Supporting Information

Pd(II)-SDP-Catalyzed enantioselective 5-*exo-dig* cyclization of γ-alkynoic acids: application to the synthesis of functionalized dihydofuran-2(3*H*)-ones containing a chiral quaternary carbon center

Vellaisamy Sridharan,*^{*a,b*} Lulu Fan,^{*a*} Shinobu Takizawa,^{*a*} Takeyuki Suzuki^{*a*} and Hiroaki Sasai *^{*a*}

^a The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan. E-mail: sasai@sanken.osaka-u.ac.jp; Fax: +81 6 6879 8465; Tel: +81 6 6879 8469

^b Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thanjavur – 613 401, Tamil Nadu, India. E-mail: vsridharan@scbt.sastra.edu, vesridharan@gmail.com

Table of Contents

1.	Preparation of γ -alkynoic acids 8	2
2.	General optimization of reaction conditions	27
3.	¹ H, ¹³ C-NMR spectra and HPLC data of compounds 9	30

Preparation of γ-alkynoic acids 8 Preparation of compound 8a¹

Dimethyl 2,2-di(prop-2-ynyl)malonate (S1)

To a stirred suspension of NaH (66 mmol) in THF (60 mL) at -10 °C under nitrogen atmosphere was added diethyl malonate (30 mmol) dropwise and the mixture was stirred for additional 30 min. Propargyl bromide (66 mmol) was then added again in dropwise and the reaction temperature was slowly raised and the reaction mixture was stirred overnight at room temperature. The reaction was quenched with saturated NH₄Cl solution, extracted with ether, washed with brine, dried over anhydrous Na₂SO₄ and evaporated. The crude product was purified through silica column chromatography using hexane/ethyl acetate mixture as eluent to furnish compound **S1**.

Yield: 82%; ¹H-NMR (400 MHz, CDCl₃): δ = 2.03-2.04 (m, 2H), 3.00 (d, *J* = 2.7 Hz, 4H), 3.77 (s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ = 22.8, 53.3, 56.6, 71.9, 78.4, 169.2.

¹ S. Li, W. Jia and N. Jiao, *Adv. Synth. Catal.*, 2009, **351**, 569-575.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

Dimethyl 2,2-bis(3-phenylprop-2-ynyl)malonate (S2)

To a stirred solution of S1 (3 mmol), iodobenzene (6.6 mmol) in Et₃N (20 mL) was added Pd(OAc)₂ (5 mol%), PPh₃ (10 mol%) and CuI (5 mol%) and the mixture was stirred at 60 °C. After completion of the reaction (2 h), the mixture was cooled to room temperature and diluted with CH_2Cl_2 . To this mixture water was added and the organic layer was separated and the aqueous layer was extracted twice with CH_2Cl_2 .

The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the crude product was purified through silica column chromatography using hexane/ethyl acetate mixture as eluent to afford compound **S2**.

Yield: 86%; pale yellow solid; ¹H-NMR (400 MHz, CDCl₃): δ = 3.27 (s, 4H), 3.81 (s, 6H), 7.27-7.29 (m, 6H), 7.37-7.40 (m, 4H); ¹³C-NMR (100 MHz, CDCl₃): δ = 23.9, 53.2, 57.4, 83.9, 84.0, 123.1, 128.2, 128.3, 131.8, 169.5.

5-Phenyl-2-(3-phenylprop-2-ynyl)pent-4-ynoic acid (8a)

Compound **S2** (2 mmol) was dissolved in 1:1 mixture of THF/MeOH (10 mL). To this solution, KOH (8 mmol) in THF/H₂O (4 mL, 3:1 ratio) was added and the mixture was refluxed for 24 h. After cooling, the reaction mixture was diluted with water and acidified with 2N HCl. The mixture was then extracted with CH₂Cl₂, washed with water, brine and dried over anhydrous Na₂SO₄. The solvent was evaporated and DMSO (5 mL) was added to the crude mixture and heated at 170 °C with stirring for 6 h. The mixture was cooled to room temperature, diluted with water and extracted with CH₂Cl₂. The organic layer was washed with brine, dried over anhydrous Na₂SO₄ and the solvent was evaporated. Purification of the crude mixture through silica column chromatography using hexane/ethyl acetate mixture as eluent afforded compound **8a**.

Yield: 83%; pale yellow solid; mp: 109-111 °C; IR (KBr): v = 3500-2500 (broad), 3030, 2923, 2617, 2361, 1704, 1600, 1489, 1425, 1342, 1287, 1225, 1078 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.93-3.00$ (m, 5H), 7.25-7.29 (m, 6H), 7.37-7.41 (m, 4H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.0$, 43.8, 83.0, 85.9, 123.4, 128.1, 128.4, 131.80, 131.81, 178.9; HRMS (ESI): calcd for C₂₀H₁₆NaO₂, m/z 311.1048 ([M+Na]⁺); found, m/z 311.1037.

Preparation of compounds 8b² and 8c²

But-2-ynyl 4-methylbenzenesulfonate (S3)

Tosyl chloride (24 mmol) followed by powdered KOH (240 mmol) were added in portions to a stirred solution of but-2-yn-1-ol (20 mmol) in ether (40 mL) at 0 °C. The reaction mixture was warmed to room temperature gradually and stirred overnight. Water was added, the organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried

² E. Tomás-Mendivil, P. Y. Toullec, J. Díez, S. Conejero, V. Michelet and V. Cadierno, *Org. Lett.*, 2012, **14**, 2520-2523

over anhydrous Na_2SO_4 and evaporated. The crude product was used as such for the next step without further purification.

Yield: 94% (crude).

Dimethyl 2,2-di(but-2-ynyl)malonate (S4)

To a suspension of NaH (33 mmol) in DMF/toluene mixture (75 mL, 2:1) was added diethyl malonate (11 mmol) at 0 °C. After 1 h stirring, a solution of **S3** (27.5 mmol) in DMF (20 mL) was added dropwise. The reaction temperature was increased slowly to room temperature and the mixture was stirred for 12 h. After quenching the reaction with saturated NH₄Cl solution additional 50 mL of toluene was added and the layers were separated. Aqueous layer was extracted with toluene and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and evaporated. Crude mixture was purified through silica column chromatography using hexane/ethyl acetate mixture as eluent to furnish compound **S4**.

Yield: 86%; ¹H-NMR (400 MHz, CDCl₃): $\delta = 1.74$ (t, J = 2.7 Hz, 6H), 2.88-2.90 (m, 4H), 3.73 (s, 6H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 3.6$, 23.1, 53.0, 57.2, 73.2, 79.1, 169.8.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

2-(But-2-ynyl)hex-4-ynoic acid (8b)

The procedure used for the preparation of acid **8a** from diester **S2** was employed to obtain compound **8b** from **S4**.

Yield: 83%; pale yellow solid; mp: 70-72 °C; IR (KBr): v = 3500-2500 (broad) 3033, 2916, 2617, 2360, 1703, 1435, 1287, 1224, 1076, 1025, cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 1.76-1.78$ (m, 6H), 2.54-2.58 (m, 4H), 2.66-2.71 (m, 1H); ¹³C-NMR (100

MHz, CDCl₃): $\delta = 3.6$, 20.2, 44.1, 75.2, 78.0, 179.8; HRMS (ESI): calcd for $C_{10}H_{12}NaO_2$, m/z 187.0735 ([M+Na]⁺); found, m/z 187.0726.

2-(But-2-ynyl)-2-(methoxycarbonyl)hex-4-ynoic acid (8c)

A mixture of diester S4 (2 mmol) in MeOH (10 mL) and KOH (2.4 mmol) in MeOH (3 mL) was stirred at room temperature for 4 days. The mixture was added ether and washed with saturated NaHCO₃ solution. The basic aqueous solution was neutralized

with 2N HCl and extracted with CH₂Cl₂, washed with brine, dried over anhydrous Na₂SO₄ and evaporated. The crude material was purified through silica column chromatography using hexane/ethyl acetate mixture as eluent to afford compound **8c**. Yield: 74%; colorless solid; mp: 119-121 °C; IR (KBr): v = 3500-2500 (broad band), 2924, 2678, 2360, 1718, 1434, 1304, 1211, 1061 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 1.76$ (t, J = 2.3 Hz, 6H), 2.89-2.91 (m, 4H), 3.79 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 3.6$, 23.1, 53.2, 57.2, 72.9, 79.5, 169.6, 175.1; HRMS (ESI): calcd for C₁₂H₁₄NaO₄, m/z 245.0790 ([M+Na]⁺); found, m/z 245.0782.

Preparation of compounds 8d,² 8e, 8f, 8g, 8h, 8i, 8j, 8k

Methyl 2-phenyl-2-(prop-2-ynyl)pent-4-ynoate (S5)

To a stirred suspension of NaH (30 mmol) in THF (30 mL) at 0 °C under nitrogen atmosphere was added methyl 2-phenylacetate (10 mmol) dropwise and the mixture was stirred for additional 1 h at room temperature. The reaction mixture was again cooled to 0 °C and propargyl bromide (30 mmol) was added dropwise. After the addition was complete the mixture was heated at 50 °C for 24 h. The reaction was quenched with saturated NH₄Cl solution, extracted with CH₂Cl₂, washed with brine, dried over anhydrous Na₂SO₄ and evaporated. The crude product was purified through silica column chromatography using hexane/ethyl acetate mixture as eluent to furnish compound **S5**.

Yield: 78%; ¹H-NMR (400 MHz, CDCl₃): $\delta = 1.99$ (t, J = 2.7 Hz, 2H), 3.10 (dd, J = 16.9, 2.7 Hz, 2H), 3.19 (dd, J = 16.5, 2.3 Hz, 2H), 3.71 (s, 3H), 7.28-7.32 (m, 3H), 7.34-7.38 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 25.6$, 52.9, 53.2, 71.5, 80.0, 126.1, 127.8, 128.7, 139.4, 173.6.

2-Phenyl-2-(prop-2-ynyl)pent-4-ynoic acid (8d)

To a solution of **S5** (2 mmol) in 1:1 mixture of THF/MeOH (10 mL) was added KOH (8 mmol) in THF/H₂O (4 mL, 3:1 ratio) and the mixture was refluxed for 6 h. After cooling, the reaction mixture was diluted with water and acidified with 2N HCl. The mixture was then extracted with CH_2Cl_2 , washed with water, brine, dried over anhydrous Na_2SO_4 and evaporated. Purification of the crude mixture through silica column chromatography using hexane/ethyl acetate mixture as eluent afforded compound **8d**.

Yield: 89%; pale yellow solid; mp: 116-118 °C; IR (KBr): v = 3500-2500 (broad), 3281, 3078, 2361, 1711, 1596, 1496, 1397, 1282, 1225 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ = 2.00 (t, *J* = 2.7 Hz, 2H), 3.10 (dd, *J* = 16.5, 2.7 Hz, 2H), 3.22 (dd, *J* = 16.9, 2.7 Hz, 2H), 7.31-7.38 (m, 5H); ¹³C-NMR (100 MHz, CDCl₃): δ = 25.2, 53.0, 71.7, 79.8, 126.3, 128.1, 128.8, 138.5, 179.1; HRMS (ESI): calcd for C₁₄H₁₂NaO₂, m/z 235.0735 ([M+Na]⁺); found, m/z 235.0728.

Methyl 2-phenyl-(5-aryl-2-(3-arylprop-2-ynyl)pent-4-ynoate (S6)

To a stirred solution of **S5** (3 mmol), aryl iodide (6.6 mmol) in Et_3N (20 mL) was added Pd(OAc)₂ (5 mol%), PPh₃ (10 mol%) and CuI (5 mol%) and the mixture was stirred at 60 °C. After completion of the reaction (2-6 h), the mixture was cooled to room temperature and diluted with CH₂Cl₂. To this mixture water was added and the organic layer was separated and the aqueous layer was extracted twice with CH₂Cl₂. The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄ and the solution was filtered through a short pad of silica gel to afford the crude products **S6**.

8e-8k

The conditions used for the hydrolysis of compound **S5** was employed for the preparation of compounds **8e-8k** from previously obtained esters **S6**.

2,5-Diphenyl-2-(3-phenylprop-2-ynyl)pent-4-ynoic acid (8e): Yield: 75% (two steps); pale yellow solid; mp: 142-144 °C; IR (KBr): v = 3500-2500 (broad), 3025, 2361, 1698, 1594, 1492, 1437, 1287, 1232, 1065 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 3.34$ (d, J = 16.5 Hz, 2H), 3.44 (d, J = 16.5 Hz, 2H), 7.22-7.38 (m, 13H), 7.43 (d, J = 7.3 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 54.1$, 83.7, 85.7, 123.4, 126.5, 127.8, 128.0, 128.3, 128.6, 131.7, 139.5, 179.7; HRMS (ESI): calcd for C₂₆H₂₀NaO₂, m/z 387.1361 ([M+Na]⁺); found, m/z 387.1352.

2-Phenyl-5-*m***-tolyl-2-(3-***m***-tolylprop-2-ynyl)pent-4-ynoic acid (8f):** Yield: 42% (two steps); colorless solid; mp: 135-137 °C; IR (KBr): v = 3500-2500 (broad), 3022, 2915, 2600, 2362, 1703, 1596, 1490, 1403, 1286, 1231 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.28$ (s, 6H), 2.34 (d, J = 16.9 Hz, 2H), 3.43 (d, J = 16.9 Hz, 2H), 7.06-7.14 (m, 8H), 7.30-7.39 (m, 3H), 7.42-7.45 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.3, 26.7, 54.1, 83.9, 85.2, 123.2, 126.5, 127.9, 128.2, 128.7, 128.8, 128.9, 132.4,$

137.9, 139.3, 179.1; HRMS (ESI): calcd for $C_{28}H_{24}NaO_2$, m/z 415.1674 ([M+Na]⁺); found, m/z 415.1663.

2-Phenyl-5*p***-tolyl-2**-(**3***p***-tolylprop-2**-**ynyl)pent-4**-**ynoic acid (8g):** Yield: 35% (two steps); colorless solid; mp: 119-121 °C; IR (KBr): v = 3500-2500 (broad), 3033, 2918, 1698, 1503, 1438, 1285, 1225 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.31$ (s, 6H), 3.33 (d, J = 16.5 Hz, 2H), 3.42 (d, J = 16.5 Hz, 2H), 7.03 (d, J = 8.7 Hz, 4H),

7.20 (d, J = 7.8 Hz, 4H), 7.29-7.38 (m, 3H), 7.43 (d, J = 7.8 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 21.6$, 26.7, 54.1, 83.8, 84.8, 120.4, 126.5, 127.9, 128.7, 129.0, 131.6, 138.0, 139.4, 178.7; HRMS (ESI): calcd for C₂₈H₂₄NaO₂, m/z 415.1674 ([M+Na]⁺); found, m/z 415.1665.

5-(4-Isopropylphenyl)-2-(3-(4-isopropylphenyl)prop-2-ynyl)-2-phenylpent-4-

ynoic acid (8h): Yield: 46% (two steps); colorless solid; mp: 137-139 °C; IR (KBr): ν = 3500-2500 (broad), 2964, 2372, 2317, 1698, 1504, 1407, 1281, 1232 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ = 1.22 (d, *J* = 6.9 Hz, 12H), 2.87 (m, 2H), 3.33 (d, *J* = 16.5 Hz, 2H), 3.43 (d, *J* = 16.5 Hz, 2H), 7.10 (d, *J* = 8.2 Hz, 4H), 7.24 (d, *J* = 8.2 Hz, 4H), 7.29-7.38 (m, 3H), 7.42-7.45 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ = 24.0, 26.7, 34.5, 54.2, 83.9, 84.8, 120.8, 126.4, 126.5, 127.9, 128.7, 131.8, 139.4, 148.9, 178.7; HRMS (ESI): calcd for C₃₂H₃₂NaO₂, m/z 471.2300 ([M+Na]⁺); found, m/z 471.2289.

5-(4-Methoxyphenyl)-2-(3-(4-methoxyphenyl)prop-2-ynyl)-2-phenylpent-4-ynoic acid (8i): Yield: 28% (two steps); pale yellow solid; mp: 103-104 °C; IR (KBr): v = 3500-2500 (broad), 2958, 2839, 2361, 1701, 1605, 1507, 1442, 1290, 1249, 1177, 1033 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ = 3.32 (d, *J* = 16.5 Hz, 2H), 3.41 (d, *J* = 16.5 Hz, 2H), 3.78 (s, 6H), 6.76 (d, *J* = 7.8 Hz, 4H), 7.23 (d, *J* = 7.8 Hz, 4H), 7.30-7.44 (m, 5H); ¹³C-NMR (100 MHz, CDCl₃): δ = 26.7, 54.2, 55.4, 83.6, 84.0, 113.9, 115.6, 126.5, 127.9, 128.7, 133.1, 139.5, 159.4, 178.3; HRMS (ESI): calcd for C₂₈H₂₄NaO₄, m/z 447.1572 ([M+Na]⁺); found, m/z 447.1561.

5-(4-Bromophenyl)-2-(3-(4-bromophenyl)prop-2-ynyl)-2-phenylpent-4-ynoic acid (**8j**): Yield: 41% (two steps); colorless solid; mp: 171-173 °C; IR (KBr): v = 3500-2500 (broad), 3056, 2905, 2595, 2368, 1702, 1593, 1486, 1401, 1291, 1231, 1066, 1006 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 3.31$ (d, J = 16.9 Hz, 2H), 3.40 (d, J = 16.9 Hz, 2H), 7.13 (d, J = 8.2 Hz, 4H), 7.34-7.42 (m, 9H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 26.7$, 54.0, 82.9, 86.7, 122.2, 122.3, 126.4, 128.1, 128.8, 131.6, 133.2,

2-Phenyl-5-*o*-tolyl-2-(3-*o*-tolylprop-2-ynyl)pent-4-ynoic acid (8k): Yield: 57% (two steps); pale yellow solid; mp: 148-150 °C; IR (KBr): v = 3500-2500 (broad), 3025, 2917, 2678, 2605, 2361, 1704, 1600, 1489, 1414, 1288, 1224, 1113, 1038 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 2.24$ (s, 6H), 3.42 (d, J = 16.9 Hz, 2H), 3.55 (d, J =

16.5 Hz, 2H), 7.05-7.10 (m, 4H), 7.13-7.18 (m, 2H), 7.29-7.34 (m, 3H), 7.36-7.40 (m, 2H), 7.47-7.49 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 20.7$, 26.7, 53.9, 82.6, 89.4, 123.2, 125.5, 126.6, 128.0, 128.8, 129.4, 132.1, 139.2, 140.4, 179.6; HRMS (ESI): calcd for C₂₈H₂₄NaO₂, m/z 415.1674 ([M+Na]⁺); found, m/z 415.1661.

Preparation of compound 81

Methyl 2-(but-2-ynyl)-2-phenylhex-4-ynoate (S7)

The procedure used for the preparation of compound **S4** was employed for the synthesis of compound **S7** from methyl 2-phenylacetate and tosylate **S3**. The crude product was used for the next step without further purification.

2-(But-2-ynyl)-2-phenylhex-4-ynoic acid (8l)

The conditions used for the hydrolysis of compound **S5** was employed for the preparation of carboxylic acid **81** from the crude ester **S7**.

Yield: 61% (two steps); colorless solid; mp: 151-153 °C; IR (KBr): v = 3500-2500 (broad), 2916, 2361, 1699, 1495, 1410, 1284, 1237 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 1.72$ (t, J = 2.3 Hz, 6H), 2.96-3.02 (m, 2H), 3.07-3.13 (m, 2H), 7.27-7.32 (m, 1H), 7.33-7.36 (m, 4H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 3.7$, 25.6, 53.7, 74.7, 78.8, 126.5, 127.7, 128.5, 139.5, 180.1; HRMS (ESI): calcd for C₁₆H₁₆NaO₂, m/z 263.1048 ([M+Na]⁺); found, m/z 263.1040

Preparation of compound 8m²

2-(Methoxycarbonyl)-5-phenyl-2-(3-phenylprop-2-ynyl)pent-4-ynoic acid (8m)

The procedure used for the partial hydrolysis of diester S4 to carboxylic acid 8c was employed to access compound 8m from S2.

Yield: 65%; yellow oil; IR (KBr): v = 3500-2500 (broad band), 3058, 2956, 2361, 1735, 1489, 1435, 1212, 1116 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): $\delta = 3.27$ (s, 4H), 3.81 (s, 3H), 7.25-7.29 (m, 6H), 7.37-7.39 (m, 4H); ¹³C-NMR (100 MHz, CDCl₃): $\delta = 23.9$, 53.4, 57.4, 83.6, 84.2, 123.0, 128.26, 128.33, 131.80, 131.84, 169.3, 174.7; HRMS (ESI): calcd for C₂₂H₁₈NaO₄, m/z 369.1103 ([M+Na]⁺); found, m/z 369.1095.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

53 Hz

20

General optimization of reaction conditions

	Ph Ph	Pd(OAc) ₂ (10 mol Ligand (12 mol% Solvent (0.1 M) 25 °C, Time (h)	%) O Ph		
	8a		Pri 9a		
	HS i-Pr i-Pr O-N N-O (<i>M,S,S</i>)-i-Pr-SPI	H $\stackrel{i \cdot Pr}{\underset{i \cdot Pr}{\overset{i \cdot Pr}{\underset{N}{\overset{(-)-Spart}{\overset{(-)}}}}{\overset{(-)}}{\overset{(-)}{\overset{(-)}{\overset{(-)}{\overset{(-)}{\overset{(-)}{\overset{(-)}{\overset{(-)}}{\overset{(-)}{\overset{(-)}{\overset$	$ \begin{array}{c} $	o f-Bu OX	
Entry	Ligand	Solvent	Reaction time	Yield of	Ee of
-	-		(h)	9a (%) ^a	9a (%)
1	(<i>M</i> , <i>S</i> , <i>S</i>)- <i>i</i> -Pr-SPRIX	Dioxane	4	88	rac
2	(M,S,S)- <i>i</i> -Pr-SPRIX	DCM	4	93	5
3	(M,S,S)-i-Pr-SPRIX	Toluene	4	91	5
4	(M,S,S)- <i>i</i> -Pr-SPRIX	MeCN	4	93	rac
5		MeOH	4	84	5
-	(M,S,S)- <i>i</i> -Pr-SPRIX	MCOIL	•	01	-
6	(M,S,S)- <i>i</i> -Pr-SPRIX (M,S,S)- <i>i</i> -Pr-SPRIX	AcOH	4	81	rac
6 7	(M,S,S)- <i>i</i> -Pr-SPRIX (M,S,S)- <i>i</i> -Pr-SPRIX (-)-Spartein	AcOH DCM	4 3	81 92	rac rac

^aIsolated yield

Stability of *i*-Pr-SPRIX-Pd(OAc)₂ complex in the presence of alkynoic acid 8a

Table S2. Screening of bidentate phosphine ligands

Entry	Pd source	Ligand	Solvent	Temp	Reaction	Yield	ee of
		(Additive)		(^{o}C)	time (h)	of 9a	9a
_						$(\%)^{a}$	(%)
1	$Pd(OAc)_2$	(S)-BINAP	CH_2Cl_2	25	24	86	19
2	-	(S)-BINAP	CH_2Cl_2	25	48	0	-
3	$Pd(OAc)_2$	(S)-BINAP	CH_2Cl_2	10	24	41 ^b	12
4	$Pd(OAc)_2$	(S)-BINAP	CH_2Cl_2	0	24	23 ^b	13
5	$Pd(OAc)_2$	(S)-BINAP	CH_2Cl_2	-20	96	21 ^b	9
6	$Pd(OAc)_2$	(S)-BINAP	CH_2Cl_2	-40	96	18 ^b	14
7	$Pd(OAc)_2$	(S)-BINAP	CH_2Cl_2	45 °C	18	89	8
8	$Pd(OAc)_2$	(R)-BINAP	CH_2Cl_2	25	24	87	-8
9	$Pd(OAc)_2$	(S)-BINAP	Toluene	25	96	16 ^b	8
10	$Pd(OAc)_2$	(S)-BINAP	CHCl ₃	25	24	89	9
11	$Pd(OAc)_2$	(S)-BINAP	MeCN	25	2	86	4
12	$Pd(OAc)_2$	(S)-BINAP	MeOH	25	2	88	10

13	$Pd(OAc)_2$	(S)-BINAP	Dioxane	25	96	37 ^b	14
14	$Pd(OAc)_2$	(S)-BINAP	Et ₂ O	25	96	79	10
15	$Pd(TFA)_2$	(S)-BINAP	CH_2Cl_2	25	72	71 ^b	0
16	PdCl ₂	(S)-BINAP	CH_2Cl_2	25	72	9 ^b	-6
17	PdCl ₂ -(S)- BINAP ^c	-	CH ₂ Cl ₂	25	72	8 ^b	-4
18 ^d	[(η3- C ₃ H ₅)PdCl] ₂	(S)-BINAP	CH_2Cl_2	25	72	16 ^b	0
19	$Pd(OAc)_2$	(R)-SEGPHOS	CH_2Cl_2	25	36	83	8
20	$Pd(OAc)_2$	(<i>R</i>)-DIFLUOR PHOS	CH_2Cl_2	25	24	18 ^b	13
21	$Pd(OAc)_2$	(R)-SYNPHOS	CH_2Cl_2	25	12	83	0
22	$Pd(OAc)_2$	(S)-MOP	CH_2Cl_2	25	8	86	0
23	$Pd(OAc)_2$	(S)-BINAP (K_2CO_3 , 1 eq)	CH_2Cl_2	25	24	23 ^b	9
24	$Pd(OAc)_2$	(S)-BINAP (KOH, 1 eq)	CH_2Cl_2	25	24	26 ^b	8
25	$Pd(OAc)_2$	(S)-BINAP (Et ₃ N, 1 eq)	CH_2Cl_2	25	24	29 ^b	12
26 ^e	Pd(OAc) ₂	(S)-BINAP (AcOH)	CH_2Cl_2	25	10	92	11
$27^{\rm f}$	$Pd(OAc)_2$	(S)-BINAP	CH_2Cl_2	25	12	88	17
28 ^g	$Pd(OAc)_2$	(S)-BINAP	CH_2Cl_2	25	1	12	12
29 ^h	$Pd(OAc)_2$	(S)-BINAP	CH_2Cl_2	25	15	90	15
30 ⁱ	$Pd(OAc)_2$	(S)-BINAP	CH_2Cl_2	25	24	85	11

All reactions were carried out in 0.1M solution (in entries 1 to 18, 10 mol% of ligand was used and in

All reactions were carried out in 0.1M solution (in entries 1 to 18, 10 mol% of ligand was used and in entries 19 to 30, 12 mol% of ligand was used) ^a Isolated yield; ^b Remaining unreacted starting material was recovered; ^c10 mol% of isolated complex was used; ^d 5 Mol% of Pd reagent was used; ^c Reaction was carried out in 9:1 DCM:AcOH solution; ^f Reaction was carried out in 0.5 M solution; ^g Reaction was quenched after 1 h; ^h 30 Mol% of catalyst was used; ⁱ40 Mol% of ligand was used

¹H, ¹³C-NMR spectra and HPLC data of compounds 9

(Z)-5-Benzylidene-3-(3-phenylprop-2-ynyl)dihydrofuran-2(3H)-one (9a)

(Z)-3-(But-2-ynyl)-5-ethylidenedihydrofuran-2(3H)-one (9b)

(Z)-Methyl 3-(but-2-ynyl)-5-ethylidene-2-oxotetrahydrofuran-3-carboxylate (9c)

5-Methylene-3-phenyl-3-(prop-2-ynyl)dihydrofuran-2(3H)-one (9d)

(Z)-5-Benzylidene-3-phenyl-3-(3-phenylprop-2-ynyl)dihydrofuran-2(3H)-one (9e)

Channel & Peak Information Table												
Ch	romatogram	Nam	e	S-	465 Rac-2-	CH1						
Sample Name												
Cha	annel Name			UV	-2075							
#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	1	12.208	6422085	166621	49.882	59.885	N/A	2382	4.975	1.306	
2	Unknown	1	18.417	6452530	111615	50.118	40.115	N/A	2405	N/A	1.241	
Ch	romatogram	Nam	e	S-	465 CHCI3 I	R SDP rt-	-CH1					
Sar	mple Name											
Cha	annel Name			UV	-2075							
#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	1	11.408	6750922	199546	20.230	27.881	N/A	2651	5.613	1.256	
2	Unknown	1	17.658	26620015	516166	79.770	72.119	N/A	2752	N/A	1.363	

2(3*H*)-one (9f)

(E)-5-(4-Methylbenzylidene)-3-phenyl-3-(3-p-tolylprop-2-ynyl)dihydrofuran-

2(3*H*)-one (9g)

(*E*)-5-(4-Isopropylbenzylidene)-3-(3-(4-isopropylphenyl)prop-2-ynyl)-3-

(E)-5-(4-Methoxybenzylidene)-3-(3-(4-methoxyphenyl)prop-2-ynyl)-3-

phenyldihydrofuran-2(3H)-one (9i)

43

(E)-5-(4-Bromobenzylidene)-3-(3-(4-bromophenyl)prop-2-ynyl)-3-

phenyldihydrofuran-2(3H)-one (9j)

45

2(3*H*)-one (9k)

(Z)-3-(But-2-ynyl)-5-ethylidene-3-phenyldihydrofuran-2(3H)-one (9l)

Channel & Peak Information Table												
Chromatogram Name					507 rac-CH	1						
Sample Name												
Ch	annel Name			U٧	/-2075							
#	Peak Name	СН	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	1	9.917	1428453	117484	49.290	60.680	N/A	15384	9.472	1.175	
2	Unknown	1	13.833	1469589	76128	50.710	39.320	N/A	11800	N/A	1.451	
Ch	romatogram	Nam	е	S-	507 R-SDP	CHCI3 rt	-CH1					
Sai	mple Name											
Ch	annel Name			UV	/-2075							
#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	1	9.908	893899	68089	65.841	72.844	N/A	15061	9.856	0.941	
2	Unknown	1	13.867	463766	25383	34.159	27.156	N/A	13218	N/A	1.224	

carboxylate (9m)

Ch	Channel & Peak Information Table											
Chromatogram Name			S-	538 rac-CH	1							
Sar	nple Name											
Ch	annel Name			UV	/-2075							
#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	1	11.042	44897648	781318	50.712	56.645	N/A	1022	4.862	3.232	
2	Unknown	1	18.650	43636146	597999	49.288	43.355	N/A	1804	N/A	2.656	
Ch	romatogram	Nam	е	S-	538 R-SDP	CHCI3 rt	-CH1					
Sar	nple Name											
Ch	annel Name			U١	/-2075							
#	Peak Name	СН	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	1	11.917	7348401	134999	42.537	51.953	N/A	1229	4.480	2.004	
2	Unknown	1	19.225	9926962	124847	57.463	48.047	N/A	1618	N/A	2.140	