}$) in THF (40
$\mathrm{mL})$. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 15 min , a solution of $4(775 \mathrm{mg}, 3 \mathrm{mmol})$ in THF (20 mL) was added dropwise and the mixture was stirred for additional 30 min at $-78{ }^{\circ} \mathrm{C}$. Then the mixture was allowed to warm to room temperature and a saturated aqueous solution of NaHCO_{3} was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$, the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($4 \mathrm{~cm}, 30 \mathrm{~mL}, n-$ hexane/ethyl acetate $=8 / 2, R_{f}=0.23$) to give 5 b as colorless oil ($1.25 \mathrm{~g}, 2.70 \mathrm{mmol}$, $90 \%) \cdot[\alpha]_{D}^{20}=+40.4\left(1.0 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-\mathrm{D}_{6}\right): \delta 1.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.25(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.95(\mathrm{dd}, \mathrm{J}=8.4 / 5.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCHCH}_{2} \mathrm{O} 6-\mathrm{H}$), 4.07 (dd, $\left.J=8.4 / 6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 4.20(\mathrm{dd}, J=6.0 / 3.8 \mathrm{~Hz}$, $1 \mathrm{H}, 6-\mathrm{H}), 4.39\left(\mathrm{q}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 4.46(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 4.85$ (dd, $J=5.8 / 3.8 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.15\left(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}_{3}-\right.$ iodophenyl), $7.44-7.47\left(\mathrm{~m}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}_{3 \text {-iodophenyl }}\right), 7.64-7.67\left(\mathrm{~m}, 1 \mathrm{H} 4{ }^{\prime}-\mathrm{H}_{3}\right.$-iodophenyl $), 7.75-$ 7.77 (m, 1H, 2'- $\mathrm{H}_{3 \text {-iodophenyl }}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}\right): \delta 24.0\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.2$ (1C, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $25.4\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $26.6\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $65.8\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right)$, $73.0(1 \mathrm{C}$, $\mathrm{OCHCH}_{2} \mathrm{O}$), 78.1 (1C, C-6), 79.9 (1C, C-6a), 86.2 (1C, C-3a), 93.6 (1C, C-3'3iodophenyl), $104.4(1 \mathrm{C}, \mathrm{C}-4)$, $107.9\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $111.5\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $126.5\left(1 \mathrm{C}, \mathrm{C}-6{ }_{3}{ }_{3}\right.$
 iodophenyl), 142.8 (1C, C-1'3-iodophenyl); IR (neat): $\mathrm{v}\left[\mathrm{cm}^{-1}\right]=3362,2986,2937,1372$, 1244, 1208, 1040, 844, 698; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{IO}_{6} \mathrm{Na}, 485.0432$; found, 485.0434; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=20.2$ min, purity 97.5%.
(3aS,6R,6aS)-4-(4-Bromophenyl)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-

Under N_{2} atmosphere a 1.6 m solution of n-butyllithium in hexanes ($2.0 \mathrm{~mL}, 3.2$ mmol) was added to a solution of 1,4-dibromobenzene ($2.83 \mathrm{~g}, 12 \mathrm{mmol}$) in THF (40 $\mathrm{mL})$. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 15 min , a solution of $4(775 \mathrm{mg}, 3 \mathrm{mmol})$ in THF (20 mL) was added dropwise and the mixture was stirred for additional 30 min at $-78{ }^{\circ} \mathrm{C}$. Then the mixture was allowed to warm to room temperature and a saturated aqueous solution of NaHCO_{3} was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$, the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($4 \mathrm{~cm}, 30 \mathrm{~mL}, \mathrm{n}$ hexane/ethyl acetate $=8 / 2, R_{f}=0.23$) to give 5 c as colorless solid ($1.1 \mathrm{~g}, 2.65 \mathrm{mmol}$, 88\%). m.p.: $137^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+64.9\left(5.0 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-\mathrm{D}_{6}\right): \delta 1.15(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $1.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.96(\mathrm{dd}, \mathrm{J}=8.2 / 6.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), 4.05 (dd, $J=8.2 / 6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), 4.22 (dd, $J=5.7 / 4.0$ $\mathrm{Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.39(\mathrm{q}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH} 2 \mathrm{O}), 4.46(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H})$, $4.86(\mathrm{dd}, J=5.7 / 4.0 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.36-7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$,
 bromopheny) ; ${ }^{13} \mathrm{C}$ NMR (DMSO-D ${ }_{6}$): $\delta 24.0\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $25.3\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $25.4(1 \mathrm{C}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $26.6\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 65.7\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 73.1\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right)$, $78.0(1 \mathrm{C}$, $\mathrm{C}-6), 79.9$ (1C, $\mathrm{C}-6 \mathrm{a}), 86.1$ (1C, C-3a), 104.8 (1C, C-4), 107.8 (1C, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 111.5$
 130.2 (2C, C-3'4-bromophenyl, C-5'4-bromophenyl), 139.8 (1C, C-1'4-bromophenyl); IR (neat): v $\left[\mathrm{cm}^{-1}\right]=3366,2986,2938,1374,1258,1064,1023,1009,849,826 ; \operatorname{HRMS}(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{23}{ }^{79} \mathrm{BrO}_{6} \mathrm{Na}, 437.0570$; found, 437.0562 ; HPLC (method 1): t_{R} $=20.0$ min, purity 96.4%.

(3aS,6R,6aS)-4-(3-Bromophenyl)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-

dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-ol (5d)

Under N_{2} atmosphere a 1.6 m solution of n-butyllithium in hexanes ($2.0 \mathrm{~mL}, 3.2$ mmol) was added to a solution of 1,3-dibromobenzene ($1.88 \mathrm{~g}, 8 \mathrm{mmol}$) in THF (40 $\mathrm{mL})$. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 15 min , a solution of $4(775 \mathrm{mg}, 3 \mathrm{mmol})$ in THF (20 mL) was added dropwise and the mixture was stirred for additional 30 min at $-78{ }^{\circ} \mathrm{C}$. Then the mixture was allowed to warm to room temperature and a saturated aqueous solution of NaHCO_{3} was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$, the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($4 \mathrm{~cm}, 30 \mathrm{~mL}, n-$ hexane/ethyl acetate $=8 / 2, R_{f}=0.23$) to give 5 d as colorless oil $(1.2 \mathrm{~g}, 2.89 \mathrm{mmol}$, $96 \%) .[\alpha]_{D}^{20}=+34.7\left(1.2 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (DMSO-D ${ }_{6}$): $\delta 1.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.25(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.96(\mathrm{dd}, \mathrm{J}=8.3 / 5.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCHCH}_{2} \mathrm{O}$), 4.07 (dd, $J=8.3 / 6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), 4.21 (dd, $J=6.0 / 3.8 \mathrm{~Hz}, 1 \mathrm{H}$, $6-\mathrm{H}), 4.39\left(\mathrm{q}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 4.48(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 4.86$ (dd, J $=5.8 / 3.8 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.31\left(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}_{3}\right.$-bromophenyl), $7.43-7.46$ ($\mathrm{m}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}_{3 \text {-bromophenyl }}$), $7.48-7.51$ ($\mathrm{m}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}_{3 \text {-bromophenyl }}$), $7.55-7.57$ (m, 1H, 2'- $\mathrm{H}_{3 \text {-bromophenyl }}$; ${ }^{13} \mathrm{C}$ NMR (DMSO- D_{6}): $\delta 24.0\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 25.2 (1C, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $25.4\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $26.6\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $65.8\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right)$, $73.0(1 \mathrm{C}$, $\mathrm{OCHCH}_{2} \mathrm{O}$), 78.1 (1C, C-6), 79.9 (1C, C-6a), 86.2 (1C, C-3a), 104.5 (1C, C-4), 107.9 (1C, $\left.C\left(\mathrm{CH}_{3}\right)_{2}\right), 111.5\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 120.6\left(1 \mathrm{C}, \mathrm{C}^{2} 3_{3}{ }_{3}\right.$-bromophenyl), $126.2\left(1 \mathrm{C}, \mathrm{C}-6^{\prime}{ }_{3}\right.$ bromophenyl), 129.5 (1C, C-4' ${ }_{3}$-bromophenyl), 129.9 (1C, C-5' ${ }_{3}$-bromophenyl), 130.6 (1C, C-2' ${ }_{3-}$ bromophenyl), 143.0 (1C, C-1'3-bromophenyl); IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3368,2986,2936,1372$, 1246, 1208, 1040, 845, 698; HRMS (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{23}{ }^{79} \mathrm{BrO}_{6} \mathrm{Na}$, 437.0570; found, 437.0566; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=19.9$ min, purity 98.5%.
(3aS,4R,6S,6aR)-4-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-6-(3-iodophenyl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxole (6b)

Under N_{2} atmosphere $\mathrm{Et}_{3} \mathrm{SiH}(0.52 \mathrm{~mL}, 377 \mathrm{mg}, 3.2 \mathrm{mmol})$ was added to a solution of $5 \mathbf{b}(1.25 \mathrm{~g}, 2.7 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.34 \mathrm{~mL}, 384 \mathrm{mg}, 2.7 \mathrm{mmol})$ in acetonitrile $(30 \mathrm{~mL})$ at $-40{ }^{\circ} \mathrm{C}$. The mixture was stirred at $-40^{\circ} \mathrm{C}$ for 1 h , then a saturated aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{~mL})$ was added and the mixture was stirred for 1 h at ambient temperature. Then water was added and the mixture was extracted with ethyl acetate $(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($4 \mathrm{~cm}, 30 \mathrm{~mL}, n$-hexane/ethyl acetate $=8 / 2 \rightarrow 1 / 2$) to give $\mathbf{6 b}$ (n hexane/ethyl acetate $=8 / 2, R_{f}=0.34$) as colorless oil ($320 \mathrm{mg}, 0.72 \mathrm{mmol}, 27 \%$) and 7b (n-hexane/ethyl acetate $=1 / 2, \mathrm{R}_{\mathrm{f}}=0.20$) as colorless solid ($430 \mathrm{mg}, 1.1 \mathrm{mmol}$, $39 \%)$.

6b: $[\alpha]_{D}^{20}=+63.8\left(3.3 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.41(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 1.45 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $1.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $3.67(\mathrm{dd}, \mathrm{J}=7.5 / 3.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$), $4.10-$ $4.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 4.49-4.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}, 6-\mathrm{H}\right), 4.78(\mathrm{dd}, J=6.0 / 3.7$ $\mathrm{Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 4.86(\mathrm{dd}, \mathrm{J}=6.0 / 3.7 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 7.08\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}_{3}\right.$ iodophenyl), $7.30-7.33\left(\mathrm{~m}, 1 \mathrm{H}, 6\right.$ '- $\left.\mathrm{H}_{3 \text {-iodophenyl }}\right)$, $7.60-7.64\left(\mathrm{~m}, 1 \mathrm{H}, 4{ }^{\prime}-\mathrm{H}_{3 \text {-iodophenyl }}\right), 7.69-$ $7.71\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{3 \text {-iodophenyl }}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 24.4\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.4$ (1C, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $25.6\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.1\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 67.2\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right)$, $73.3(1 \mathrm{C}$, $\mathrm{OCHCH}_{2} \mathrm{O}$), 80.9 (1C, C-3a), 81.7 (1C, C-4), 82.2 (1C, C-6a), 83.0 (1C, C-6), 94.0 (1C, $\mathrm{C}-3^{\prime}{ }_{3 \text {-iodophenyl }}$), $109.3\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 112.9\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 126.8\left(1 \mathrm{C}, \mathrm{C}-6^{\prime}{ }_{3}\right.$ iodophenyl), 129.8 (1C, $\mathrm{C}-5_{3 \text {-iodophenyl }}$), 136.6 (1C, $\mathrm{C}^{-4}{ }_{3}{ }_{3 \text {-iodophenyl }}$), 137.0 (1C, $\mathrm{C}^{2} \mathbf{2}_{3}{ }_{3}$ iodophenyl), 137.9 (1C, C-1'3-iodophenyl); IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2984,2934,2870,1736$,

1567, 1371, 1206, 1065, 842, 746; HRMS (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{IO}_{5} \mathrm{Na}$, 469.0482; found, 469.0481; HPLC (method 1): $t_{R}=21.6$ min, purity 97.9%.
(3aR,4S,6R,6aS)-4-(4-Bromophenyl)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxole (6c)

Under N_{2} atmosphere $\mathrm{Et}_{3} \mathrm{SiH}(0.40 \mathrm{~mL}, 286 \mathrm{mg}, 2.46 \mathrm{mmol})$ was added to a solution of $5 \mathbf{c}(850 \mathrm{mg}, 2.05 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.26 \mathrm{~mL}, 290 \mathrm{mg}, 2.05 \mathrm{mmol})$ in acetonitrile $(30 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$. The mixture was stirred at $-40^{\circ} \mathrm{C}$ for 1 h , then a saturated aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{~mL})$ was added and the mixture was stirred for 1 h at ambient temperature. Then water was added and the mixture was extracted with ethyl acetate $(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($4 \mathrm{~cm}, 30 \mathrm{~mL}, n$-hexane/ethyl acetate $=8 / 2 \rightarrow 1 / 2$) to give $\mathbf{6 c}(n-$ hexane/ethyl acetate $=8 / 2, R_{f}=0.22$) as colorless solid ($245 \mathrm{mg}, 0.61 \mathrm{mmol}, 30 \%$) and 7 c (n-hexane/ethyl acetate $=1 / 2, \mathrm{R}_{\mathrm{f}}=0.14$) as colorless solid ($113 \mathrm{mg}, 0.31$ mmol, 15%).

6c: m.p.: $112{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+83.6\left(11.4 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.70(\mathrm{dd}, \mathrm{J}=7.2 / 3.7 \mathrm{~Hz}, 1 \mathrm{H}$, $6-\mathrm{H}), 4.11-4.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 4.51\left(\mathrm{dt}, J=7.2 / 5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 4.57$ (d, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$), 4.79 (dd, $J=6.1 / 3.7 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 4.86(\mathrm{dd}, J=6.1 / 3.7 \mathrm{~Hz}$, $1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 7.22-7.26\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}_{4 \text {-bromophenyl }} 6^{\prime}\right.$ '- $\mathrm{H}_{4 \text {-bromophenyl }}$), $7.45-7.49\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}-\right.$ $\left.\mathrm{H}_{4 \text {-bromophenyl, }} 5^{\prime}-\mathrm{H}_{4 \text {-bromophenyl }}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 24.3\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.4$ (1C, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $25.7\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $27.1\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 67.1\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right)$, $73.4(1 \mathrm{C}$, $\mathrm{OCHCH}_{2} \mathrm{O}$), 80.9 (1C, C-6a), 81.7 (1C, C-6), 82.2 (1C, C-3a), 83.2 (1C, C-4), 109.2
(1C, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 112.8\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 122.0\left(1 \mathrm{C}, \mathrm{C}-4_{4-\text {-bromophenyl }}\right)$, $129.2\left(2 \mathrm{C}, \mathrm{C}-2^{\prime}{ }_{\text {phenyl }}\right.$, C-6'phenyl), 131.2 (2C, C-3' ${ }_{\text {phenyl }}{ }^{\prime}$ C-5'phenyl), 134.7 (1C, C-1'4-bromopheny); IR (neat): $\mathrm{v}\left[\mathrm{cm}^{-}\right.$ $\left.{ }^{1}\right]=2991,2939,2878,1488,1371,1207,1051,1010,818,732 ; \operatorname{HRMS}(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{23}{ }^{79} \mathrm{BrO}_{5} \mathrm{Na}, 423.0602$; found, 423.0616; HPLC (method 1): t_{R} $=21.7$ min, purity 99.3%.
(3aR,4S,6R,6aS)-4-(3-Bromophenyl)-6-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxole (6d)

Under N_{2} atmosphere $\mathrm{Et}_{3} \mathrm{SiH}$ ($0.56 \mathrm{~mL}, 403 \mathrm{mg}, 3.47 \mathrm{mmol}$) was added to a solution of $5 \mathrm{~d}(1.2 \mathrm{~g}, 2.89 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.36 \mathrm{~mL}, 410 \mathrm{mg}, 2.89 \mathrm{mmol})$ in acetonitrile $(30 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$. The mixture was stirred at $-40^{\circ} \mathrm{C}$ for 1 h , then a saturated aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{~mL})$ was added and the mixture was stirred for 1 h at ambient temperature. Then water was added and the mixture was extracted with ethyl acetate $(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($4 \mathrm{~cm}, 30 \mathrm{~mL}, n$-hexane/ethyl acetate $=8 / 2 \rightarrow 1 / 1$) to give $\mathbf{6 d}(n$ hexane/ethyl acetate $=8 / 2, R_{f}=0.25$) as colorless oil ($350 \mathrm{mg}, 0.88 \mathrm{mmol}, 30 \%$) and 7d (n-hexane/ethyl acetate $=1 / 1, \mathrm{R}_{\mathrm{f}}=0.15$) as colorless oil ($490 \mathrm{mg}, 1.36 \mathrm{mmol}$, 47\%).

6d: $[\alpha]_{D}^{20}=+67.4\left(1.9 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.41(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $1.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $3.68(\mathrm{dd}, J=7.5 / 3.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.11-$ $4.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 4.49-4.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 4.57(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ H), 4.79 (dd, $J=6.0 / 3.9 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 4.86(\mathrm{dd}, J=6.0 / 3.7 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 7.20(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 5{ }^{\prime}-\mathrm{H}_{3}$-bromophenyl $), 7.26-7.29\left(\mathrm{~m}, 1 \mathrm{H}, 6{ }^{\prime}-\mathrm{H}_{3 \text {-bromophenyl }}\right), 7.40-7.43(\mathrm{~m}$,
$\left.1 \mathrm{H}, 4^{\prime}-\mathrm{H}_{3 \text {-bromophenyl }}\right), 7.50-7.52\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{3}\right.$-bromophenyl); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 24.4$ (1C, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $25.4\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $25.6\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $27.1\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 67.1 (1C, $\left.\mathrm{OCHCH}_{2} \mathrm{O}\right), 73.3\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 80.9(1 \mathrm{C}, \mathrm{C}-6 \mathrm{a}), 81.7(1 \mathrm{C}, \mathrm{C}-6), 82.3(1 \mathrm{C}, \mathrm{C}-3 \mathrm{a})$, $83.0(1 \mathrm{C}, \mathrm{C}-4), 109.3\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 112.8\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 122.2(1 \mathrm{C}, \mathrm{C}-3$ '3-bromophenyl), 126.1 (1C, C-6'3-bromophenyl), 129.6 (1C, C-4'3-bromophenyl), 130.7 (1C, C-5'3-bromophenyl), 131.1 (1C, C-2'3-bromophenyl), 138.0 (1C, C-1'3-bromophenyl); IR (neat): $\mathrm{v}\left[\mathrm{cm}^{-1}\right]=2986$, 2934, 2871, 1571, 1476, 1371, 1205, 1066, 842, 784, 746; HRMS (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{23}{ }^{79} \mathrm{BrO}_{5} \mathrm{Na}, 423.0602$; found, 423.0595; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=21.1$ min, purity 99.4\%.

(R)-1-((3aS,4R,6S,6aR)-6-(3-lodophenyl)-2,2-dimethyltetrahydrofuro[3,4-

d][1,3]dioxol-4-yl)ethane-1,2-diol (7b)

1: p-Toluenesulfonic acid monohydrate ($13 \mathrm{mg}, 0.07 \mathrm{mmol}$) was added to a solution of $\mathbf{6 b}(320 \mathrm{mg}, 0.72 \mathrm{mmol})$ in methanol $(20 \mathrm{~mL})$. The mixture was stirred at ambient temperature for 4 h . Then a saturated aqueous solution of NaHCO_{3} was added and the mixture was extracted with ethyl acetate $(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($2 \mathrm{~cm}, 10 \mathrm{~mL}, n$-hexane/ethyl acetate $=1 / 2$, $R_{f}=0.20$) to give 7b as colorless solid ($130 \mathrm{mg}, 0.32 \mathrm{mmol}, 45 \%$).

2: Under N_{2} atmosphere $\mathrm{Et}_{3} \mathrm{SiH}$ ($1.2 \mathrm{~mL}, 884 \mathrm{mg}, 7.6 \mathrm{mmol}$) was added to a solution of $\mathbf{5 b}(2.9 \mathrm{~g}, 6.3 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.81 \mathrm{~mL}, 894 \mathrm{mg}, 6.3 \mathrm{mmol})$ in acetonitrile (50 mL) at $-40^{\circ} \mathrm{C}$. The mixture was stirred at $-40^{\circ} \mathrm{C}$ for 1 h , then a saturated aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(7 \mathrm{~mL})$ was added and the mixture was stirred for 1 h at ambient temperature. Then water was added and the mixture was extracted with ethyl acetate
$(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The residue was dissolved in methanol (30 mL) and p toluenesulfonic acid monohydrate ($240 \mathrm{mg}, 1.3 \mathrm{mmol}$) was added. The mixture was stirred at ambient temperature for 16 h . Then a saturated aqueous solution of NaHCO_{3} was added and the mixture was extracted with ethyl acetate (3x). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($6 \mathrm{~cm}, 50 \mathrm{~mL}, \mathrm{n}$ hexane/ethyl acetate $=1 / 2, R_{f}=0.20$) to give $7 b$ as colorless solid ($1.8 \mathrm{~g}, 4.4 \mathrm{mmol}$, 71\%).
m.p.: $67{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+58.1\left(2.9 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.46$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $3.69(\mathrm{dd}, J=8.2 / 4.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 3.78(\mathrm{dd}, J=11.5 / 5.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{HOCHCH}_{2} \mathrm{OH}$), $3.93\left(\mathrm{dd}, J=11.5 / 3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HOCHCH}_{2} \mathrm{OH}\right), 4.12-4.19(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{HOCHCH}_{2} \mathrm{OH}$), $4.54(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.78(\mathrm{dd}, J=6.0 / 3.7 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H})$, 4.92 (dd, $J=6.0 / 4.0 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 7.08\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}_{3 \text {-iodophenyl }}\right), 7.29-7.34$ (m, 1H, 6'- $\mathrm{H}_{3 \text {-iodophenyl }}$), $7.60-7.64\left(\mathrm{~m}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}_{3 \text {-iodophenyl }}\right), 7.70-7.72\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{3}\right.$ iodophenyl,); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 24.6\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $25.8\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 64.8 (1C, $\left.\mathrm{HOCHCH}_{2} \mathrm{OH}\right), 70.4\left(1 \mathrm{C}, \mathrm{HOCHCH}_{2} \mathrm{OH}\right), 81.0(1 \mathrm{C}, \mathrm{C}-4), 81.5(1 \mathrm{C}, \mathrm{C}-3 \mathrm{a}), 82.1$ (1C, C-6a), 82.8 (1C, C-6), 94.1 (1C, C-3' ${ }_{3 \text {-iodophenyl }}$), $113.0\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $126.8\left(1 \mathrm{C}, \mathrm{C}^{-6}{ }_{3}{ }_{3}\right.$ iodophenyl), 129.9 (1C, $\mathrm{C}^{-5}{ }_{3}{ }_{3}$-iodophenyl), 136.6 (1C, $\mathrm{C}-4^{\prime}{ }_{3}$-iodophenyl), 137.1 (1C, $\mathrm{C}^{2} \mathbf{2}^{\prime}{ }_{3}$ iodophenyl), 137.8 (1C, C-1'3-iodophenyl); IR (neat): $\mathrm{v}\left[\mathrm{cm}^{-1}\right]=3397,2984,2935,2866$, 1566, 1373, 1205, 1083, 1018, 883, 746; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{IO}_{5} \mathrm{Na}, 429.0169$; found, 429.0177 ; HPLC (method 1$): \mathrm{t}_{\mathrm{R}}=17.1 \mathrm{~min}$, purity 99.2\%.

(R)-1-((3aS,4R,6S,6aR)-6-(4-Bromophenyl)-2,2-dimethyltetrahydrofuro[3,4-

d][1,3]dioxol-4-yl)ethane-1,2-diol (7c)

1: p-Toluenesulfonic acid monohydrate ($12 \mathrm{mg}, 0.06 \mathrm{mmol}$) was added to a solution of $\mathbf{6 c}(245 \mathrm{mg}, 0.61 \mathrm{mmol})$ in methanol $(20 \mathrm{~mL})$. The mixture was stirred at ambient temperature for 4 h . Then a saturated aqueous solution of NaHCO_{3} was added and the mixture was extracted with ethyl acetate $(3 x)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($2 \mathrm{~cm}, 10 \mathrm{~mL}, n$-hexane/ethyl acetate $=1 / 2$, $R_{f}=0.14$) to give 7c as colorless solid (192 mg, $0.53 \mathrm{mmol}, 87 \%$).

2: Under N_{2} atmosphere $\mathrm{Et}_{3} \mathrm{SiH}(0.51 \mathrm{~mL}, 370 \mathrm{mg}, 3.18 \mathrm{mmol})$ was added to a solution of $5 \mathbf{c}(1.1 \mathrm{~g}, 2.65 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.33 \mathrm{~mL}, 376 \mathrm{mg}, 2.65 \mathrm{mmol})$ in acetonitrile (30 mL) at $-40^{\circ} \mathrm{C}$. The mixture was stirred at $-40^{\circ} \mathrm{C}$ for 1 h , then a saturated aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{~mL})$ was added and the mixture was stirred for 1 h at ambient temperature. Then water was added and the mixture was extracted with ethyl acetate $(3 x)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The residue was dissolved in methanol (30 mL) and p-toluenesulfonic acid monohydrate ($50 \mathrm{mg}, 0.26 \mathrm{mmol}$) was added. The mixture was stirred at ambient temperature for 4 h . Then a saturated aqueous solution of NaHCO_{3} was added and the mixture was extracted with ethyl acetate $(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The residue was purified by flash column chromatography (4 cm , $30 \mathrm{~mL}, n$-hexane/ethyl acetate $=1 / 2, \mathrm{R}_{\mathrm{f}}=0.14$) to give 7 c as colorless solid (600 mg , $1.67 \mathrm{mmol}, 63 \%)$.
m.p.: $140{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+74.1\left(6.4 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.45$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.71(\mathrm{dd}, J=8.0 / 4.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 3.80(\mathrm{dd}, J=11.5 / 5.7 \mathrm{~Hz}, 1 \mathrm{H}$,
$\mathrm{HOCHCH}_{2} \mathrm{OH}$), 3.92 (dd, $J=11.5 / 3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HOCHCH}_{2} \mathrm{OH}$), 4.16 (ddd, $J=$ 8.0/5.7/3.5 Hz, 1H, HOCHCH2OH), $4.59(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.80(\mathrm{dd}, J=6.0 / 3.7$ $\mathrm{Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 4.93(\mathrm{dd}, \mathrm{J}=6.0 / 4.1 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 7.23-7.26\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}_{4}\right.$ bromophenyl, 6'- $\mathrm{H}_{4 \text {-bromophenyl }}$), $7.46-7.49$ ($\mathrm{m}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}_{4 \text {-bromophenyl }} 5^{\prime}$ '- $\mathrm{H}_{4 \text {-bromophenyl }}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 24.5\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.8\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 64.8\left(1 \mathrm{C}, \mathrm{HOCHCH}_{2} \mathrm{OH}\right)$, 70.4 (1C, $\mathrm{HOCHCH}_{2} \mathrm{OH}$), 81.0 (1C, C-4), 81.5 (1C, C-3a), 82.1 (1C, C-6a), 83.1 (1C,
 $6^{\prime}{ }_{4 \text {-bromophenyl }}$), 131.3 (2C, C-3'4-bromophenyl, C-5'4-bromophenyl), 134.5 (1C, C-1'4-bromophenyl); IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3454,2975,2921,2861,1487,1380,1208,1012,821,747$; HRMS (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{19}{ }^{79} \mathrm{BrO}_{5} \mathrm{Na}, 381.0308$; found, 381.0315; HPLC (method $1): t_{R}=16.5 \mathrm{~min}$, purity 98.7%.

(R)-1-((3aS,4R,6S,6aR)-6-(3-Bromophenyl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)ethane-1,2-diol (7d)

p-Toluenesulfonic acid monohydrate ($17 \mathrm{mg}, 0.09 \mathrm{mmol}$) was added to a solution of 6d $(350 \mathrm{mg}, 0.88 \mathrm{mmol})$ in methanol $(20 \mathrm{~mL})$. The mixture was stirred at ambient temperature for 4 h . Then a saturated aqueous solution of NaHCO_{3} was added and the mixture was extracted with ethyl acetate $(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($2 \mathrm{~cm}, 10 \mathrm{~mL}, n$-hexane/ethyl acetate $=1 / 1$, $R_{f}=0.15$) to give 7d as colorless oil (100 mg, $0.28 \mathrm{mmol}, 32 \%$). $[\alpha]_{D}^{20}=+54.3$ (1.6; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.71(\mathrm{dd}, \mathrm{J}=$ 8.0/3.9 Hz, 1H, 4-H), 3.80 (dd, $J=11.4 / 5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HOCHCH}_{2} \mathrm{OH}$), 3.93 (dd, $J=$ $\left.11.4 / 3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HOCHCH}_{2} \mathrm{OH}\right), 4.14-4.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HOCHCH}_{2} \mathrm{OH}\right), 4.59(\mathrm{~d}, J=3.5$ $\mathrm{Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.81$ (dd, $J=5.8 / 3.5 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 4.93(\mathrm{dd}, J=5.8 / 3.9 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H})$,
$7.21\left(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}_{3 \text {-bromophenyl }}\right), 7.25-7.30\left(\mathrm{~m}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}_{3 \text {-bromophenyl }}\right), 7.40-$ $7.44\left(\mathrm{~m}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}_{3 \text {-bromophenyl }}\right), 7.50-7.53\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{3 \text {-bromophenyl }}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $24.5\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.6\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 64.7\left(1 \mathrm{C}, \mathrm{HOCHCH}_{2} \mathrm{OH}\right), 70.4$ (1C, $\mathrm{HOCHCH}_{2} \mathrm{OH}$), 81.0 (1C, C-4), 81.4 (1C, C-3a), 82.1 (1C, C-6a), 82.9 (1C, C-6), 113.0 (1C, $\left.C\left(\mathrm{CH}_{3}\right)_{2}\right), 122.3$ (1C, C-3'3-bromophenyl), 126.0 (1C, C-6' ${ }_{3}$-bromophenyl), 129.6 (1C, C-4' ${ }_{3 \text {-bromophenyl }}$), 130.7 (1C, C-5' ${ }^{3}$-bromophenyl), 131.1 (1C, C-2' ${ }_{3}$-bromophenyl), 137.8 (1C, C-1'3-bromophenyl); IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3383,2979,2935,2871,1570,1476,1373$, 1206, 1083, 1019, 885, 747; HRMS (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{19}{ }^{79} \mathrm{BrO}_{5} \mathrm{Na}$, 381.0308; found, 381.0301 ; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=16.3 \mathrm{~min}$, purity 99.4%.

(3aR,4S,6S,6aR)-Methyl

6-(3-iodophenyl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxole-4-carboxylate (8b)

An oxidant solution (20 mL), which was prepared by dissolving $\mathrm{H}_{5} \mathrm{IO}$ ($11.4 \mathrm{~g}, 50$ $\mathrm{mmol})$ and $\mathrm{CrO}_{3}(23 \mathrm{mg}, 0.23 \mathrm{mmol})$ in wet acetonitrile ($114 \mathrm{~mL}, 0.75 \%$ water V / V), was added to a solution of $7 \mathbf{b}(1.4 \mathrm{~g}, 3.4 \mathrm{mmol})$ in acetonitrile $(20 \mathrm{~mL})$. The mixture was stirred at ambient temperature for 3 h . The reaction was quenched by the addition of ethylene glycol. Then hydrochloric acid (1 m) was added and the mixture was extracted with ethyl acetate $(3 x)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The residue was dissolved in methanol (30 mL) and p-toluenesulfonic acid monohydrate ($65 \mathrm{mg}, 0.34 \mathrm{mmol}$) was added. The mixture was heated to reflux for 16 h . Then the solvent was removed in vacuo and the residue was purified by flash column chromatography ($4 \mathrm{~cm}, 30 \mathrm{~mL}$, n-hexane/ethyl acetate $=8 / 2 \rightarrow 1 / 1$) to give $8 b$ (n-hexane/ethyl acetate $=8 / 2, R_{f}=$ 0.14) as colorless solid ($670 \mathrm{mg}, 1.7 \mathrm{mmol}, 49 \%$) and 9b (n-hexane/ethyl acetate $=$ $1 / 1, R_{f}=0.32$) as colorless solid ($390 \mathrm{mg}, 1.1 \mathrm{mmol}, 32 \%$).

8b: m.p.: $132{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+33.0\left(1.7 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.43 (s, 3H, CH3), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.38(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.60(\mathrm{~d}, J=3.6$ $\mathrm{Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.80(\mathrm{dd}, J=5.8 / 3.6 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 5.08(\mathrm{dd}, J=5.8 / 4.5 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H})$, $7.10\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}_{3 \text {-iodophenyl }}\right), 7.43-7.47\left(\mathrm{~m}, 1 \mathrm{H}, 6{ }^{\prime}-\mathrm{H}_{3 \text {-iodophenyl }}\right), 7.62-7.67$ $\left(\mathrm{m}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}_{3 \text {-iodophenyl }}\right), 7.78-7.81\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{3 \text {-iodophenyl }}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 25.1$ (1C, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.8\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 52.4\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 80.8(1 \mathrm{C}, \mathrm{C}-4), 81.6(1 \mathrm{C}, \mathrm{C}-6 \mathrm{a})$, 82.0 (1C, C-3a), 82.7 (1C, $\mathrm{C}-6$), 94.0 ($1 \mathrm{C}, \mathrm{C}-3^{\prime}{ }_{3}$-iodophenyl), 113.7 ($1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$), 127.0 (1C, C-6'3-iodophenyl), 129.9 (1C, C-5'3-iodophenyl), 136.6 (1C, C-4'3-iodophenyl), 137.1 (1C, C$1^{\prime} 3$-iodophenyl), 137.3 (1C, C-2' ${ }^{\prime}$-iodophenyl), 167.6 (1C, $C=O$); IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2986$, 2953, 1757, 1566, 1440, 1380, 1214, 1104, 1040, 863, 740; HRMS (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{IO}_{5} \mathrm{Na}, 427.0013$; found, 427.0010; HPLC (method 1$)$: $\mathrm{t}_{\mathrm{R}}=19.6 \mathrm{~min}$, purity 96.6%.
(3aR,4S,6S,6aR)-Methyl

6-(4-bromophenyl)-2,2-dimethyltetrahydrofuro[3,4-

d][1,3]dioxole-4-carboxylate (8c)

An oxidant solution (4.4 mL), which was prepared by dissolving $\mathrm{H}_{5} \mathrm{IO}_{6}(11.4 \mathrm{~g}, 50$ $\mathrm{mmol})$ and $\mathrm{CrO}_{3}(23 \mathrm{mg}, 0.23 \mathrm{mmol})$ in wet acetonitrile ($114 \mathrm{~mL}, 0.75 \%$ water V / V), was added to a solution of $7 \mathrm{c}(275 \mathrm{mg}, 0.77 \mathrm{mmol})$ in acetonitrile (10 mL). The mixture was stirred at ambient temperature for 3 h . The reaction was quenched by the addition of ethylene glycol. Then hydrochloric acid (1 M) was added and the mixture was extracted with ethyl acetate $(3 x)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The residue was dissolved in methanol (20 mL) and p-toluenesulfonic acid monohydrate ($15 \mathrm{mg}, 0.08$ mmol) was added. The mixture was heated to reflux for 16 h . Then the solvent was removed in vacuo and the residue was purified by flash column chromatography (2
cm, $10 \mathrm{~mL}, n$-hexane/ethyl acetate $=8 / 2 \rightarrow 1 / 1$) to give 8c (n-hexane/ethyl acetate $=$ $8 / 2, \mathrm{R}_{\mathrm{f}}=0.12$) as colorless solid ($80 \mathrm{mg}, 0.22 \mathrm{mmol}, 29 \%$) and 9 c (n-hexane/ethyl acetate $\left.=1 / 1, R_{f}=0.19\right)$ as colorless solid ($61 \mathrm{mg}, 0.19 \mathrm{mmol}, 25 \%$).

8c: m.p.: $142{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+43.7\left(0.7 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.39(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.64(\mathrm{~d}, J=3.6$ $\mathrm{Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.80(\mathrm{dd}, J=5.9 / 3.6 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 5.08(\mathrm{dd}, J=5.9 / 4.6 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H})$, $7.33-7.37\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}_{4 \text {-bromophenyl, }} 6^{\prime}-\mathrm{H}_{4 \text {-bromophenyl }}\right), 7.47-7.51\left(\mathrm{~m}, 2 \mathrm{H}, 3{ }^{\prime}-\mathrm{H}_{4}\right.$ bromophenyl, 5^{\prime} - $\mathrm{H}_{4 \text {-bromophenyl }}$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 25.0\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.8$ (1C, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $52.3\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 80.8(1 \mathrm{C}, \mathrm{C}-4), 81.7(1 \mathrm{C}, \mathrm{C}-6 \mathrm{a}), 82.0(1 \mathrm{C}, \mathrm{C}-3 \mathrm{a}), 82.9$ (1C, C-6), 113.6 (1C, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 122.3$ (1C, C-4'4-bromophenyl), 129.3 (2C, C-2' ${ }_{4}$-bromophenyl,
 bromophenyl), 167.7 (1C, $C=O$); IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2986,2939,1754,1489,1438$, 1383, 1213, 1100, 1074, 913, 818, 744; HRMS $(m / z):[M+N a]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{17}{ }^{79} \mathrm{BrO}_{5} \mathrm{Na}, 379.0152$; found, 379.0146 ; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=19.5 \mathrm{~min}$, purity 98.7\%.
(3aR,4S,6S,6aR)-Methyl 6-(3-bromophenyl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxole-4-carboxylate (8d)

An oxidant solution (9.4 mL), which was prepared by dissolving $\mathrm{H}_{5} \mathrm{IO}_{6}(11.4 \mathrm{~g}, 50$ $\mathrm{mmol})$ and $\mathrm{CrO}_{3}(23 \mathrm{mg}, 0.23 \mathrm{mmol})$ in wet acetonitrile ($114 \mathrm{~mL}, 0.75 \%$ water V / V), was added to a solution of 7 d ($590 \mathrm{mg}, 1.64 \mathrm{mmol}$) in acetonitrile (20 mL). The mixture was stirred at ambient temperature for 3 h . The reaction was quenched by the addition of ethylene glycol. Then hydrochloric acid (1 M) was added and the mixture was extracted with ethyl acetate $(3 x)$. The combined organic layers were
dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The residue was dissolved in methanol (20 mL) and p-toluenesulfonic acid monohydrate ($31 \mathrm{mg}, 0.16$ mmol) was added. The mixture was heated to reflux for 16 h . Then the solvent was removed in vacuo and the residue was purified by flash column chromatography (3 cm, $20 \mathrm{~mL}, n$-hexane/ethyl acetate $=8 / 2 \rightarrow 1 / 1$) to give 8d (n-hexane/ethyl acetate $=$ $8 / 2, R_{f}=0.13$) as colorless solid ($70 \mathrm{mg}, 0.20 \mathrm{mmol}, 12 \%$) and 9 d (n-hexane/ethyl acetate $=1 / 1, R_{f}=0.27$) as colorless solid ($90 \mathrm{mg}, 0.28 \mathrm{mmol}, 17 \%$).

8d: m.p.: $135{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+33.4\left(2.0 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.38-4.40(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 4.62-4.65(\mathrm{~m}, 1 \mathrm{H}$, $6-H), 4.80-4.83(\mathrm{~m}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 5.06-5.11(\mathrm{~m}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 7.21-7.27\left(\mathrm{~m}, 1 \mathrm{H}, 5 \mathrm{~S}^{\prime}-\mathrm{H}_{3}\right.$ bromophenyl), $7.38-7.46\left(\mathrm{~m}, 2 \mathrm{H}, 4^{\prime}-\mathrm{H}_{3 \text {-bromophenyl }} 6^{\prime}-\mathrm{H}_{3 \text {-bromophenyl }}\right), 7.60-7.63\left(\mathrm{~m}, 1 \mathrm{H}, 2^{2}-\right.$ $\mathrm{H}_{3 \text {-bromophenyl) }}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 25.1\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.8\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 52.3(1 \mathrm{C}$, OCH_{3}), 80.8 (1C, C-4), 81.6 (1C, C-6a), 82.0 (1C, C-3a), 82.8 (1C, C-6), 113.7 (1C, $\left.C\left(\mathrm{CH}_{3}\right)_{2}\right), 122.3$ (1C, $\mathrm{C}-3_{3}{ }_{3 \text {-bromophenyl }}$), 126.3 (1C, $\mathrm{C}^{-6}{ }_{3}{ }_{3 \text {-bromophenyl }}$), 129.7 (1C, $\mathrm{C}-4_{3}^{\prime}{ }_{3}$ bromophenyl), 130.7 (1C, C-5'3-bromophenyl), 131.3 (1C, C-2' ${ }_{3}$-bromophenyl), 137.1 (1C, C-1'3bromophenyl), 167.6 (1C, $C=O$); IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2986,2932,1748,1438,1375$, 1205, 1100, 1071, 1033, 858, 741; HRMS (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{17}{ }^{79} \mathrm{BrO}_{5} \mathrm{Na}$, 379.0152; found, 379.0146; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=19.5$ min, purity 99.4%.
(3aR,4S,6S,6aR)-Methyl 2,2-dimethyl-6-phenyl-tetrahydrofuro[3,4-d][1,3]dioxole-4-carboxylate (8e)

An oxidant solution (20 mL), which was prepared by dissolving $\mathrm{H}_{5} \mathrm{IO}_{6}(11.4 \mathrm{~g}, 50$ $\mathrm{mmol})$ and $\mathrm{CrO}_{3}(23 \mathrm{mg}, 0.23 \mathrm{mmol})$ in wet acetonitrile ($114 \mathrm{~mL}, 0.75 \%$ water V / V), was added to a solution of $7 \mathrm{e}(970 \mathrm{mg}, 3.46 \mathrm{mmol})$ in acetonitrile (10 mL). The
mixture was stirred at ambient temperature for 2 h . After filtration on silica gel, the solvent was removed in vacuo. The crude product was dissolved in methanol (20 mL), chlorotrimethylsilane ($0.9 \mathrm{~mL}, 761 \mathrm{mg}, 7.0 \mathrm{mmol}$) was added and the mixture was heated to reflux for 60 h . Then the solvent was removed in vacuo and the residue was purified by flash column chromatography ($4 \mathrm{~cm}, 30 \mathrm{~mL}, n$-hexane/ethyl acetate $=8 / 2 \rightarrow 1 / 2$) to give 8 e (n-hexane/ethyl acetate $=8 / 2, R_{f}=0.15$) as colorless solid ($400 \mathrm{mg}, 1.44 \mathrm{mmol}, 42 \%$) and 9 e (n-hexane/ethyl acetate $=1 / 2, \mathrm{R}_{\mathrm{f}}=0.35$) as colorless solid ($120 \mathrm{mg}, 0.5 \mathrm{mmol}, 15 \%$).

8e: m.p.: $124{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+40.4\left(3.8 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.40(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.67(\mathrm{~d}, J=3.5$ $\mathrm{Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.83(\mathrm{dd}, J=5.5 / 3.5 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 5.09(\mathrm{dd}, J=5.5 / 4.7 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H})$, $7.29-7.41$ (m, 3H, $\mathrm{H}_{\text {arom. }}$), $7.46-7.50$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}$); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 25.1$ (1C, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.8\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 52.3\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 80.8(1 \mathrm{C}, \mathrm{C}-4), 81.8(1 \mathrm{C}, \mathrm{C}-6 \mathrm{a}), 82.1$ (1C, C-3a), 83.6 (1C, $\mathrm{C}-6$), 113.5 ($1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$), 127.7 (2C, C-2'phenyl, $\left.\mathrm{C}-6{ }^{\prime}{ }^{\prime}{ }_{\text {phenyl }}\right)$, 128.1 (2C, C-3' ${ }_{\text {phenyl }}$, C-5 ${ }^{\prime}{ }_{\text {phenyl }}$), 128.3 (1C, C-4' ${ }_{\text {phenyl }}$), 134.8 (1C, C-1'phenyl), 167.9 (1C, $C=O$); IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2985,1763,1216,1117,1099,733,698 ; \operatorname{HRMS}(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{Na}, 301.1046$; found, 301.1042; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=$ 17.2 min, purity 97.6%.
(2S,3R,4S,5S)-Methyl
3,4-dihydroxy-5-(3-iodophenyl)-tetrahydrofuran-2-

carboxylate (9b)

p-Toluenesulfonic acid monohydrate ($32 \mathrm{mg}, 0.17 \mathrm{mmol}$) was added to a solution of $\mathbf{8 b}(670 \mathrm{mg}, 1.66 \mathrm{mmol})$ in methanol $(30 \mathrm{~mL})$. The mixture was heated to reflux for 16 h. Then the solvent was removed in vacuo and the residue was purified by flash
column chromatography ($3 \mathrm{~cm}, 20 \mathrm{~mL}, n$-hexane/ethyl acetate $=1 / 1,, \mathrm{R}_{\mathrm{f}}=0.32$) to give 9b as colorless solid (190 mg, 0.52 mmol , 31%). m.p.: $113{ }^{\circ} \mathrm{C}$; $[\alpha]_{D}^{20}=+51.5$ (1.0; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 2.87$ (s br, $1 \mathrm{H}, \mathrm{OH}$), 3.19 (s br, $1 \mathrm{H}, \mathrm{OH}$), 3.86 (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.23-4.28(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 4.69-4.75(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}), 5.08(\mathrm{~d}, \mathrm{~J}=3.6$ $\mathrm{Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.13\left(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 5{ }^{\prime}-\mathrm{H}_{3 \text {-iodophenyl }}\right), 7.43-7.47\left(\mathrm{~m}, 1 \mathrm{H}, 6{ }^{\prime}-\mathrm{H}_{3}-\right.$ iodophenyl), $7.64-7.68\left(\mathrm{~m}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}_{3 \text {-iodophenyl }}\right)$, $7.82-7.84\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{3}\right.$-iodophenyl), ; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 52.8\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 73.8(1 \mathrm{C}, \mathrm{C}-4), 74.1(1 \mathrm{C}, \mathrm{C}-3), 78.8(1 \mathrm{C}, \mathrm{C}-2)$, 82.8 (1C, C-5), 94.5 (1C, C-3'3-iodophenyl), 126.3 (1C, C-6'3-iodophenyl), 130.2 (1C, C-5'3iodophenyl), 136.0 (1C, $\mathrm{C}-4^{\prime}{ }_{3}$-iodophenyl), 137.3 (1C, $\mathrm{C}^{2} 2_{3}{ }_{3}$-iodophenyl), 138.4 (1C, $\mathrm{C}^{-1}{ }^{\prime}{ }_{3}$ iodophenyl), 172.6 (1C, $C=O$); $\operatorname{IR}($ neat $): ~ v\left[\mathrm{~cm}^{-1}\right]=3345,2939,1745,1563,1438,1220$, 1098, 775, 743; HRMS (m/z): [M+Na] ${ }^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{IO}_{5} \mathrm{Na}, 386.9700$; found, 386.9701; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=15.0$ min, purity 99.5%.
(2S,3R,4S,5S)-Methyl
5-(4-bromophenyl)-3,4-dihydroxytetrahydrofuran-2carboxylate (9c)
p-Toluenesulfonic acid monohydrate ($4 \mathrm{mg}, 0.02 \mathrm{mmol}$) was added to a solution of $\mathbf{8 c}$ $(80 \mathrm{mg}, 0.22 \mathrm{mmol})$ in methanol $(20 \mathrm{~mL})$. The mixture was heated to reflux for 16 h . Then the solvent was removed in vacuo and the residue was purified by flash column chromatography ($1 \mathrm{~cm}, 5 \mathrm{~mL}$, n-hexane/ethyl acetate $=1 / 1, \mathrm{R}_{\mathrm{f}}=0.19$) to give 9 c as colorless solid ($30 \mathrm{mg}, 0.09 \mathrm{mmol}, 42 \%$). m.p.: $140^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+52.9\left(0.4 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.24(\mathrm{t}, \mathrm{J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.69-4.74(\mathrm{~m}$, $2 \mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}), 5.09(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.33-7.37\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}_{4-\text { bromophenyl }} \mathrm{6}^{\prime}-\mathrm{H}_{4-}\right.$ bromophenyl), $7.50-7.54\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}_{4 \text {-bromophenyl }} 5^{\prime}-\mathrm{H}_{4 \text {-bromophenyl }}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $52.8\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 73.7(1 \mathrm{C}, \mathrm{C}-4), 74.1$ (1C, C-3), 78.9 (1C, $\left.\mathrm{C}-2\right), 83.1$ (1C, $\left.\mathrm{C}-5\right)$, 122.2 (1C, C-4' ${ }_{4 \text {-bromophenyl }}$), 128.7 (2C, C-2' ${ }_{4-\text { bromophenyl }}$, C-6 ${ }_{4 \text {-bromophenyl }}$), 131.7 (2C, C-
$3^{\prime}{ }_{4 \text {-bromophenyl }}$ C-5'4-bromophenyl), 135.1 (1C, $\mathrm{C}^{\prime} 1^{\prime}{ }_{4}{ }^{\text {-bromophenyl }}$), 172.7 (1C, $\mathrm{C}=\mathrm{O}$); IR (neat): $\mathrm{v}\left[\mathrm{cm}^{-1}\right]=3453,3373,2945,1741,1485,1222,1123,1085,1010,812,744 ;$ HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{13}{ }^{79} \mathrm{BrO}_{5} \mathrm{Na}, 338.9839$; found, 338.9840; HPLC (method $1): t_{R}=14.6 \mathrm{~min}$, purity 98.1%.
(2S,3R,4S,5S)-Methyl

5-(3-bromophenyl)-3,4-dihydroxytetrahydrofuran-2-

 carboxylate (9d)p-Toluenesulfonic acid monohydrate ($6 \mathrm{mg}, 0.03 \mathrm{mmol}$) was added to a solution of 8d $(60 \mathrm{mg}, 0.17 \mathrm{mmol})$ in methanol (15 mL). The mixture was heated to reflux for 16 h. Then the solvent was removed in vacuo and the residue was purified by flash column chromatography ($1 \mathrm{~cm}, 5 \mathrm{~mL}, n$-hexane/ethyl acetate $=1 / 1, \mathrm{R}_{\mathrm{f}}=0.27$) to give 9d as colorless solid (19 mg, $0.06 \mathrm{mmol}, 35 \%$). m.p.: $89^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+51.9$ (3.1; $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.26(\mathrm{t}, \mathrm{J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.69-$ $4.74(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}), 5.09(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.24-7.28\left(\mathrm{~m}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}_{3}\right.$ bromophenyl), $7.38-7.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right)$, $7.44-7.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.63-7.65(\mathrm{~m}, 1 \mathrm{H}$, $\left.2^{\prime}-\mathrm{H}_{3 \text {-bromophenyl }}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 52.8\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 73.9(1 \mathrm{C}, \mathrm{C}-4), 74.0(1 \mathrm{C}, \mathrm{C}-3)$, 78.8 (1C, C-2), 83.0 (1C, C-5), 122.7 (1C, C-3'3-bromophenyl), 125.6 ($1 \mathrm{C}, \mathrm{C}^{2} \mathrm{C}^{\prime}{ }_{3}$-bromophenyl), 130.0 (1C, C-4' ${ }_{3}$-bromophenyl), 130.1 ($1 \mathrm{C}, \mathrm{C}^{-5}{ }_{3}{ }_{3}$-bromophenyl), 131.3 (1C, $\mathrm{C}^{2} 2^{3}{ }_{3}$-bromophenyl), 138.5 (1C, C-1' ${ }^{\text {3-bromophenyl }}$), 172.6 (1C, $C=O$); IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3438,2953,1729$, 1570, 1438, 1223, 1071, 768; $\operatorname{HRMS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{13}{ }^{79} \mathrm{BrO}_{5} \mathrm{Na}$, 338.9839; found, 338.9830; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=14.4$ min, purity 95.2%.
p-Toluenesulfonic acid monohydrate ($52 \mathrm{mg}, 0.27 \mathrm{mmol}$) was added to a solution of $\mathbf{8 e}(420 \mathrm{mg}, 1.51 \mathrm{mmol})$ in methanol $(20 \mathrm{~mL})$. The mixture was heated to reflux for 16 h. Then the solvent was removed in vacuo and the residue was purified by flash column chromatography ($3 \mathrm{~cm}, 20 \mathrm{~mL}, n$-hexane/ethyl acetate $=2 / 1, \mathrm{R}_{\mathrm{f}}=0.08$) to give 9 e as colorless solid ($90 \mathrm{mg}, 0.38 \mathrm{mmol}, 25 \%$). m.p.: $76^{\circ} \mathrm{C}$; $[\alpha]_{D}^{20}=+40.3(2.6$; $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.76(\mathrm{~d} \mathrm{br}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.17(\mathrm{~d} \mathrm{br}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OH}), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.23-4.29(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 4.70-4.78(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H})$, $5.15(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.31-7.36\left(\mathrm{~m}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}_{\text {phenyl }}\right), 7.38-7.43\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}-\right.$ $\left.\mathrm{H}_{\text {phenyl }}, 5^{\prime}-\mathrm{H}_{\text {phenyl }}\right), 7.47-7.51\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\text {phenyl }}, 66^{\prime}-\mathrm{H}_{\text {phenyl }}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 52.8$ $\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 73.9(1 \mathrm{C}, \mathrm{C}-4), 74.3(1 \mathrm{C}, \mathrm{C}-3), 79.0(1 \mathrm{C}, \mathrm{C}-2), 83.7$ (1C, C-5), 127.0 (2C, C-2' ${ }_{\text {phenyl }}$, C-6' ${ }^{\text {phenyl }}$), 128.4 (1C, C-4' ${ }_{\text {phenyl }}$), 128.8 (2C, C-3' ${ }_{\text {phenyl }}$, C-5' ${ }_{\text {phenyl }}$), 135.9 (1C, C-1'phenyl), 172.7 (1C, C=O); IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3431,2955,1724,1221,1087$, 1071, 715, 700; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{Na}, 261.0733$; found, 261.0725; HPLC $(\operatorname{method} 1): \mathrm{t}_{\mathrm{R}}=8.3 \mathrm{~min}$, purity 98.6%.
(2S,3R,4S,5S)-N,3,4-Trihydroxy-5-(4-iodophenyl)-tetrahydrofuran-2carboxamide (10a)

Hydroxylamine hydrochloride ($63 \mathrm{mg}, 0.90 \mathrm{mmol}$) and sodium methoxide (73 mg , $1.35 \mathrm{mmol})$ were added to a solution of $9 \mathrm{a}(109 \mathrm{mg}, 0.30 \mathrm{mmol})$ in methanol (20 mL) and the mixture was stirred at ambient temperature for 16 h . Then the solvent was evaporated. The residue was dissolved in ethyl acetate and extracted with HCl (1 м). The aqueous phase was then extracted with ethyl acetate (3x) and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated. The residue was purified by flash column chromatography $\left(1 \mathrm{~cm}, 5 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol $=9.5 / 0.5+$ 0.1% TFA). The fractions containing 10a were collected and evaporated. The residue
was dissolved in ethyl acetate and extracted with $\mathrm{HCl}(1 \mathrm{~m})$. The aqueous phase was then extracted with ethyl acetate $(3 x)$ and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated to give 10a as colorless solid ($11 \mathrm{mg}, 0.03 \mathrm{mmol}$, $10 \%)$. m.p.: $162{ }^{\circ} \mathrm{C}$; $\operatorname{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol $\left.=9 / 1\right): \mathrm{R}_{\mathrm{f}}=0.47 ;[\alpha]_{D}^{20}=+56.4$ (0.8; methanol); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{3} \mathrm{COD}\right): \delta 4.18(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.45(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, 2-H), 4.69 (dd, J = 7.0/4.7 Hz, 1H, 3-H), 4.99 (d, J = $4.3 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.21-7.25(\mathrm{~m}$, $\left.2 \mathrm{H}, 2^{\prime}-\mathrm{H}_{4 \text {-iodophenyl}}, 6^{\prime}-\mathrm{H}_{4-\text {-iodophenyl }}\right), 7.66-7.70\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}_{4 \text {-iodophenyl }}, 5^{\prime}-\mathrm{H}_{4 \text {-iodophenyl }}\right) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{3} \mathrm{COD}$): $\delta 74.3$ (1C, C-3), 74.7 (1C, C-4), 80.2 (1C, C-2), 85.0 (1C, C-5), 93.5 (1C, C-4' ${ }_{4 \text {-iodophenyl }}$), 130.7 (2C, C-2' ${ }_{4 \text {-iodophenyl }}, \mathrm{C}-6^{\prime}{ }_{4 \text {-iodophenyl }}$), 138.0 (2C, C-3'4-iodophenyl, C -5'4-iodophenyl), 138.6 (1C, C -1'4-iodophenyl), a signal for the $\mathrm{C}=\mathrm{O}$ carbon was not visible in the spectrum; IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3271,2923,1651,1134,1044,1006,772$; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{INO}_{5}, 365.9833$; found, 365.9827; HPLC $(\operatorname{method} 2): \mathrm{t}_{\mathrm{R}}=13.6 \mathrm{~min}$, purity 95.4%.\#
(2S,3R,4S,5S)-N,3,4-Trihydroxy-5-(3-iodophenyl)-tetrahydrofuran-2carboxamide (10b)

Hydroxylamine hydrochloride ($63 \mathrm{mg}, 0.90 \mathrm{mmol}$) and sodium methoxide (73 mg , $1.35 \mathrm{mmol})$ were added to a solution of $9 \mathbf{b}(109 \mathrm{mg}, 0.30 \mathrm{mmol})$ in methanol $(20 \mathrm{~mL})$ and the mixture was stirred at ambient temperature for 16 h . Then the solvent was evaporated. The residue was dissolved in ethyl acetate and extracted with HCl (1 м). The aqueous phase was then extracted with ethyl acetate (3x) and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated. The residue was purified by flash column chromatography $\left(1 \mathrm{~cm}, 5 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol $=9.5 / 0.5+$ 0.1% TFA). The fractions containing 10b were collected and evaporated. The residue was dissolved in ethyl acetate and extracted with $\mathrm{HCl}(1 \mathrm{~m})$. The aqueous phase was
then extracted with ethyl acetate $(3 x)$ and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated to give $\mathbf{1 0 b}$ as colorless solid ($32 \mathrm{mg}, 0.09 \mathrm{mmol}$, 29\%). m.p.: $143{ }^{\circ} \mathrm{C}$; $\operatorname{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol $\left.=9 / 1\right): \mathrm{R}_{\mathrm{f}}=0.47 ;[\alpha]_{D}^{20}=+50.8(2.5$; methanol); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{3} \mathrm{COD}$): $\delta 4.18(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, $2-H), 4.70(\mathrm{dd}, \mathrm{J}=7.2 / 4.7 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 4.99(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.11(\mathrm{t}, \mathrm{J}=7.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}_{3 \text {-iodophenyl }}\right), 7.41-7.45\left(\mathrm{~m}, 1 \mathrm{H}, 6\right.$ '- $\mathrm{H}_{3 \text {-iodophenyl }}$), $7.60-7.64\left(\mathrm{~m}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}_{3}\right.$ iodophenyl), $7.83-7.85\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{3 \text {-iodophenyl }}\right.$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{3} \mathrm{COD}$): $\delta 74.2(1 \mathrm{C}, \mathrm{C}-3)$, 74.8 (1C, C-4), 80.1 (1C, C-2), 84.7 (1C, C-5), 94.4 (1C, C-3'3-iodopheny), 127.9 (1C, C-
 iodophenyl), 141.3 (1C, C-1'3-iodophenyl), 169.3 (1C, $C=O$); IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3321,2938$, 1666, 1604, 1325, 1252, 1108, 1025, 839, 753; $\operatorname{HRMS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{INO}_{5}, 365.9833$; found, 365.9882 ; HPLC (method 2): $\mathrm{t}_{\mathrm{R}}=14.3 \mathrm{~min}$, purity 95.4\%.

(2S,3R,4S,5S)-5-(4-Bromophenyl)-N,3,4-trihydroxytetrahydrofuran-2-

carboxamide (10c)

Hydroxylamine hydrochloride ($63 \mathrm{mg}, 0.90 \mathrm{mmol}$) and sodium methoxide (73 mg , $1.35 \mathrm{mmol})$ were added to a solution of $9 \mathrm{c}(95 \mathrm{mg}, 0.30 \mathrm{mmol})$ in methanol (20 mL) and the mixture was stirred at ambient temperature for 16 h . Then the solvent was evaporated. The residue was dissolved in ethyl acetate and extracted with HCl (1 м). The aqueous phase was then extracted with ethyl acetate (3x) and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated. The residue was purified by flash column chromatography $\left(1 \mathrm{~cm}, 5 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol $=9.5 / 0.5+$ 0.1% TFA). The fractions containing 10c were collected and evaporated. The residue was dissolved in ethyl acetate and extracted with $\mathrm{HCl}(1 \mathrm{~m})$. The aqueous phase was
then extracted with ethyl acetate $(3 x)$ and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated to give 10 c as colorless solid ($14 \mathrm{mg}, 0.04 \mathrm{mmol}$, $15 \%)$. m.p.: $149{ }^{\circ} \mathrm{C}$; $\operatorname{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol $\left.=9 / 1\right): \mathrm{R}_{\mathrm{f}}=0.47 ;[\alpha]_{D}^{20}=+44.5(2.6$; methanol); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{3} \mathrm{COD}$): $\delta 4.18(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.46(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, 2-H), 4.69 (dd, J = 7.0/4.8 Hz, 1H, 3-H), 5.01 (d, J = $4.3 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.35-7.39(\mathrm{~m}$, 2H, 2'-H ${ }_{4 \text {-bromophenyl, }}$ 6'-H ${ }_{4 \text {-bromophenyl }}$), $7.46-7.50\left(\mathrm{~m}, 2 \mathrm{H}, 3\right.$ '- $\mathrm{H}_{4 \text {-bromophenyl }} 5^{\prime}$ - H_{4-} bromopheny) ; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{3} \mathrm{COD}$): $\delta 74.3$ (1C, C-3), 74.7 (1C, C-4), 80.2 (1C, C-2), 84.9 (1C, C-5), 122.2 (1C, C-4'4-bromophenyl), 130.6 (2C, C-2'4-bromophenyl, C-6'4-bromophenyl), 131.8 (2C, C-3'4-bromophenyl, C-5 $^{\prime}{ }_{4}{ }^{- \text {bromophenyl }}$), 138.0 (1C, C-1'4-bromophenyl), 169.3 (1C, $C=O$); IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3248,2919,2865,1649,1487,1401,1133,1041,773$, 724; HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{13}{ }^{79} \mathrm{BrNO}_{5}, 317.9972$; found, 317.9987; calcd for $\mathrm{C}_{11} \mathrm{H}_{13}{ }^{81} \mathrm{BrNO}_{5}, 319.9951$; found, 319.9977; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=12.7 \mathrm{~min}$, purity 96.8%.

(2S,3R,4S,5S)-5-(3-Bromophenyl)-N,3,4-trihydroxytetrahydrofuran-2-

 carboxamide (10d)Hydroxylamine hydrochloride ($63 \mathrm{mg}, 0.90 \mathrm{mmol}$) and sodium methoxide (73 mg , $1.35 \mathrm{mmol})$ were added to a solution of $9 \mathbf{d}(95 \mathrm{mg}, 0.30 \mathrm{mmol})$ in methanol (20 mL) and the mixture was stirred at ambient temperature for 16 h . Then the solvent was evaporated. The residue was dissolved in ethyl acetate and extracted with $\mathrm{HCl}(1 \mathrm{M})$. The aqueous phase was then extracted with ethyl acetate (3x) and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated. The residue was purified by flash column chromatography $\left(1 \mathrm{~cm}, 5 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol $=9.5 / 0.5+$ 0.1% TFA). The fractions containing 10d were collected and evaporated. The residue was dissolved in ethyl acetate and extracted with $\mathrm{HCl}(1 \mathrm{~m})$. The aqueous phase was
then extracted with ethyl acetate $(3 x)$ and the combined organic layers were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered and evaporated to give 10d as colorless solid ($29 \mathrm{mg}, 0.09 \mathrm{mmol}$, $30 \%)$. m.p.: $149{ }^{\circ} \mathrm{C}$; $\operatorname{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol $\left.=9 / 1\right): \mathrm{R}_{\mathrm{f}}=0.40 ;[\alpha]_{D}^{20}=+59.7(2.6$; methanol); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{3} \mathrm{COD}$): $\delta 4.19(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.46(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, $2-H), 4.70(\mathrm{dd}, \mathrm{J}=7.1 / 4.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 5.02(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.25(\mathrm{t}, \mathrm{J}=7.8$ $\mathrm{Hz}, 5^{\prime}-\mathrm{H}_{3}$-bromophenyl), $7.37-7.43$ ($\mathrm{m}, 2 \mathrm{H}, 4$ 4'- $_{3 \text {-bromophenyl }}$, 6'- $\mathrm{H}_{3 \text {-bromophenyl }}$), $7.65-7.67$ (m, 1H, 2'- $\mathrm{H}_{3 \text {-bromophenyl); }}{ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{3} \mathrm{COD}$): $\delta 74.2$ (1C, C-3), 74.8 (1C, C-4), 80.2 (1C, C-2), 84.8 (1C, C-5), 122.9 (1C, $\mathrm{C}^{\prime} 3^{\prime}{ }_{3}$-bromophenyl), 127.3 (1C, $\mathrm{C}^{-6}{ }_{3}{ }_{3}$-bromophenyl), 130.6 (1C, C-5'3-bromophenyl), 131.5 (1C, C-4'3-bromophenyl), 131.6 (1C, C-2' ${ }_{3}$-bromophenyl), 141.4 (1C, C-1'3-bromophenyl), 169.3 (1C, $C=O$); IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3315,2908,1643$, 1429, 1030, 763, 693; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{13}{ }^{79} \mathrm{BrNO}_{5}, 317.9972$; found, 317.9984; calcd for $\mathrm{C}_{11} \mathrm{H}_{13}{ }^{81} \mathrm{BrNO}_{5}, 319.9951$; found, 319.9969; HPLC (method 2$)$: $\mathrm{t}_{\mathrm{R}}=13.5 \mathrm{~min}$, purity 98.4%.
(2S,3R,4S,5S)-N,3,4-Trihydroxy-5-phenyl-tetrahydrofuran-2-carboxamide (10e)

Hydroxylamine hydrochloride ($42 \mathrm{mg}, 0.60 \mathrm{mmol}$) and sodium methoxide (49 mg , $0.90 \mathrm{mmol})$ were added to a solution of $9 \mathrm{e}(71 \mathrm{mg}, 0.30 \mathrm{mmol})$ in methanol (20 mL) and the mixture was stirred at ambient temperature for 16 h . Then the solvent was evaporated. The residue was dissolved in ethyl acetate and extracted with HCl (1 м). The aqueous phase was then extracted with ethyl acetate $(3 x)$ and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated. The residue was purified by flash column chromatography $\left(1 \mathrm{~cm}, 5 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol $=9.5 / 0.5+$ 0.1% TFA). The fractions containing $\mathbf{1 0 e}$ were collected and evaporated. The residue was dissolved in ethyl acetate and extracted with $\mathrm{HCl}(1 \mathrm{~m})$. The aqueous phase was then extracted with ethyl acetate (3x) and the combined organic layers were dried
$\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated to give $\mathbf{1 0 e}$ as colorless solid (12 $\mathrm{mg}, 0.05 \mathrm{mmol}$, 17\%). m.p.: $159{ }^{\circ} \mathrm{C}$; $\operatorname{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol $\left.=9 / 1\right): \mathrm{R}_{\mathrm{f}}=0.37 ;[\alpha]_{D}^{20}=+73.3$ (1.1; methanol); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{3} \mathrm{COD}$): $\delta 4.17$ (dd, $J=4.7 / 3.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$), 4.47 (d, $J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.72(\mathrm{dd}, \mathrm{J}=7.3 / 4.7 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 5.03(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.24-$ $7.29\left(\mathrm{~m}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}_{\text {phenyl }}\right), 7.31-7.35\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}_{\text {phenyl }}, 5^{\prime}-\mathrm{H}_{\text {phenyl }}\right), 7.43-7.46(\mathrm{~m}, 2 \mathrm{H}$, $2^{\prime}-\mathrm{H}_{\text {phenyl }}, 6$ '- $\mathrm{H}_{\text {phenyl }}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{3} \mathrm{COD}$): $\delta 74.4$ (1C, $\mathrm{C}-3$), 74.8 (1C, C-4), 80.1 (1C, C-2), 85.5 (1C, C-5), 128.5 (1C, C-4' ${ }_{\text {phenyl }}$), 128.6 (2C, C-2'phenyl, C-6'phenyl), 128.8 (2C,
 3265, 2924, 1644, 1457, 1133, 1073, 1011, 719; HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{5}, 240.0866$; found, 240.0909 ; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=5.7 \mathrm{~min}$, purity 98.3%.

(3aR,4S,6S,6aR)-Methyl 6-([1,1'-biphenyl]-3-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxole-4-carboxylate (11b)

Under N_{2} atmosphere sodium methoxide ($84 \mathrm{mg}, 1.55 \mathrm{mmol}$) and phenylboronic acid $(142 \mathrm{mg}, 1.16 \mathrm{mmol})$ were dissolved in 1,2-dimethoxyethane $(30 \mathrm{~mL})$ and the mixture was stirred at room temperature for 30 min . Then (1, '' bis(diphenylphosphino)ferrocene)dichloropalladium(II) (88 mg, 0.12 mmol) was added. After stirring the mixture for 10 min at room temperature a solution of $\mathbf{8 b}$ (275 $\mathrm{mg}, 0.68 \mathrm{mmol})$ in 1,2-dimethoxyethane (20 mL) was added. Then the reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 16 h , cooled to room temperature and evaporated. The crude residue was purified by flash column chromatography ($2 \mathrm{~cm}, 10 \mathrm{~mL}$, cyclohexane/ethyl acetate $=8 / 2, R_{f}=0.20$) to give 11 b as colorless solid (130 mg , $0.37 \mathrm{mmol}, 54 \%)$. m.p.: $122{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+47.9\left(1.2 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.28$ (s, 3H, CH3), $1.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.42(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H})$, $4.73(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.87(\mathrm{dd}, J=5.9 / 3.5 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 5.11(\mathrm{dd}, J=$
$5.9 / 4.6 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 7.32-7.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.40-7.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.53-$ 7.56 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom. }}$), $7.58-7.62$ (m, 2H, $\mathrm{H}_{\text {arom. }}$), $7.68-7.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 25.1\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $25.9\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 52.3\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right)$, $80.8(1 \mathrm{C}, \mathrm{C}-4)$, 81.8 (1C, C-6a), 82.1 (1C, C-3a), 83.7 (1C, C-6), 113.6 (1C, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 126.6 (1C, $\mathrm{C}_{\text {arom. }}$), 126.8 (1C, $\mathrm{C}_{\text {arom. }}$), 127.2 (1C, $\mathrm{C}_{\text {arom. }}$), 127.3 (1C, $\mathrm{C}_{\text {arom. }}$), 127.4 (2C, $\mathrm{C}_{\text {arom. }}$), 128.6 (1C, Carom.), 128.8 (2C, Carom.), 135.3 (1C, $\mathrm{C}_{\text {arom. }}$), 141.0 (1C, $\mathrm{C}_{\text {arom. }}$), 141.3 (1C, $C_{\text {arom. }}$), 167.8 (1C, $C=O$); IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=2984,1744,1435,1381,1277,1211$, 1107, 1036, 856, 806, 739, 698; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{5}, 355.1540$; found, 355.1560 ; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=20.5 \mathrm{~min}$, purity 96.0%.

(2S,3R,4S,5S)-Methyl 5-([1,1'-biphenyl]-3-yl)-3,4-dihydroxytetrahydrofuran-2carboxylate (12b)

p-Toluenesulfonic acid monohydrate ($10 \mathrm{mg}, 0.05 \mathrm{mmol}$) and ethylene glycol (3 drops) were added to a solution of 11b ($160 \mathrm{mg}, 0.45 \mathrm{mmol}$) in methanol (30 mL). The mixture was heated to reflux for 16 h . Then the solvent was removed in vacuo and the residue was purified by flash column chromatography $(2 \mathrm{~cm}, 10 \mathrm{~mL}$, cyclohexane/ethyl acetate $=1 / 1, R_{f}=0.25$) to give $12 b$ as colorless solid (80 mg , $0.25 \mathrm{mmol}, 56 \%)$. m.p.: $115^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+49.5\left(1.7 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.82$ (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.19(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.31(\mathrm{dt}, J$ $=8.7 / 3.8 \mathrm{~Hz} 1 \mathrm{H}, 4-\mathrm{H}), 4.73-4.81(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}), 5.22(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$, $7.33-7.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.42-7.49\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.54-7.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$, $7.60-7.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.70-7.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 52.8(1 \mathrm{C}$, OCH_{3}), 73.8 (1C, C-4), 74.3 (1C, C-3), 78.9 (1C, C-2), 83.7 (1C, C-5), 125.8 (1C, Carom.), 125.9 (1C, $\mathrm{C}_{\text {arom. }}$), 127.2 (1C, $\mathrm{C}_{\text {arom. }}$), 127.4 (2C, $\mathrm{C}_{\text {arom. }}$), 127.5 (1C, $\mathrm{C}_{\text {arom. }}$), 128.9 (2C, C arom.), 129.1 (1C, Carom.), 136.4 (1C, Carom.), 141.1 (1C, Carom.), 141.6 (1C,
$C_{\text {arom. }}$), 172.6 (1C, $C=O$); IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3460,3348,2928,1744,1597,1435$, 1331, 1219, 1126, 1096, 980, 926, 745, 694; HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{5}, 315.1227$; found, 315.1250 ; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=17.4$ min, purity 97.6%.
(2S,3R,4S,5S)-5-([1,1'-Biphenyl]-3-yl)-N,3,4-trihydroxytetrahydrofuran-2carboxamide (13b)

Hydroxylamine hydrochloride ($156 \mathrm{mg}, 2.24 \mathrm{mmol}$) and sodium methoxide (121 mg , $2.24 \mathrm{mmol})$ were added to a solution of $\mathbf{1 2 b}(100 \mathrm{mg}, 0.32 \mathrm{mmol})$ in methanol (20 mL) and the mixture was stirred at ambient temperature for 48 h . Then the solvent was evaporated. The residue was dissolved in ethyl acetate and extracted with HCl (1 m). The aqueous phase was then extracted with ethyl acetate $(3 x)$ and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated. The residue was purified by flash column chromatography $\left(1 \mathrm{~cm}, 5 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol $=$ 9.5/0.5 + 0.1\% TFA). The fractions containing 13b were collected and evaporated. The residue was dissolved in ethyl acetate and extracted with $\mathrm{HCl}(1 \mathrm{~m})$. The aqueous phase was then extracted with ethyl acetate (3x) and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated to give $\mathbf{1 3 b}$ as colorless solid (15 $\mathrm{mg}, 0.05 \mathrm{mmol}, 15 \%)$. m.p.: $157^{\circ} \mathrm{C} ; \operatorname{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol $\left.=9 / 1\right): \mathrm{R}_{\mathrm{f}}=0.44 ;[\alpha]_{D}^{20}=$ +51.5 (2.4; methanol); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{3} \mathrm{COD}\right): \delta 4.23(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.50(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.75(\mathrm{dd}, \mathrm{J}=7.3 / 4.7 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$, $7.30-7.34$ (m, 1H, $\mathrm{H}_{\text {arom. }}$), $7.39-7.45$ (m, 4H, $\mathrm{H}_{\text {arom. }}$), $7.51-7.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right.$), $7.62-7.65$ (m, 2H, $\mathrm{H}_{\text {arom. }}$), $7.73-7.75$ (m, $1 \mathrm{H}, \mathrm{H}_{\text {arom. }}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{3} \mathrm{COD}$): $\delta 74.4$ (1C, C-3), 74.9 (1C, C-4), 80.1 (1C, C-2), 85.5 (1C, C-5), 127.2 (1C, Carom.), 127.3 (1C, $\mathrm{C}_{\text {arom. }}$), 127.6 (1C, $\mathrm{C}_{\text {arom. }}$), 128.1 (2C, $\mathrm{C}_{\text {arom. }}$), 128.3 (1C, $\mathrm{C}_{\text {arom. }}$), 129.3 (1C, Carom.), 129.8 (2C, Carom.), 139.2 (1C, $\mathrm{C}_{\text {arom. }}$), 142.1 (1C, $\mathrm{C}_{\text {arom. }}$), 142.5 (1C, $\mathrm{C}_{\text {arom. }}$),
169.5 (1C, $C=O$); IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3306,2901,1643,1454,1423,1258,1142$, 1030, 841, 748, 733; HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{5}, 316.1179$; found, 316.1167; HPLC (method 2$)$: $\mathrm{t}_{\mathrm{R}}=15.1 \mathrm{~min}$, purity 98.1%.
(3aR,4S,6S,6aR)-Methyl 2,2-dimethyl-6-(3-((E)-styryl)phenyl)tetrahydrofuro[3,4-d][1,3]dioxole-4-carboxylate (14b)

Under N_{2} atmosphere sodium methoxide ($40 \mathrm{mg}, 0.74 \mathrm{mmol}$) and trans- β styreneboronic acid ($82 \mathrm{mg}, 0.56 \mathrm{mmol}$) were dissolved in 1,2-dimethoxyethane (10 mL) and the mixture was stirred at room temperature for 30 min . Then tetrakis(triphenylphosphine)palladium(0) ($43 \mathrm{mg}, 0.04 \mathrm{mmol}$) was added. After stirring the mixture for 10 min at room temperature a solution of $\mathbf{8 b}(150 \mathrm{mg}, 0.37 \mathrm{mmol})$ in 1,2-dimethoxyethane (5 mL) was added. Then the reaction mixture was heated to 80 ${ }^{\circ} \mathrm{C}$ for 16 h , cooled to room temperature and evaporated. The crude residue was purified by flash column chromatography ($2 \mathrm{~cm}, 10 \mathrm{~mL}$, cyclohexane/ethyl acetate $=$ $8 / 2,10 \mathrm{~mL}, R_{f}=0.15$) to give 14 b as colorless solid ($90 \mathrm{mg}, 0.24 \mathrm{mmol}, 64 \%$). m.p.: $142{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+55.3\left(3.8 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.46(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.42(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.70(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$, $6-H), 4.86(d d, J=5.8 / 3.5 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 5.11(\mathrm{dd}, J=5.8 / 4.6 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 7.12-$ 7.13 (m, 2H, CH=CH), $7.24-7.28$ (m, 1H, $\mathrm{H}_{\text {arom. }}$), $7.34-7.39\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.47-$ $7.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.50-7.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.59-7.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 25.1\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.9\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 52.3\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 80.8(1 \mathrm{C}, \mathrm{C}-4)$, 81.8 (1C, C-6a), 82.0 (1C, C-3a), 83.5 (1C, C-6), 113.6 (1C, $\left.C\left(\mathrm{CH}_{3}\right)_{2}\right), 126.0$ (1C, Carom.), 126.3 (1C, $\mathrm{C}_{\text {arom. }}$), 126.7 (2C, $\mathrm{C}_{\text {arom. }}$), 127.0 (1C, $\mathrm{C}_{\text {arom. }}$), 127.7 (1C, $\mathrm{C}_{\text {arom. }}$), 128.5 (1C, Carom.), 128.8 (2C, Carom.), 128.9 (1C, $\mathrm{CH}=\mathrm{CH}$), 129.0 (1C, $\mathrm{CH}=\mathrm{CH}$), 135.2 (1C, $\mathrm{C}_{\text {arom. }}$), 137.2 (1C, $\mathrm{C}_{\text {arom. }}$), 137.5 (1C, $\mathrm{C}_{\text {arom. }}$), 167.8 (1C, $\mathrm{C}=\mathrm{O}$); IR (neat): $\mathrm{v}\left[\mathrm{cm}^{-1}\right]$
$=2994,2954,1760,1429,1380,1206,1126,1099,1027,967,907,857,802,754$, 691; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{5}, 381.1697$; found, 381.1722; HPLC $($ method 1$): t_{R}=21.3 \mathrm{~min}$, purity 97.3%.

(2S,3R,4S,5S)-Methyl 3,4-dihydroxy-5-(3-((E)-styryl)phenyl)tetrahydrofuran-2carboxylate (15b)

p-Toluenesulfonic acid monohydrate ($16 \mathrm{mg}, 0.08 \mathrm{mmol}$) and ethylene glycol (2 drops) were added to a solution of 14b ($160 \mathrm{mg}, 0.42 \mathrm{mmol}$) in methanol (30 mL). The mixture was heated to reflux for 16 h . Then the solvent was removed in vacuo and the residue was purified by flash column chromatography ($2 \mathrm{~cm}, 10 \mathrm{~mL}$, cyclohexane/ethyl acetate $=1 / 1, R_{f}=0.28$) to give 15 b as colorless solid (72 mg , $0.21 \mathrm{mmol}, 50 \%)$. m.p.: $133{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+55.4\left(1.6 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.80$ (d br, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.22(\mathrm{~d} \mathrm{br}, J=6.6 \mathrm{~Hz}, 1 \mathrm{HOH}), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.27-$ $4.32(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 4.72-4.79(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}), 5.17(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.14$ (s, 2H, Ar-CH=CH-Ar), $7.24-7.29$ (m, 1H, $\mathrm{H}_{\text {arom. }}$), $7.34-7.42$ (m, 4H, $\mathrm{H}_{\text {arom. }}$), $7.47-$ $7.54\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.63-7.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 52.8$ (1C, OCH_{3}), 73.8 (1C, C-4), 74.2 (1C, C-3), 78.9 (1C, C-2), 83.5 (1C, C-5), 125.1 (1C, Carom.), 126.2 (1C, $\mathrm{C}_{\text {arom. }}$), 126.4 (1C, $\mathrm{C}_{\text {arom. }}$), 126.7 (2C, $\mathrm{C}_{\text {arom. }}$), 127.8 (1C, $\mathrm{C}_{\text {arom. }}$), 128.6 (1C, Carom.), 128.8 (2C, Carom.), 129.0 (1C, $\mathrm{CH}=\mathrm{CH}$), 129.3 (1C, $\mathrm{CH}=\mathrm{CH}$), 136.3 (1C, $\mathrm{C}_{\text {arom. }}$), 137.4 (1C, $\mathrm{C}_{\text {arom. }}$), 137.7 (1C, $\mathrm{C}_{\text {arom. }}$), 172.5 (1C, $\mathrm{C}=\mathrm{O}$); IR (neat): $\mathrm{v}\left[\mathrm{cm}^{-1}\right]$ $=3472,3321,3024,2936,2889,1744,1601,1489,1435,1331,1219,1123,1096$, 964, 791, 741, 694; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{5}, 341.1384$; found, 341.1415; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=18.9$ min, purity 96.9%.
(2S,3R,4S,5S)-N,3,4-Trihydroxy-5-(3-((E)-styryl)phenyl)tetrahydrofuran-2carboxamide (16b)

Hydroxylamine hydrochloride ($69 \mathrm{mg}, 1.0 \mathrm{mmol}$) and sodium methoxide ($54 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ were added to a solution of $\mathbf{1 5 b}(49 \mathrm{mg}, 0.14 \mathrm{mmol})$ in methanol $(20 \mathrm{~mL})$ and the mixture was stirred at ambient temperature for 72 h . Then the solvent was evaporated. The residue was dissolved in ethyl acetate and extracted with $\mathrm{HCl}(1 \mathrm{M})$. The aqueous phase was then extracted with ethyl acetate (3x) and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated. The residue was purified by flash column chromatography $\left(1 \mathrm{~cm}, 5 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol $=9.5 / 0.5+$ 0.1% TFA). The fractions containing 16b were collected and evaporated. The residue was dissolved in ethyl acetate and extracted with $\mathrm{HCl}(1 \mathrm{~m})$. The aqueous phase was then extracted with ethyl acetate $(3 x)$ and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated to give 16b as colorless solid (14 mg, 0.04 mmol , 31\%). m.p.: $141^{\circ} \mathrm{C} ; \operatorname{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol $\left.=9 / 1\right): \mathrm{R}_{\mathrm{f}}=0.38 ;[\alpha]_{D}^{20}=+49.5$ (2.0; methanol); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{3} \mathrm{COD}$): $\delta 4.22(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.49(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, $2-\mathrm{H}), 4.74(\mathrm{dd}, J=7.3 / 4.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 5.07(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.20(\mathrm{~s}, 2 \mathrm{H}$, Ar-$\mathrm{CH}=\mathrm{CH}-\mathrm{Ar}), 7.21-7.26$ (m, 1H, $\mathrm{H}_{\text {arom. }}$), $7.32-7.37$ (m, 4H, $\mathrm{H}_{\text {arom. }}$), $7.45-7.49$ (m, $1 \mathrm{H}, \mathrm{H}_{\text {arom. }}$), $7.54-7.57$ (m, 2H, $\mathrm{H}_{\text {arom. }}$), $7.67-7.69$ (s, $1 \mathrm{H}, \mathrm{H}_{\text {arom. }}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{3} \mathrm{COD}$): $\delta 74.4$ (1C, C-3), 74.8 (1C, C-4), 80.1 (1C, C-2), 85.5 (1C, C-5), 126.7 (1C, Carom.), 126.8 (1C, Carom.), 127.5 (2C, Carom.), 127.9 (1C, Carom.), 128.6 (1C, Carom.), 129.2 (1C, Carom.), 129.69 ($2 \mathrm{C}, \mathrm{C}_{\text {arom. }}$), $129.72(2 \mathrm{C}, \mathrm{CH}=\mathrm{CH}), 138.4$ (1C, $\mathrm{C}_{\text {arom. }}$), 138.9 (1 C , Carom.), 139.0 (1C, $\mathrm{C}_{\text {arom. }}$), 169.5 (1C, $C=O$); IR (neat): $\mathrm{v}\left[\mathrm{cm}^{-1}\right]=3306,2955,2878$, 1655, 1450, 1204, 1138, 1049, 964, 775, 691; $\operatorname{HRMS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{5}, 342.1336$; found, 342.1343; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=17.6 \mathrm{~min}$, purity 97.1\%.

Under N_{2} atmosphere triethylamine ($0.52 \mathrm{~mL}, 3.7 \mathrm{mmol}$), copper(I) iodide (20 mg , $0.11 \mathrm{mmol})$ and tetrakis(triphenylphosphine)palladium(0) ($61 \mathrm{mg}, 0.053 \mathrm{mmol}$) were added to a solution of $\mathbf{8 b}(215 \mathrm{mg}, 0.53 \mathrm{mmol})$ in acetonitrile $(10 \mathrm{~mL})$. Then a solution of phenylacetylene ($0.49 \mathrm{~mL}, 4.4 \mathrm{mmol}$) in acetonitrile (5 mL) was added dropwise over a period of 2 h . After evaporation of the solvent the residue was purified by flash column chromatography ($2 \mathrm{~cm}, 10 \mathrm{~mL}$, cyclohexane/ethyl acetate $=8 / 2, \mathrm{R}_{\mathrm{f}}=0.19$) to give 17b as colorless solid (190 mg, $0.50 \mathrm{mmol}, 94 \%$). m.p.: $150^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+43.3$ (4.1; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.86(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 4.41(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.67(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.85(\mathrm{dd}, J=$ $5.8 / 3.5 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 5.10(\mathrm{dd}, J=5.8 / 4.5 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 7.32-7.38\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$, $7.46-7.50$ (m, 2H, $\mathrm{H}_{\text {arom. }}$), $7.51-7.55$ (m, 2H, $\mathrm{H}_{\text {arom. }}$), $7.60-7.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right.$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 25.1\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.8\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 52.3\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 80.8$ (1C, C-4), 81.7 (1C, C-6a), 82.0 (1C, C-3a), 83.2 (1C, C-6), 89.5 (1C, C三C), 89.6 (1C, $C \equiv \mathrm{C}$), 113.6 (1C, $\left.C\left(\mathrm{CH}_{3}\right)_{2}\right), 123.1$ (1C, $\mathrm{C}_{\text {arom. }}$), 123.4 (1C, $\mathrm{C}_{\text {arom. }}$), 127.7 (1C, Carom.), 128.2 (1C, Carom. $^{\text {) }} 128.4$ (1C, $\mathrm{C}_{\text {arom. }}$), 128.5 (2C, $\mathrm{C}_{\text {arom. }}$), 130.6 (1C, $\mathrm{C}_{\text {arom. }}$), 131.5 (1C, $\mathrm{C}_{\text {arom. }}$), 131.8 (2C, $\mathrm{C}_{\text {arom. }}$), 135.2 (1C, $\mathrm{C}_{\text {arom. }}$), 167.7 (1C, $C=0$); IR (neat): v $\left[\mathrm{cm}^{-1}\right]=2932,1763,1493,1436,1380,1213,1107,743,690 ; \operatorname{HRMS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{5}, 379.1540$; found, 379.1551 ; HPLC (methid 1): $\mathrm{t}_{\mathrm{R}}=22.1 \mathrm{~min}$, purity 95.8%.
(3aR,4S,6S,6aR)-Methyl 2,2-dimethyl-6-(3-phenethylphenyl)tetrahydrofuro[3,4-d][1,3]dioxole-4-carboxylate (21b)

17b (90 mg, 0.24 mmol) was dissolved in methanol (20 mL) and $10 \% \mathrm{Pd} / \mathrm{C}(9 \mathrm{mg})$ was added. The mixture was stirred under hydrogen (balloon) for 16 h at room temperature. Then the suspension was filtered through Celite ${ }^{\circledR}$ and the filtrate was concentrated in vacuo. The residue was purified by flash column chromatography (1 $\mathrm{cm}, 5 \mathrm{~mL}$, cyclohexane/ethyl acetate $=8 / 2, R_{f}=0.23$) to give $\mathbf{2 1 b}$ as colorless solid (84 mg, $0.22 \mathrm{mmol}, 92 \%$). m.p.: $113{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+37.1\left(3.8 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.27$ (s, 3H, CH3$), 1.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.89-2.98\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right)$, $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.39(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.64(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.81$ (dd, $J=5.8 / 3.6 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{a}-\mathrm{H}), 5.08$ (dd, $J=5.8 / 4.6 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{a}-\mathrm{H}), 7.12-7.15$ (m, $1 \mathrm{H}, \mathrm{H}_{\text {arom. }}$), $7.17-7.22\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.25-7.33\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right)$) ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 25.1\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.9\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 38.0\left(1 \mathrm{C}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 38.1$ (1C, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 52.3\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 80.8(1 \mathrm{C}, \mathrm{C}-4), 81.9(1 \mathrm{C}, \mathrm{C}-6 \mathrm{a}), 82.0(1 \mathrm{C}, \mathrm{C}-3 \mathrm{a})$, $83.7(1 \mathrm{C}, \mathrm{C}-6), 113.5\left(1 \mathrm{C}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 125.3(1 \mathrm{C}, \mathrm{C}$ arom. $), 126.0\left(1 \mathrm{C}, \mathrm{C}_{\text {arom. }}\right)$, $127.8(1 \mathrm{C}$, Carom.), 128.1 (1C, Carom.), 128.5 (3C, Carom.), 128.6 (2C, $\mathrm{C}_{\text {arom. }}$), 134.7 (1C, $\mathrm{C}_{\text {arom. }}$), 141.5 (1C, $C_{\text {arom.) }} 142.0$ (1C, $C_{\text {arom. }}$), 167.8 (1C, $C=O$); IR (neat): $\mathrm{v}\left[\mathrm{cm}^{-1}\right]=2987$, 2861, 1759, 1603, 1446, 1381, 1208, 1101, 858, 740, 700; $\operatorname{HRMS}(m / z):[M+H]^{+}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{5}, 383.1853$; found, 383.1895; $\mathrm{HPLC}(\operatorname{method} 1): \mathrm{t}_{\mathrm{R}}=21.9 \mathrm{~min}$, purity 95.2%.
(2S,3R,4S,5S)-Methyl 3,4-dihydroxy-5-(3-phenethylphenyl)tetrahydrofuran-2carboxylate (22b)
p-Toluenesulfonic acid monohydrate ($6 \mathrm{mg}, 0.03 \mathrm{mmol}$) was added to a solution of 21b ($63 \mathrm{mg}, 0.16 \mathrm{mmol}$) in methanol $(20 \mathrm{~mL})$. The mixture was heated to reflux for 16 h. Then the solvent was removed in vacuo and the residue was purified by flash column chromatography ($1 \mathrm{~cm}, 5 \mathrm{~mL}$, cyclohexane/ethyl acetate $=1 / 1, \mathrm{R}_{\mathrm{f}}=0.33$) to give 22b as colorless solid (51 mg, $0.15 \mathrm{mmol}, 90 \%$). m.p.: $85^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+55.4(3.0$; $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.63(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.90-2.99(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 3.14(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.22(\mathrm{dt}, J=9.0 / 3.9$ $\mathrm{Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.70-4.76(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}), 5.11(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.14-7.22$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}_{\text {arom. }}$), $7.25-7.30\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.31-7.33$ (m, 2H, $\mathrm{H}_{\text {arom. }}$), ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 37.9\left(1 \mathrm{C}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right)$, 38.0 (1C, $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 52.7 (1C, OCH_{3}), 73.7 (1C, C-4), 74.2 (1C, C-3), 79.0 (1C, C-2), 83.6 (1C, C-5), 124.5 (1C, Carom.), 126.1 (1C, $\mathrm{C}_{\text {arom. }}$), 126.9 (1C, $\mathrm{C}_{\text {arom. }}$), 128.4 (2C, $\mathrm{C}_{\text {arom. }}$), 128.5 (1C, $\mathrm{C}_{\text {arom. }}$), 128.6 (2C, Carom.), 128.7 (1C, $\mathrm{C}_{\text {arom. }}$), 135.7 (1C, $\mathrm{C}_{\text {arom. }}$), 141.8 (1C, $\mathrm{C}_{\text {arom. }}$), 142.2 (1C, $\mathrm{C}_{\text {arom. }}$), 172.4 (1C, $C=O$); IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3335,3028,2952,2859,1714,1441,1376$, 1225, 1082, 769, 698; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{5}, 343.1540$; found, 343.1548; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=18.5$ min, purity 97.7%.

(2S,3R,4S,5S)-N,3,4-Trihydroxy-5-(3-phenethylphenyl)tetrahydrofuran-2carboxamide (23b)

Hydroxylamine hydrochloride (132 mg, 1.9 mmol) and sodium methoxide (144 mg , $2.66 \mathrm{mmol})$ were added to a solution of $\mathbf{2 2 b}(130 \mathrm{mg}, 0.38 \mathrm{mmol})$ in methanol (20 mL) and the mixture was stirred at ambient temperature for 16 h . Then the solvent was evaporated. The residue was dissolved in ethyl acetate and extracted with HCl (1 m). The aqueous phase was then extracted with ethyl acetate (3x) and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated. The residue
was purified by flash column chromatography $\left(1 \mathrm{~cm}, 5 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol $=$ $9.5 / 0.5+0.1 \%$ TFA). The fractions containing 23b were collected and evaporated. The residue was dissolved in ethyl acetate and extracted with $\mathrm{HCl}(1 \mathrm{M})$. The aqueous phase was then extracted with ethyl acetate (3x) and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated to give 23b as colorless solid (64 $\mathrm{mg}, 0.19 \mathrm{mmol}, 49 \%)$. m.p.: $136{ }^{\circ} \mathrm{C}$; $\operatorname{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol $\left.=9 / 1\right): \mathrm{R}_{\mathrm{f}}=0.44 ;[\alpha]_{D}^{20}=$ +66.4 (2.1; methanol); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{3} \mathrm{COD}$): $\delta 2.91$ ($\mathrm{s}, 4 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 4.15 ($\mathrm{t}, \mathrm{J}=4.3$ $\mathrm{Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.71(\mathrm{dd}, \mathrm{J}=7.3 / 4.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 5.00$ (d, J = $3.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), $7.07-7.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right.$), $7.12-7.28\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.29$ - 7.31 (m, 1H, $\mathrm{H}_{\text {arom. }}$); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{D}_{3} \mathrm{COD}\right): \delta 39.1$ (1C, $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 39.2 (1C, $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 74.4 (1C, C-3), 74.9 (1C, C-4), 80.0 (1C, C-2), 85.6 (1C, C-5), 126.2 (1C, Carom.), 126.8 (1C, C arom.), 128.7 (1C, $\mathrm{C}_{\text {arom. }}$), 128.8 (2C, $\mathrm{C}_{\text {arom. }}$), 129.3 (2C, Carom.), 129.5 (2C, $\mathrm{C}_{\text {arom. }}$), 138.4 (1C, $\mathrm{C}_{\text {arom. }}$), 142.7 (1C, $\mathrm{C}_{\text {arom. }}$), 143.2 (1C, $\mathrm{C}_{\text {arom. }}$), 169.5 (1C, $C=O$); IR (neat): $\mathrm{v}\left[\mathrm{cm}^{-1}\right]=3318,2909,1643,1493,1454,1138,1103$, 1030, 984, 841, 768, 698; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{5}, 344.1492$; found, 344.1526; HPLC (method 2$)$: $\mathrm{t}_{\mathrm{R}}=15.4 \mathrm{~min}$, purity 95.6%.

(2S,3R,4S,5S)-Methyl 5-(3-(hex-1-yn-1-yl)phenyl)-3,4-dihydroxytetrahydrofuran-

2-carboxylate (24b)

Under N_{2} atmosphere triethylamine ($0.4 \mathrm{~mL}, 2.9 \mathrm{mmol}$), copper(I) iodide ($16 \mathrm{mg}, 0.08$ mmol) and tetrakis(triphenylphosphine)palladium(0) ($48 \mathrm{mg}, 0.04 \mathrm{mmol}$) were added to a solution of $9 \mathbf{b}(150 \mathrm{mg}, 0.41 \mathrm{mmol})$ in acetonitrile $(10 \mathrm{~mL})$. Then a solution of 1 hexyne ($0.4 \mathrm{~mL}, 3.4 \mathrm{mmol}$) in acetonitrile (5 mL) was added dropwise over a period of 2 h . After evaporation of the solvent the residue was purified by flash column chromatography ($2 \mathrm{~cm}, 10 \mathrm{~mL}, n$-hexane:ethyl acetate $=1 / 1, \mathrm{R}_{\mathrm{f}}=0.33$) to give $\mathbf{2 4 b}$
as colorless oil (105 mg, $0.33 \mathrm{mmol}, 80 \%$). $[\alpha]_{D}^{20}=+47.3\left(10.0 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 0.94\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.43-1.52(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.54-1.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.40(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.24(\mathrm{t}, J=3.9 \mathrm{~Hz} 1 \mathrm{H}, 4-\mathrm{H}), 4.68-4.74(\mathrm{~m}$, $2 \mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}), 5.08(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.29-7.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.39-7.43$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.46-7.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 13.8(1 \mathrm{C}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $19.2\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $22.2\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 30.9 (1C, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 52.7\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 73.7(1 \mathrm{C}, \mathrm{C}-4), 74.1(1 \mathrm{C}, \mathrm{C}-3), 78.9(1 \mathrm{C}, \mathrm{C}-2)$, 80.5 (1C, Ar-C三C), 83.3 (1C, C-5), 90.9 (1C, Ar-C $=C$), 124.4 (1C, C-3' ${ }_{\text {phenyl }}$), 126.1 (1C, C-6' ${ }_{\text {phenyl }}$), 128.5 (1C, C-5' ${ }_{\text {phenyl }}$), 130.0 (1C, C-4'phenyl), 131.4 (1C, C-2'phenyl), 136.0 (1C, C-1'phenyl), 172.5 (1C, $C=O$); IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3456,2956,2932,2871$, 1730, 1438, 1221, 1082, 773; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{5}, 319.1540$; found, 319.1589; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=19.5 \mathrm{~min}$, purity 95.0%.

(2S,3R,4S,5S)-Methyl

3,4-dihydroxy-5-(3-(2-phenylethynyl)phenyl)-

tetrahydrofuran-2-carboxylate (25b)

Under N_{2} atmosphere triethylamine ($0.54 \mathrm{~mL}, 3.85 \mathrm{mmol}$), copper(I) iodide (21 mg , 0.11 mmol) and tetrakis(triphenylphosphine)palladium(0) ($63 \mathrm{mg}, 0.055 \mathrm{mmol}$) were added to a solution of $\mathbf{9 b}(200 \mathrm{mg}, 0,55 \mathrm{mmol})$ in acetonitrile $(10 \mathrm{~mL})$. Then a solution of phenylacetylene ($0.5 \mathrm{~mL}, 4.55 \mathrm{mmol}$) in acetonitrile (5 mL) was added dropwise over a period of 2 h . After evaporation of the solvent the residue was purified by flash column chromatography ($2 \mathrm{~cm}, 10 \mathrm{~mL}, n$-hexane:ethyl acetate $=2 / 1, \mathrm{R}_{\mathrm{f}}=0.11$) to give 25b as colorless oil (175 mg, $0.52 \mathrm{mmol}, 94 \%) .[\alpha]_{D}^{20}=+46.3\left(0.8 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.29(\mathrm{t}, \mathrm{J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.71-4.80(\mathrm{~m}, 2 \mathrm{H}$, $2-\mathrm{H}, 3-\mathrm{H}), 5.14(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.32-7.43\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.46-7.56(\mathrm{~m}$,
$4 \mathrm{H}, \mathrm{H}_{\text {arom. }}$), $7.61-7.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 52.8\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 73.8$ (1C, C-4), 74.2 (1C, C-3), 78.9 (1C, C-2), 83.3 (1C, C-5), 89.3 (1C, C=C), 89.8 (1C, C $=\mathrm{C}$), 123.3 (1C, $\mathrm{C}_{\text {arom. }}$), 123.7 (1C, $\mathrm{C}_{\text {arom. }}$), 126.9 (1C, $\mathrm{C}_{\text {arom. }}$), 128.4 (1C, $\mathrm{C}_{\text {arom. }}$), 128.5 (2C, C arom.), 128.7 (1C, C arom.), 130.1 (1C, Carom.), 131.5 (1C, Carom.), 131.8 (2C, Carom.), 136.3 (1C, $C_{\text {arom. }}$), 172.6 (1C, $C=O$); IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3424,2954,2925$, 2853, 1733, 1602, 1492, 1441, 1223, 756, 690; HRMS (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{Na}, 361.1046$; found, 361.1057; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=19.0$ min, purity 96.2\%.
(2S,3R,4S,5S)-Methyl
(morpholinomethyl)phenyl)ethynyl)phenyl)-tetrahydrofuran-2-carboxylate (27b)

Under N_{2} atmosphere triethylamine ($0.63 \mathrm{~mL}, 4.5 \mathrm{mmol}$), copper (I) iodide (25 mg , 0.13 mmol) and tetrakis(triphenylphosphine)palladium(0) ($72 \mathrm{mg}, 0.06 \mathrm{mmol}$) were added to a solution of $9 \mathbf{b}(240 \mathrm{mg}, 0.66 \mathrm{mmol})$ in acetonitrile $(30 \mathrm{~mL})$. Then a solution of 4-(4-ethynylbenzyl)morpholine (26) ($1.0 \mathrm{~g}, 5.0 \mathrm{mmol}$) in acetonitrile (10 mL) was added dropwise over a period of 2 h . After stirring at ambient temperature for 2 h , the solvent was evaporated and the residue was purified by flash column chromatography ($4 \mathrm{~cm}, 30 \mathrm{~mL}$, ethyl acetate, $\mathrm{R}_{\mathrm{f}}=0.26$) to give $\mathbf{2 7 b}$ as colorless solid (240 mg, $0.55 \mathrm{mmol}, 83 \%$). m.p.: $167{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+43.5$ (5.1; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.46-2.56\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2.90(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 3.23(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}, \mathrm{OH})$, 3.57 (s, 2H, NCH ${ }_{2} \mathrm{Ar}$), 3.72 - 3.80 (m, $4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.87 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 4.26 $4.34(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 4.71-4.80(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}, 3-\mathrm{H}), 5.14(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.33-$ 7.42 (m, 3H, 5'- $\mathrm{H}_{3 \text {-ethynylphenyl, }} 3^{\prime \prime}$ - $\mathrm{H}_{4 \text {-morpholinomethylphenyl, }} 5^{\text {" }}$ - $\mathrm{H}_{4 \text {-morpholinomethylphenyl }}$), 7.46 7.52 ($m, \quad 4 H, \quad 4{ }^{\prime}-\mathrm{H}_{3 \text {-ethynylphenyl, }} \quad 6$ '- $\mathrm{H}_{3 \text {-ethynylphenyl, }} \quad 2$ "- $\mathrm{H}_{4 \text {-morpholinomethylphenyl, }} \quad 6$ "- H_{4-} morpholinomethylphenyl), $7.62-7.64\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{3 \text {-ethynylphenyl }}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 52.7(1 \mathrm{C}$,
$\left.\mathrm{OCH}_{3}\right), 53.5\left(2 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 63.1$ (1C, $\left.\mathrm{NCH}_{2} \mathrm{Ar}\right), 66.8\left(2 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 73.7$ (1C, C-4), 74.0 (1C, C-2), 79.0 (1C, C-3), 83.3 (1C, C-5), 89.5 (1C, $C \equiv C$), 89.6 (1C, C三C), 112.4 (1C, C-1"4-morpholinomethylphenyl), 123.5 (1C, C-3' ${ }_{3 \text {-ethynylphenyl }}$), 127.0 (1C, $\mathrm{C}^{-6}{ }_{3}{ }_{3}$ ethyny|phenyl), 128.6 (1C, C-5' ${ }_{3 \text {-ethynyilphenyl }}$), 129.5 (2C, C-3" ${ }_{4 \text {-morpholinomethylphenyl, }}$ C-5" ${ }_{4}$ morpholinomethylphenyl), 130.1 (1C, C-2'3-ethynylphenyl), 131.4 (1C, C-4'3-ethynylphenyl), 131.7 (2C, C-2"4-morpholinomethylphenyl, $\mathrm{C}-6{ }^{4} 4$-morpholinomethylphenyl), 136.4 (1C, $\mathrm{C}-1$ '3-ethynylphenyl), 137.4 (1C, C-4" ${ }_{4 \text {-morpholinomethylphenyl }}$), 172.4 (1C, $C=O$); IR (neat): $\mathrm{v}\left[\mathrm{cm}^{-1}\right]=3421,2918,2865$, 2811, 1747, 1434, 1209, 1093, 1003, 861, 787; HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{6} \mathrm{H}, 438.1911$; found, 438.1906 ; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=14.8$ min, purity 98.2\%.
(2S,3R,4S,5S)-5-(3-(Hex-1-yn-1-yl)phenyl)-N,3,4-trihydroxytetrahydrofuran-2carboxamide (28b)

Hydroxylamine hydrochloride (175 mg, 2.5 mmol) and sodium methoxide (190 mg , $3.5 \mathrm{mmol})$ were added to a solution of $\mathbf{2 4 b}(160 \mathrm{mg}, 0.50 \mathrm{mmol})$ in methanol (20 mL) and the mixture was stirred at ambient temperature for 48 h . Then the solvent was evaporated. The residue was dissolved in ethyl acetate and extracted with HCl (1 м). The aqueous phase was then extracted with ethyl acetate (3x) and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated. The residue was purified by flash column chromatography $\left(1 \mathrm{~cm}, 5 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol $=9.5 / 0.5+$ 0.1% TFA). The fractions containing 28b were collected and evaporated. The residue was dissolved in ethyl acetate and extracted with $\mathrm{HCl}(1 \mathrm{~m})$. The aqueous phase was then extracted with ethyl acetate $(3 x)$ and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated to give 28b as colorless solid ($56 \mathrm{mg}, 0.18 \mathrm{mmol}$, 35\%). m.p.: $120{ }^{\circ} \mathrm{C}$; $\operatorname{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol $\left.=9 / 1\right): \mathrm{R}_{\mathrm{f}}=0.38 ;[\alpha]_{D}^{20}=+53.4$ (1.1;
methanol); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{3} \mathrm{COD}\right): \delta 0.97\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 1.43 $1.62\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.41\left(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.17(\mathrm{t}, \mathrm{J}=$ $4.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.71(\mathrm{dd}, \mathrm{J}=7.3 / 4.7 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H})$, $5.00(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.25-7.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.35-7.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right)$, $7.45-7.46$ (m, 1H, $\mathrm{H}_{\text {arom. }}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{3} \mathrm{COD}$): $\delta 14.0\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 19.7 (1C, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 23.0 (1C, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 32.1 (1C, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 74.3 (1C, C-3), 74.8 (1C, C-4), 80.1 (1C, C-2), 81.6 (1C, Ar-C $=C$), 85.2 (1C, C-5), 90.7 (1C, Ar-C \equiv C), 125.0 (1C, C-3'phenyl), 127.8 (1C, $C_{\text {arom. }}$), 128.8 (1C, $C_{\text {arom. }}$), 131.5 (1C, $\mathrm{C}_{\text {arom. }}$), 131.6 (1C, $\mathrm{C}_{\text {arom. }}$), 138.8 (1C, $\left.\mathrm{C}-1^{\prime}{ }_{\text {phenyl }}\right), 169.4$ (1C, $C=O$); IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=$ 3240, 2928, 1659, 1481, 1431, 1184, 1134, 1072, 1030, 772, 691; HRMS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{5}, 320.1492$; found, 320.1524; HPLC (method 2): $\mathrm{t}_{\mathrm{R}}=15.7$ min, purity 97.4%.
(2S,3R,4S,5S)-N,3,4-Trihydroxy-5-(3-(2-phenylethynyl)phenyl)-tetrahydrofuran-

2-carboxamide (29b)

Hydroxylamine hydrochloride ($63 \mathrm{mg}, 0.90 \mathrm{mmol}$) and sodium methoxide (73 mg , $1.35 \mathrm{mmol})$ were added to a solution of $\mathbf{2 5 b}(102 \mathrm{mg}, 0.30 \mathrm{mmol})$ in methanol (20 mL) and the mixture was stirred at ambient temperature for 16 h . Then the solvent was evaporated. The residue was dissolved in ethyl acetate and extracted with HCl (1 m). The aqueous phase was then extracted with ethyl acetate (3x) and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated. The residue was purified by flash column chromatography $\left(\varnothing=1 \mathrm{~cm}, 5 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol $=$ $9.5 / 0.5+0.1 \%$ TFA). The fractions containing $29 b$ were collected and evaporated. The residue was dissolved in ethyl acetate and extracted with $\mathrm{HCl}(1 \mathrm{~m})$. The aqueous phase was then extracted with ethyl acetate (3x) and the combined organic
layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated to give 29b as colorless solid (22 $\mathrm{mg}, 0.06 \mathrm{mmol}, 22 \%)$. m.p.: $154^{\circ} \mathrm{C}$; $\mathrm{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol $\left.=9 / 1\right): \mathrm{R}_{\mathrm{f}}=0.45 ;[\alpha]_{D}^{20}=$ +47.1 (1.3; methanol); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{3} \mathrm{COD}\right): \delta 4.21(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.48(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.73(\mathrm{dd}, J=7.2 / 4.7 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 5.05(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$, $7.32-7.40$ (m, 4H, $\mathrm{H}_{\text {arom. }}$), $7.41-7.46$ (m, 2H, $\mathrm{H}_{\text {arom. }}$), $7.49-7.53$ (m, 2H, $H_{\text {arom. }}$), $7.63-7.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right.$) ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{D}_{3} \mathrm{COD}\right): \delta 74.3$ (1C, C-3), 74.8 (1C, C4), 80.1 (1C, C-2), 85.1 (1C, C-5), 89.9 (1C, $C \equiv C$), 90.3 (1C, $C \equiv C$), 124.1 (1C, Carom.), 124.6 (1C, Carom.), 128.7 (1C, Carom.), 129.0 (1C, $\mathrm{C}_{\text {arom. }}$), 129.4 (1C, $\mathrm{C}_{\text {arom. }}$), 129.5 (2C, Carom.), 131.6 (1C, Carom.), 131.7 (1C, Carom.), 132.5 (2C, Carom.), 139.2 (1C, Carom.), 169.4 (1C, $C=O$); IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3282,2926,1655,1493,1024,753$, 688; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{5}, 340.1179$; found, 340.1205; HPLC $($ method 2$): t_{R}=15.7$ min, purity 95.2%.

(2S,3R,4S,5S)-N,3,4-Trihydroxy-5-(3-(2-(4-

(morpholinomethyl)phenyl)ethynyl)phenyl)-tetrahydrofuran-2-carboxamide (3b)

A 2.5 m solution of sodium methoxide in methanol ($0.53 \mathrm{~mL}, 1.33 \mathrm{mmol}$) was added to a solution of $\mathbf{2 7 b}(240 \mathrm{mg}, 0.55 \mathrm{mmol})$ and hydroxylamine hydrochloride $(84 \mathrm{mg}$, $1.2 \mathrm{mmol})$ in methanol (30 mL) and the mixture was stirred at ambient temperature for 16 h . Then the solvent was evaporated. After the addition of water, the mixture was extracted with ethyl acetate (3x). Then the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / methanol (8:2, $3 \times$). The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated to give 3b as colorless solid (115 mg, $0.26 \mathrm{mmol}, 48 \%$). m.p.: $151{ }^{\circ} \mathrm{C} ; \mathrm{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol $\left.=9 / 1\right): \mathrm{R}_{\mathrm{f}}=0.35 ;[\alpha]_{D}^{20}=+48.4$ (1.7; methanol); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{3} \mathrm{COD}$): $\delta 2.44$ - 2.48 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.54 (s, 2H, $\mathrm{NCH}_{2} \mathrm{Ar}$), 3.68 - 3.71 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $4.21(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.48(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.73$
(dd, $J=7.2 / 4.7 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 5.06(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 7.33-7.38(\mathrm{~m}, 3 \mathrm{H}$, $H_{\text {arom. }}$), $7.41-7.46$ (m, 2H, $\mathrm{H}_{\text {arom. }}$), $7.47-7.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.63-7.64(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}_{\text {arom. }}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{3} \mathrm{COD}$): $\delta 54.6$ (2C, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 64.0 (1C, $\mathrm{NCH}_{2} \mathrm{Ar}$), 67.8 (2C, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 7.43 (1C, C-3), 74.8 (1C, C-4), 80.1 (1C, C-2), 85.1 (1C, C-5), 89.8 (1C, $C \equiv C$), 90.4 (1C, $C \equiv C$), 123.7 (1C, $C_{\text {arom. }}$), 124.1 (1C, $C_{\text {arom. }}$), 128.7 (1C, $C_{\text {arom. }}$), 129.0 (1C, Carom.), 130.7 (2C, Carom.), 131.6 (1C, C arom.), 131.7 (1C, Carom.), 132.5 (2C, $\mathrm{C}_{\text {arom. }}$), 138.9 ($1 \mathrm{C}, \mathrm{C}_{\text {arom. }}$), 139.2 ($1 \mathrm{C}, \mathrm{C}_{\text {arom. }}$), a signal for the $\mathrm{C}=\mathrm{O}$ carbon was not visible in the spectrum; IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3190,2866,1659,1454,1350,1265$, 1107, 1030, 841, 775, 694; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6}, 439.1864$; found, 439.1874 ; HPLC (method 2): $\mathrm{t}_{\mathrm{R}}=11.1 \mathrm{~min}$, purity 98.3%.

(S)-Methyl

3-hydroxy-2-((S)-2-hydroxy-1-(4-

(phenylethynyl)phenyl)ethoxy)propanoate (40)

Under nitrogen atmosphere copper (I) iodide $(7 \mathrm{mg}, 0.04 \mathrm{mmol})$, tetrakis(triphenylphosphine)palladium(0) ($21 \mathrm{mg}, 0.02 \mathrm{mmol}$) and triethylamine (0.18 $\mathrm{mL}, 1.30 \mathrm{mmol})$ were added to a solution of $39(68 \mathrm{mg}, 0.19 \mathrm{mmol})$ in dry acetonitrile $(20 \mathrm{~mL})$. Then a solution of phenylacetylene $(0.17 \mathrm{~mL}, 1.54 \mathrm{mmol})$ in dry acetonitrile (5 mL) was added dropwise over a period of 3 h . Afterwards the solvent was removed in vacuo. The residue was purified twice by flash column chromatography (1 $\mathrm{cm}, 5 \mathrm{~mL}$, cyclohexane/EtOAc $=1 / 2, \mathrm{R}_{\mathrm{f}}=0.23$) to give 40 as yellowish solid (62 mg , $0.18 \mathrm{mmol}, 98 \%$ yield). m.p.: $71^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+50.8\left(\mathrm{c}=3.0 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: б 3.63 (s, 3H, COOCH_{3}), $3.67-3.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.79-3.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right)$, $3.95-4.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.05-4.11\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{3} \mathrm{COOCCHCH}_{2} \mathrm{OH}\right), 4.24$ (s br, $1 \mathrm{H}, \mathrm{OH}$), 4.34 (s br, 1H, OH), $4.65-4.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCHCH}_{2} \mathrm{OH}\right), 7.30-7.41(\mathrm{~m}, 5 \mathrm{H}$, $H_{\text {arom. }}$), 7.47-7.57 (m, 4H, $\mathrm{H}_{\text {arom. }}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 52.3\left(1 \mathrm{C}, \mathrm{COOCH}_{3}\right), 62.4$ (1C,
$\left.\mathrm{CH}_{2} \mathrm{OH}\right), 67.0\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{OH}\right), 78.8\left(1 \mathrm{C}, \mathrm{H}_{3} \mathrm{COOCCHCH}_{2} \mathrm{OH}\right), 83.5(1 \mathrm{C}$, $\mathrm{PhCHCH}_{2} \mathrm{OH}$), 89.0 (1C, $\mathrm{PhC} \equiv \mathrm{CPh}$), 90.0 (1C, $\mathrm{Ph} C \equiv \mathrm{CPh}$), 123.2 (1C, $\mathrm{C}_{\text {arom. }}$), 123.6 (1C, $\mathrm{C}_{\text {arom. }}$), 127.2 (2C, $\mathrm{C}_{\text {arom. }}$), 128.5 (3C, $\mathrm{C}_{\text {arom. }}$), 131.8 (2C, $\mathrm{C}_{\text {arom. }}$), 131.9 (2C, Carom.), 137.7 ($1 \mathrm{C}, \mathrm{C}_{\text {arom. }}$), 171.2 (1C, COOCH_{3}); IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3302,2947$, 2878, 1736, 1435, 1196, 1096, 1053, 752, 691; $\operatorname{HRMS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{5}: 341.1384$; found: 341.1405 ; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=18.6 \mathrm{~min}$, purity 97.2%.

(S)-N,3-Dihydroxy-2-((S)-2-hydroxy-1-(4-

(phenylethynyl)phenyl)ethoxy)propanamide (42)

Hydroxylamine hydrochloride ($39 \mathrm{mg}, 0.56 \mathrm{mmol}$) and a 2 m solution of sodium methanolate in methanol ($0.28 \mathrm{~mL}, 0.56 \mathrm{mmol}$) were added to a solution of 40 (76 $\mathrm{mg}, 0.22 \mathrm{mmol})$ in dry methanol (20 mL) and the mixture was stirred at ambient temperature for 16 h . Then water was added and the mixture was extracted with ethyl acetate $(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($1 \mathrm{~cm}, 5 \mathrm{~mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol $=10 / 1, \mathrm{R}_{\mathrm{f}}=0.22$) to give 42 as colorless solid ($40 \mathrm{mg}, 0.12 \mathrm{mmol}, 52 \%$ yield). m.p.: $157^{\circ} \mathrm{C}$; $[\alpha]_{D}^{20}=+47.1$ (2.0; methanol); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{3} \mathrm{COD}$): $\delta 3.64-3.95\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{HOHNOCCHCH} \mathrm{H}_{2} \mathrm{OH}\right.$, $\left.\mathrm{PhCHCH}_{2} \mathrm{OH}\right), 4.69-4.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PhCHCH}_{2} \mathrm{OH}\right), 7.32-7.45\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.45-$ 7.54 (m, 4H, Harom.); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{3} \mathrm{COD}$): $\delta 61.4$ ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{OH}$), 66.1 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{OH}$), 78.5 (1C, $\mathrm{HOHNOCCHCH}_{2} \mathrm{OH}$), 82.5 (1C, $\mathrm{PhCHCH}_{2} \mathrm{OH}$), 88.6 (1C, $\mathrm{PhC} \equiv \mathrm{CPh}$), 89.3 (1C, $\mathrm{PhC}=\mathrm{CPh}$), 123.3 (1C, $\mathrm{C}_{\text {arom. }}$), 123.4 (1C, $\mathrm{C}_{\text {arom. }}$), 127.5 (2C, $\mathrm{C}_{\text {arom. }}$), 128.3 (1C, Carom.), 128.4 (2C, $\mathrm{C}_{\text {arom. }}$), 131.3 (2C, $\mathrm{C}_{\text {arom. }}$), 131.5 (2C, $\mathrm{C}_{\text {arom. }}$), 138.6 (1C, $\mathrm{C}_{\text {arom. }}$), 168.1 (1C, CONHOH); IR (neat): $v\left[\mathrm{~cm}^{-1}\right]=3730,3391,3063,2839,1647,1504$,

1119, 1049, 752, 691; HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{5}$: 342.1336; found:
342.1318; HPLC (method 2$)$: $\mathrm{t}_{\mathrm{R}}=15.1$ min, purity 99.4%.

