Supporting Information

Light-Induced *O*-Glycosylation of Unprotected Deoxythioglycosyl Donors

Mayuka Nakanishi, Daisuke Takahashi, and Kazunobu Toshima*

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

Page	•			Contents
S2	•	•	•	General experimental methods.
S 2	•	•	•	General procedure A for light-induced glycosylations using
				unprotected deoxythioglycosyl donors without a boronic acid.
S 2	•	•	•	General procedure B for light-induced glycosylations using
				unprotected deoxythioglycosyl donors with a boronic acid.
S 3	•	•	•	Synthesis of glycosides 7, 10, 11, and 17-24.
S11	•	•	•	¹ H NMR assay using 2 and 4 (Figure S1).
S11	•	•	•	¹ H NMR assay using 3 and 4 (Figure S2).
S12	•	•	•	¹ H NMR assay using 1, 4 and 5 (Figure S3).
S13	•	•	•	References.
S14	•	•	•	¹ H and ¹³ C NMR spectra.

General experimental methods

Melting points were determined on a micro hot-stage (Yanako MP-S3). Optical rotations were measured on a JASCO P-2200 polarimeter. ¹H and ¹³C NMR spectra were recorded on a JEOL ECA-500 (500 MHz and 125 MHz) spectrometer. ¹H NMR data are reported as follows; chemical shift in parts par million (ppm) downfield or upfield from tetramethylsilane (δ 0.00), acetone-*d*₆ (δ 2.05), CDCl₃ (δ 7.26), integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, d = quartet, quint = quintet, and m = multiplet) and coupling constants (Hz). ¹³C chemical shifts are reported in ppm downfield or upfield from CDCl₃ (δ 77.00) or acetone-*d*₆ (δ 29.80). ESI-TOF Mass spectra were measured on a Waters LCT premier XE. Silica gel TLC and column chromatography were performed on Merck TLC 60F-254 (0.25 mm) and Silica Gel 60 N (spherical, neutral, 40-50 µm) (Kanto Chemical Co., Inc.), respectively. Air- and/or moisture-sensitive reactions were carried out under an atmosphere of argon using oven-dried glassware. In general, organic solvents were purified and dried using an appropriate procedure, and evaporation and concentration were carried out under reduced pressure below 30 °C, unless otherwise noted.

General procedure A for light-induced glycosylations using unprotected deoxythioglycosyl donors without a boronic acid.

To a solution of unprotected deoxythioglycosyl donor (0.10 mmol) in dry acetonitrile (0.1 M) were added glycosyl acceptor (0.30 mmol) and DDQ (0.15 mmol) under Ar atmosphere at room temperature. After the mixture was stirred upon irradiation with a UV lamp (365 nm, 100 W, Blak-ray (B-100A), UVP Inc.) placed 5 cm from the reaction tube for 3 h at 38 °C, the resulting mixture was concentrated in *vacuo*. Purification of the residue by silica-gel column chromatography gave the corresponding glycosides.

General procedure B for light-induced glycosylations using unprotected deoxythioglycosyl donors with a boronic acid.

To a solution of glycosyl donor (0.10 mmol) in a mixed solvent of dry toluene/acetone (1/1, 2.0 mL) was added a boronic acid (0.10 mmol) under Ar atmosphere at room temperature for 5 min, and then the resulting mixture was concentrated in *vacuo*. To a solution of the residue in dry acetonitrile (0.1 M) were added glycosyl acceptor (0.30 mmol) and DDQ (0.15 mmol) under Ar atmosphere at room temperature. After the mixture was stirred upon irradiation with a UV lamp (365 nm, 100 W) placed 5 cm from the reaction tube for 3 h at 38 °C, 30% H₂O₂ aq. (20 μ L) was added to the reaction mixture. After the resulting mixture was stirred for 1 h at room temperature, the reaction mixture was diluted with H₂O (7 mL). The resulting mixture was extracted with EtOAc (10 mL×6). The extracts were washed with brine, dried over anhydrous

Na₂SO₄, and concentrated in *vacuo*. Purification of the residue by silica-gel column chromatography gave the corresponding glycosides.

Cyclohexylmethyl 2-deoxy- α - and β -D-galactopyranosides (7)

The title compounds were obtained according to the general procedure B with silica-gel column chromatography (CHCl₃/MeOH = 10/1), from phenylthio 2-deoxy- α -D-galactoside (1)^[1] (0.10 mmol) and cyclohexylmetanol (6) (0.30 mmol) in 74% yield (α/β =76/24).

Date for 7α : white solid; $R_f 0.33$ (10/1 CHCl₃/MeOH); mp 128-129 °C; $[\alpha]^{24}_D$ +121.0° (*c* 1.0, CH₃OH); ¹H-NMR (500 MHz, acetone- d_6 , TMS) δ 4.81 (1H, br d, J= 3.2 Hz, H-1), 3.92 (1H, m), 3.82 (1H, m), 3.73-3.69 (3H, m), 3.65 (1H, m), 3.62 (1H, d, J= 7.0 Hz), 3.51 (1H, d, J= 4.0 Hz), 3.45 (1H, dd, J= 6.9, 9.5 Hz), 3.13 (1H, dd, J= 6.0, 9.5 Hz), 1.88 (1H, ddd, J= 3.8, 12.3, 12.3 Hz), 1.78-1.69 (6H, m), 1.55 (1H, m), 1.30-1.13 (3H, m), 0.97 (2H, m); ¹³C-NMR (125 MHz, acetone- d_6) δ 98.4, 73.2, 71.7, 69.4, 66.1, 63.1, 38.8, 33.9, 30.8, 30.7, 27.3, 26.6, 26.5; HRMS (ESI-TOF) m/z 283.1511 (283.1521 calcd for C₁₃H₂₄O₅Na, [M+Na]⁺).

Date for **7** β : white solid; R_f 0.31 (10/1 CHCl₃/MeOH); mp 138-139 °C; $[\alpha]^{26}_D$ -23.3° (*c* 1.1, CH₃OH); ¹H-NMR (500 MHz, acetone- d_6 , TMS) δ 4.42 (1H, dd, J = 2.0, 9.8 Hz, H-1), 3.76-3.65 (6H, m), 3.67 (1H, dd, J = 6.6, 9.5 Hz), 3.45 (1H, d, J = 4.3 Hz), 3.38 (1H, dd, J = 5.6, 5.6 Hz), 3.22 (1H, dd, J = 6.6, 9.5 Hz), 1.81-1.63 (7H, m), 1.53 (1H, m), 1.29-1.12 (3H, m), 0.97 (2H, m); ¹³C-NMR (125 MHz, acetone- d_6) δ 101.4, 76.3, 75.0, 69.4, 68.5, 62.7, 38.9, 36.0, 30.7, 30.6, 27.3, 26.5×2; HRMS (ESI-TOF) m/z 283.1521 (283.1521 calcd for C₁₃H₂₄O₅Na, [M+Na]⁺).

Cyclohexylmethyl 2-deoxy- α - and β -D-glucopyranosides (10)

The title compounds were obtained according to the general procedure B with silica-gel column chromatography (CHCl₃/MeOH = 10/1), from phenylthio 2-deoxy- α -D-glucoside (2)^[2] (0.10 mmol) and cyclohexylmetanol (6) (0.30 mmol) in 72% yield (α/β =54/46).

Date for **10a**: white solid; $R_f 0.33 (10/1 \text{ CHCl}_3/\text{MeOH})$; mp 115-116 °C; $[\alpha]^{25}_{\text{D}} + 108.7^{\circ}$ (*c* 1.0, CH₃OH); ¹H-NMR (500 MHz, acetone- d_6 , TMS) δ 4.81 (1H, br d, J = 3.2 Hz, H-1), 4.09 (1H, d, J = 4.6 Hz), 3.89 (1H, d, J = 4.6 Hz), 3.84 (1H, m), 3.78 (1H, ddd, J = 3.1, 6.3, 11.5 Hz), 3.66 (1H, ddd, J = 5.5, 6.3, 11.5 Hz), 3.51 (1H, ddd, J = 3.1, 5.5, 9.3 Hz), 3.46 (1H, dd, J = 7.2, 9.5 Hz), 3.41 (1H, t, J = 6.3 Hz), 3.25 (1H, ddd, J = 4.6, 9.3, 9.3 Hz), 3.13 (1H, dd, J = 6.0, 9.5 Hz), 2.00 (1H, ddd, J = 1.2, 5.2, 12.9 Hz), 1.80-1.64 (5H, m), 1.57-1.52 (2H, m), 1.30-1.13 (3H, m), 0.97 (2H, m); ¹³C-NMR (125 MHz, acetone- d_6) δ 98.1, 74.0, 73.4, 73.1, 69.7, 63.2, 38.8, 38.7, 30.8, 30.7, 27.3, 26.6, 26.5; HRMS (ESI-TOF) *m*/*z* 283.1527 (283.1521 calcd for C₁₃H₂₄O₅Na, [M+Na]⁺).

Date for **10** β : white solid; $R_f 0.31$ (10/1 CHCl₃/MeOH); mp 140-141 °C; $[\alpha]^{27}{}_D -32.8^\circ$ (*c* 0.8, CH₃OH); ¹H-NMR (500 MHz, acetone- d_6 , TMS) δ 4.52 (1H, dd, J = 2.0, 9.7 Hz, H-1), 4.10 (1H, m), 4.00 (1H, d, J = 4.6 Hz), 3.82 (1H, m), 3.68-3.64 (2H, m), 3.57 (1H, m), 3.47 (1H, t, J = 6.3 Hz), 3.22 (1H, dd, J = 6.6, 9.5 Hz), 3.19 (2H, m), 2.08 (1H, m), 1.79-1.64 (5H, m), 1.53 (1H, m), 1.43 (1H, ddd, J = 9.5, 12.0, 12.0 Hz), 1.29-1.15 (3H, m), 0.93 (2H, m); ¹³C-NMR (125 MHz, acetone- d_6) δ 100.1, 76.6, 74.3, 73.0, 71.6, 62.5, 39.4, 38.1, 29.9, 29.8, 26.5, 25.7×2; HRMS (ESI-TOF) m/z 283.1518 (283.1521 calcd for C₁₃H₂₄O₅Na, [M+Na]⁺).

Cyclohexylmethyl α - and β -D-olivosides (11)

The title compounds were obtained according to the general procedure A with silica-gel column chromatography (CHCl₃/MeOH = 20/1), from phenylthio α -D-olivoside (**3**)^[3] (0.10 mmol) and cyclohexylmetanol (**6**) (0.30 mmol) in 82% yield ($\alpha/\beta=73/27$).

Date for **11** α : white solid; R_f 0.30 (20/1 CH₃Cl/MeOH); mp 92-93 °C; $[\alpha]^{25}_{D}$ +103.6° (*c* 1.0, CHCl₃); ¹H-NMR (500 MHz, CDCl₃, TMS) δ 4.81 (1H, br d, J = 2.9 Hz, H-1), 3.93 (1H, m, H-3), 3.64 (1H, dq, J = 6.3, 9.2 Hz), 3.41 (1H, dd, J = 7.2, 9.2 Hz), 3.15 (1H, dd, J = 6.0, 9.2 Hz), 3.11 (1H, dd, J = 9.2, 9.2 Hz), 2.52-2.14 (2H, m), 2.13 (1H, m), 1.78-1.65 (6H, m), 1.56 (1H, m), 1.29 (3H, d, J = 6.3 Hz), 1.29-1.12 (3H, m), 0.94 (2H, m); ¹³C-NMR (125 MHz, CDCl₃); δ 97.3, 78.2, 72.9, 69.4, 67.3, 37.9×2, 30.2, 30.0, 26.6, 25.9, 25.8, 17.7; Anal. Calcd for C₁₃H₂₄O₄: C, 63.91; H, 9.90. Found: C, 63.87; H, 9.80.

Date for **11** β : white solid; R_f 0.27 (20/1 CHCl₃/MeOH); mp 75-76 °C; $[\alpha]^{24}_{D}$ -45.9° (*c* 0.8, CHCl₃); ¹H-NMR (500 MHz, CDCl₃, TMS) δ 4.44 (1H, br d, J = 9.5 Hz, H-1), 3.68 (1H, dd, J = 7.2, 9.5 Hz), 3.56 (1H, m), 3.41 (1H, m), 3.38 (1H, m), 3.24 (1H, m), 3.21 (1H, dd, J = 7.2, 9.5 Hz), 3.07 (1H, dd, J = 8.9, 8.9 Hz), 2.19 (1H, br dd, J = 4.9, 12.3 Hz), 1.79-1.65 (5H, m),

1.65-1.54 (2H, m), 1.32 (3H, d, J = 6.1 Hz), 1.28-1.12 (3H, m), 0.90 (2H, m); ¹³C-NMR (125 MHz, CDCl₃) δ 99.9, 77.5, 75.3, 71.7, 71.6, 39.0, 37.9, 30.0, 29.8, 26.5, 25.8×2, 17.7; Anal. Calcd for C₁₃H₂₄O₄: C, 63.90; H, 9.81. Found: C, 63.87; H, 9.80.

n-Octyl 2-deoxy- α - and β -D-galactopyranosides (17)

The title compounds were obtained according to the general procedure B with silica-gel column chromatography (CHCl₃/MeOH = 10/1), from phenylthio 2-deoxy- α -D-galactoside (1) (0.10 mmol) and *n*-octanol (13) (0.30 mmol) in 80% yield ($\alpha/\beta=75/25$).

Date for **17** α : white solid; $R_f 0.33$ (10/1 CHCl₃/MeOH); mp 63-64 °C; $[\alpha]^{24}_{D}$ +117.9° (*c* 1.0, CH₃OH); ¹H-NMR (500 MHz, acetone- d_6 , TMS) δ 4.85 (1H, br d, J = 3.4 Hz, H-1), 3.93 (1H, m), 3.83 (1H, m), 3.71 (6H, m), 3.64 (1H, dt, J = 6.6, 9.5 Hz), 3.32 (1H, dt, J = 6.6, 9.5 Hz), 1.89 (1H, ddd, J = 3.4, 12.3, 12.3 Hz), 1.70 (1H, br dd, J = 4.9, 12.3 Hz), 1.55 (2H, m), 1.39-1.28 (10H, m), 0.88 (3H, t, J = 7.2 Hz); ¹³C-NMR (125 MHz, acetone- d_6) δ 98.3, 71.7, 69.3, 67.6, 66.0, 63.0, 33.9, 32.5, 30.3, 30.0×2, 27.0, 23.3, 14.3; HRMS (ESI-TOF) m/z 299.1830 (299.1834 calcd for C₁₄H₂₈O₅Na, [M+Na]⁺).

Date for **17** β : white solid; R_f 0.31 (10/1 CHCl₃/MeOH); mp 95-96 °C; $[\alpha]^{25}_{D}$ -21.9° (*c* 0.9, CH₃OH); ¹H-NMR (500 MHz, acetone- d_6 , TMS) δ 4.45 (1H, dd, J = 2.0, 9.5 Hz, H-1), 3.84 (1H, dt, J = 6.6, 9.5 Hz), 3.76-3.67 (6H, m), 3.47 (1H, m), 3.42 (1H, dt, J = 6.6, 9.5 Hz), 3.39 (1H, m), 1.72 (1H, m), 1.69 (1H, m), 1.54 (2H, m), 1.36-1.26 (10H, m), 0.88 (3H, t, J = 6.9 Hz); ¹³C-NMR (125 MHz, acetone- d_6) δ 101.1, 76.3, 69.3×2, 68.4, 62.6, 36.0×2, 32.6, 30.5, 30.4, 26.9, 23.3, 14.3; HRMS (ESI-TOF) m/z 299.1830 (299.1834 calcd for C₁₄H₂₈O₅Na, [M+Na]⁺).

2-Phenylethyl 2-deoxy- α - and β -D-galactopyranosides (18)

The title compounds were obtained according to the general procedure B with silica-gel column chromatography (CHCl₃/MeOH = 10/1), from phenylthio 2-deoxy- α -D-galactoside (1) (0.10 mmol) and phenethyl alcohol (14) (0.30 mmol) in 84% yield (α/β =81/19).

Date for **18a**: white solid; $R_f 0.33$ (10/1 CHCl₃/MeOH); mp 112-113 °C; $[\alpha]^{24}_{D}$ +124.4° (*c* 1.0,

CH₃OH); ¹H-NMR (500 MHz, acetone- d_6 , TMS) δ 7.29-7.25 (4H, m), 7.20-7.17 (1H, m), 4.87 (1H, br d, J = 3.5 Hz, H-1), 3.89 (1H, m), 3.84 (1H, dt, J = 7.2, 9.8 Hz), 3.79-3.74 (3H, m), 3.69-3,65 (3H, m), 3.58 (1H, dt, J = 7.2, 9.8 Hz), 3.56 (1H, m), 2.86 (2H, t, J = 7.2 Hz), 1.89 (1H, ddd, J = 3.8, 12.3, 12.3 Hz), 1.70 (1H, br dd, J = 5.2, 12.3 Hz); ¹³C-NMR (125 MHz, acetone- d_6) δ 140.2, 129.7×2, 129.0×2, 126.8, 98.2, 71.6, 69.4, 68.3, 66.0, 63.1, 36.7, 33.7; HRMS (ESI-TOF) m/z 291.1196 (291.1208 calcd for C₁₄H₂₀O₅Na, [M+Na]⁺).

Date for **18β**: white solid; $R_f 0.31$ (10/1 CHCl₃/MeOH); mp 131-132 °C; $[\alpha]^{25}_D - 23.5^\circ$ (*c* 1.0, CH₃OH); ¹H-NMR (500 MHz, acetone- d_6 , TMS) δ7.29-7.23 (4H, m), 7.20-7.16 (1H, m), 4.49 (1H, dd, J = 2.0, 9.5 Hz, H-1), 4.05 (1H, dt, J = 7.2, 9.8 Hz), 3.78-3.70 (6H, m), 3.66 (1H, dt, J = 7.2, 9.8 Hz), 3.52 (1H, d, J = 4.3 Hz), 3.40 (1H, m), 2.86 (2H, t, J = 7.2 Hz), 1.79 (1H, m), 1.71 (1H, ddd, J = 9.5, 12.0 Hz); ¹³C-NMR (125 MHz, acetone- d_6) δ 140.1, 129.8×2, 129.0×2, 126.8, 101.1, 71.3, 70.2, 69.3, 68.5, 62.7, 36.7, 33.7; HRMS (ESI-TOF) m/z 291.1199 (291.1208 calcd for C₁₄H₂₀O₅Na, [M+Na]⁺).

Cyclohexyl 2-deoxy- α - and β -D-galactopyranosides (19)

The title compounds were obtained according to the general procedure B with silica-gel column chromatography (CHCl₃/MeOH = 10/1), from phenylthio 2-deoxy- α -D-galactoside (1) (0.10 mmol) and cyclohexanol (15) (0.30 mmol) in 71% yield (α/β =86/14).

Date for **19a**: white solid; $R_f 0.29 (10/1 \text{ CHCl}_3/\text{MeOH})$; mp 121-122 °C; $[\alpha]^{26}_D + 152.2^\circ (c \ 1.0, \text{CH}_3\text{OH})$; ¹H-NMR (500 MHz, acetone- d_6 , TMS) $\delta 5.03 (1\text{H}, \text{ br d}, J = 3.5 \text{ Hz}, \text{H}-1)$, 3.94 (1H, m), 3.82 (1H, m), 3.79 (1H, m), 3.72-3.69 (2H, m), 3.67 (1H, m), 3.62 (1H, d, J = 4.0 Hz), 3.57 (1H, m), 3.52 (1H, d, J = 4.0 Hz), 1.90 (1H, ddd, J = 3.5, 12.4, 12.4 Hz), 1.84 (2H, m), 1.69 (2H, m), 1.65 (1H, br dd, J = 5.5, 12.4 Hz), 1.50 (1H, m), 1.38-1.18 (5H, m); ¹³C-NMR (125 MHz, acetone- d_6) δ 96.1, 74.4, 71.8, 69.5, 66.1, 63.1, 34.4, 34.1, 32.2, 26.5, 24.8, 24.5; HRMS (ESI-TOF) m/z 269.1365 calcd for C₁₂H₂₂O₅Na, [M+Na]⁺).

Date for **19β**: white solid; $R_f 0.27$ (10/1 CHCl₃/MeOH); mp 103-104 °C; $[\alpha]^{26}_D - 38.1^\circ$ (*c* 1.0, CH₃OH); ¹H-NMR (500 MHz, acetone- d_6 , TMS) δ 4.60 (1H, dd, J = 2.3, 9.5 Hz, H-1), 3.76-3.71 (5H, m), 3.70 (1H, m), 3.65 (1H, m), 3.45 (1H, d, J = 4.6 Hz), 3.39 (1H, t, J = 6.0 Hz), 1.86 (2H, m), 1.74-1.66 (4H, m), 1.50 (1H, m), 1.36-1.17 (5H, m); ¹³C-NMR (125 MHz, acetone- d_6) δ 98.9, 76.2, 75.9, 69.4, 68.5, 62.7, 36.6, 34.5, 32.5, 26.4, 24.7, 24.5; HRMS (ESI-TOF) m/z 269.1356 (269.1365 calcd for C₁₂H₂₂O₅Na, [M+Na]⁺).

3-Pentyl 2-deoxy-α- and β-D-galactopyranosides (20)

The title compounds were obtained according to the general procedure B with silica-gel column chromatography (CHCl₃/MeOH = 10/1), from phenylthio 2-deoxy- α -D-galactoside (1) (0.10 mmol) and 3-pentanol (16) (0.30 mmol) in 70% yield (α/β =85/15).

Date for **20** α : white solid; R_f 0.29 (10/1 CHCl₃/MeOH); mp 68-69 °C; $[\alpha]^{24}_{D}$ +148.2° (*c* 1.0, CH₃OH); ¹H-NMR (500 MHz, acetone- d_6 , TMS) δ 4.99 (1H, br d, J= 3.5 Hz, H-1), 3.94 (1H, m), 3.85-3.81 (2H, m), 3.72-3.70 (3H, m), 3.65 (1H, m), 3.55 (1H, d, J= 3.5 Hz), 3.49 (1H, quint, J = 5.7 Hz), 1.92 (1H, ddd, J= 3.5, 12.3, 12.3 Hz), 1.69 (1H, br dd, J = 4.9, 12.3 Hz), 1.50 (4H, m), 0.89 (3H, t, J = 7.7 Hz), 0.86 (3H, t, J = 7.7 Hz); ¹³C-NMR (125 MHz, acetone- d_6) δ 96.8, 78.9, 71.9, 69.5, 66.2, 63.0, 32.2, 27.4, 25.6, 10.2, 9.3; HRMS (ESI-TOF) m/z 257.1357 (257.1365 calcd for C₁₁H₂₂O₅Na, [M+Na]⁺).

Date for **20** β : white solid; R_f 0.27 (10/1 CHCl₃/MeOH); mp 68-69 °C; $[\alpha]^{26}_{D}$ –18.3° (*c* 1.0, CH₃OH); ¹H-NMR (500 MHz, acetone- d_6 , TMS) δ 4.53 (1H, dd, J = 2.3, 9.8 Hz, H-1), 3.78-3.70 (6H, m), 3.61 (1H, dd, J = 3.4, 6.9 Hz), 3.54 (1H, quint, J = 6.0 Hz), 3.46 (1H, d, J = 4.6 Hz), 3.38 (1H, t, J = 5.8 Hz), 1.80 (1H, m), 1.71 (1H, m), 1.48 (4H, m), 0.88 (3H, t, J = 7.5 Hz), 0.87 (3H, t, J = 7.5 Hz); ¹³C-NMR (125 MHz, acetone- d_6) δ 100.4, 81.2, 76.1, 69.5, 68.4, 62.6, 36.4, 28.0, 26.8, 10.0, 9.66; HRMS (ESI-TOF) m/z 257.1355 (257.1365 calcd for C₁₁H₂₂O₅Na, [M+Na]⁺).

n-Octyl α - and β -D-olivosides (21)

The title compounds were obtained according to the general procedure A with silica-gel column chromatography (CHCl₃/MeOH = 20/1), from phenylthio α -D-olivoside (**3**) (0.10 mmol) and *n*-octanol (**13**) (0.30 mmol) in 79% yield ($\alpha/\beta=76/24$).

Date for **21** α : colorless syrup; R_f 0.30 (20/1 CHCl₃/MeOH); $[\alpha]^{24}{}_D$ +103.6° (*c* 1.0, CHCl₃); ¹H-NMR (500 MHz, CDCl₃, TMS) δ 4.83 (1H, br d, J = 3.2 Hz, H-1), 3.91 (1H, ddd, J = 4.9, 9.2, 11.8 Hz), 3.63 (1H, m), 3.60 (1H, dt, J = 6.9, 9.5 Hz), 3.34 (1H, dt, J = 6.9, 9.5 Hz), 3.09 (1H, dd, J = 9.2, 9.2 Hz), 2.99 (1H, br s), 2.92 (1H, br s), 2.12 (1H, br dd, J = 4.9, 12.6 Hz), 1.68 (1H, ddd, J = 3.2, 11.8, 11.8 Hz), 1.56 (2H, m), 1.29-1.28 (13H, m), 0.88 (3H, t, J = 7.2 Hz); ¹³C-NMR (125 MHz, CDCl₃) δ 97.1, 78.0, 69.2, 67.4×2, 37.9, 31.8, 29.5, 29.4, 29.2, 26.2, 22.6, 17.7, 14.1; Anal. Calcd for C₁₄H₂₈O₄: C, 64.58; H, 10.84. Found: C, 64.48; H, 10.77.

Date for **21** β : colorless syrup; R_f 0.27 (20/1 CHCl₃/MeOH); mp 70-71 °C; $[\alpha]^{26}_D$ -39.2° (*c* 1.0, CHCl₃); ¹H-NMR (500 MHz, CDCl₃, TMS) δ 4.48 (1H, dd, J = 1.4, 9.7 Hz, H-1), 3.86 (1H, dt, J = 6.9, 9.2 Hz), 3.59 (1H, m), 3.43 (1H, dt, J = 7.2, 9.2 Hz), 3.27 (1H, dq, J = 6.3, 8.9 Hz), 3.09 (1H, dd, J = 8.9, 8.9 Hz, H-4), 2.92 (1H, br s), 2.85 (1H, br s), 2.20 (1H, br dd, J = 1.4, 12.4 Hz), 1.65-1.56 (3H, m), 1.34 (3H, d, J = 6.3 Hz), 1.31-1.20 (10H, m), 0.88 (3H, t, J = 6.9 Hz); ¹³C-NMR (125 MHz, CDCl₃) δ 99.5, 77.6, 71.7, 71.5, 69.6, 39.1, 31.8, 29.6, 29.4, 29.2, 26.0, 22.6, 17.7, 14.1; Anal. Calcd for C₁₄H₂₈O₄: C, 64.58; H, 10.84. Found: C, 64.64; H, 10.81.

2-Phenylethyl 2,6-dideoxy-α- and β-D-arabino-hexopyranosides (22)

The title compounds were obtained according to the general procedure A with silica-gel column chromatography (CHCl₃/MeOH = 20/1), from phenylthio α -D-olivoside (**3**) (0.10 mmol) and phenethyl alcohol (**14**) (0.30 mmol) in 72% yield (α/β =70/30).

Date for **22** α : colorless syrup; R_f 0.30 (20/1 CHCl₃/MeOH); $[\alpha]^{26}_{D}$ +134.0° (*c* 1.0, CHCl₃); ¹H-NMR (500 MHz, CDCl₃, TMS) δ 7.23-7.24 (2H, m), 7.21-7.19 (3H, m), 4.82 (1H, br d, J= 3.0 Hz, H-1), 3.88-3.70 (3H, m), 3.82 (1H, dt, J = 7.0, 10.0 Hz), 3.60 (1H, dt, J = 7.0, 10.0 Hz), 3.43 (1H, dq, J = 6.5, 9.5 Hz), 3.03 (1H, dd, J = 9.5, 9.5 Hz), 2.87 (2H, dt, J = 2.0, 7.0 Hz), 2.11 (1H, br dd, J =4.6, 12.0 Hz), 1.64 (1H, ddd, J = 3.0, 12.0, 12.0 Hz), 1.22 (3H, d, J = 6.5 Hz); ¹³C-NMR (125 MHz, CDCl₃) δ 138.8, 128.8×2, 128.3×2, 126.2, 97.0, 77.8, 69.0, 68.0, 67.6, 37.7, 36.1, 17.7; Anal. Calcd for C₁₄H₂₀O₄: C, 66.65; H, 7.99. Found: C, 66.64; H, 7.92.

Date for **22β**: colorless syrup; R_f 0.27 (20/1 CHCl₃/MeOH); $[\alpha]^{24}{}_D$ -33.0° (*c* 1.0, CHCl₃); ¹H-NMR (500 MHz, CDCl₃, TMS) δ 7.30-7.26 (2H, m), 7.22-7.19 (3H, m), 4.46 (1H, dd, J = 2.0, 9.0 Hz, H-1), 4.09 (1H, dt, J = 7.0, 9.5 Hz), 3.65 (1H, dt, J = 7.0, 9.5 Hz), 3.56 (1H, m), 3.25 (1H, dq, J = 6.0, 9.0 Hz), 3.09 (1H, dd, J = 9.0, 9.0 Hz), 2.92 (2H, t, J = 7.0 Hz), 2.72 (1H, br s), 2.65 (1H, br s), 2.19 (1H, ddd, J = 2.0, 5.0, 12.6 Hz), 1.62 (1H, ddd, J = 9.0, 12.6, 12.6 Hz), 1.32 (3H, d, J = 6.0 Hz); ¹³C-NMR (125 MHz, CDCl₃) δ 138.4, 128.9×2, 128.3×2, 126.3, 99.6, 77.5, 71.6×2, 70.2, 39.0, 36.2, 17.7.; Anal. Calcd for C₁₄H₂₀O₄: C, 66.65; H, 7.99. Found: C, 66.59; H, 7.96. Cyclohexyl α - and β -D-olivosides (23)

The title compounds were obtained according to the general procedure A with silica-gel column chromatography (CHCl₃/MeOH = 20/1), from phenylthio α -D-olivoside (**3**) (0.10 mmol) and cyclohexanol (**6**) (0.30 mmol) in 70% yield (α/β =71/29).

Date for **23** α : white solid; $R_f 0.27$ (20/1 CH₃Cl/MeOH); mp 128-129 °C; $[\alpha]^{26}_D$ +134.1° (*c* 1.0, CHCl₃); ¹H-NMR (500 MHz, CDCl₃, TMS) δ 5.00 (1H, br d, J = 3.4 Hz, H-1), 3.94 (1H, m), 3.72 (1H, dq, J = 6.0, 9.2 Hz), 3.53 (1H, m), 3.09 (1H, dd, J = 9.2, 9.2 Hz), 3.04 (1H, br s), 2.94 (1H, br s), 2.07 (1H, ddd, J = 0.9, 4.9, 12.6 Hz), 1.85 (2H, m), 1.74-1.66 (3H, m), 1.53 (1H, m), 1.40-1.16 (8H, m); ¹³C-NMR (125 MHz, CDCl₃) δ 94.9, 78.2, 74.5, 69.3, 67.5, 38.3, 33.5, 31.5, 25.7, 24.3, 24.0, 17.7.; Anal. Calcd for C₁₂H₂₂O₄: C, 62.58; H, 9.63. Found: C, 62.53; H, 9.56.

Date for **23** β : colorless syrup; R_f 0.24 (20/1 CHCl₃/MeOH); $[\alpha]^{24}_D$ -43.0° (*c* 1.0, CHCl₃); ¹H-NMR (500 MHz, CDCl₃, TMS) δ 4.61 (1H, dd, J = 1.4, 9.7 Hz, H-1), 3.64 (1H, m), 3.58 (1H, m), 3.33 (1H, br s, OH), 3.28 (1H, br s, OH), 3.26 (1H, dq, J = 6.0, 8.9 Hz), 3.08 (1H, dd, J = 8.9, 8.9 Hz), 2.15 (1H, ddd, J = 1.4, 4.9, 12.3 Hz), 1.96-1.87 (2H, m), 1.74 (2H, m), 1.64 (1H, ddd, J = 9.7, 12.3, 12.3 Hz), 1.53 (1H, m), 1.32 (3H, d, J = 6.0 Hz), 1.31-1.13(5H, m); ¹³C-NMR (125 MHz, CDCl₃) δ 97.3, 77.4, 76.6, 71.8, 71.5, 39.6, 33.6, 31.8, 25.6, 24.2, 24.1, 17.8.; Anal. Calcd for C₁₂H₂₂O₄: C, 62.58; H, 9.63. Found: C, 62.66; H, 9.55.

3-Pentyl α - and β -D-olivosides (24)

The title compounds were obtained according to the general procedure A with silica-gel column chromatography (CHCl₃/MeOH = 20/1), from phenylthio α -D-olivoside (**3**) (0.10 mmol) and 3-pentanol (**16**) (0.30 mmol) in 70% yield (α/β =70/30).

Date for **24** α : white solid; $R_f 0.27$ (20/1 CHCl₃/MeOH); mp 88-89 °C; $[\alpha]^{26}_{D}$ +133.2° (*c* 1.0, CHCl₃); ¹H-NMR (500 MHz, CDCl₃, TMS) δ 4.93 (1H, br d, J = 3.5 Hz, H-1), 4.28 (1H, br s), 4.22 (1H, br s), 3.90 (1H, m), 3.73 (1H, dq, J = 6.0, 9.2 Hz), 3.45 (1H, quint, J = 5.8 Hz), 3.05 (1H, ddd, J = 3.4, 9.2, 9.2 Hz), 2.09 (1H, br dd, J = 4.9, 12.6 Hz), 1.68 (1H, ddd, J = 3.5, 12.6, 12.6 Hz), 1.55-1.45 (4H, m), 1.26 (3H, d, J = 6.0 Hz), 0.91 (3H, t, J = 7.2 Hz), 0.86 (3H, t, J = 7.2 Hz); ¹³C-NMR (125 MHz, CDCl₃) δ 95.7 79.1, 78.1, 69.3, 67.7, 38.3, 26.8, 25.1, 17.6, 9.95,

9.10.; Anal. Calcd for $C_{11}H_{22}O_4$: C, 60.52; H, 10.16. Found: C, 60.56; H, 10.12.

Date for **24** β : colorless syrup; R_f 0.24 (20/1 CHCl₃/MeOH); $[\alpha]^{24}{}_D$ -27.0° (*c* 1.0, CHCl₃); ¹H-NMR (500 MHz, CDCl₃, TMS) δ 4.52 (1H, dd, J = 2.0, 9.8 Hz, H-1), 3.58 (1H, m), 3.49 (1H, quint, J = 6.1 Hz), 3.23 (1H, dq, J = 6.3, 8.9 Hz), 3.08 (1H, dd, J = 8.9, 8.9 Hz), 3.06-2.98 (2H, m), 2.18 (1H, ddd, J = 2.0, 5.2, 12.3 Hz), 1.63 (1H, ddd, J = 9.8, 12.3, 12.3 Hz), 1.60-1.43 (4H, m), 1.31 (3H, d, J = 6.3 Hz), 0.90 (3H, t, J = 7.4 Hz), 0.89 (3H, t, J = 7.4 Hz); ¹³C-NMR (125 MHz, CDCl₃) δ 98.8, 81.8, 77.6, 71.9, 71.5, 39.4, 27.2, 25.9, 17.7, 9.72, 9.39.; Anal. Calcd for C₁₁H₂₂O₄: C, 60.52; H, 10.16. Found: C, 60.49; H, 10.20.

Figure S1. a) ¹H NMR spectrum of **2** (10 mM) in DMSO- d_6 . b) ¹H NMR spectrum of complex **2'** resulted from **2** (10 mM) with **4** (10 mM) in DMSO- d_6 .

¹H NMR assay using 3 and 4 (Figure S2)

Figure S2. a) ¹H NMR spectrum of **3** (10 mM) in DMSO- d_6 . b) ¹H NMR spectrum of **3** (10 mM) in the presence of **4** (10 mM) in DMSO- d_6 .

¹H NMR assay using 1, 4 and 5 (Figure S3)

Figure S3. a) ¹H NMR spectrum of **1** (10 mM) in MeCN- d_3 . b) ¹H NMR spectrum of complex **1**" resulted from **1** (10 mM) with **5** (10 mM) in MeCN- d_3 . c) ¹H NMR spectrum of complex **1**' resulted from **1** (10 mM) with **4** (10 mM) in MeCN- d_3 .

References

- [1] K. Sakurai and D. Kahne, Tetrahedron Lett., 2010, 51, 3724.
- [2] W. D. Hitz, P. J. Card and K. G. Ripp, J. Biol. Chem., 1986, 261, 11986.
- [3] H. Tanaka, A. Yoshizawa and T. Takahashi, Angew. Chem. Int. Ed., 2007, 46, 2505.

¹H and ¹³C NMR spectra

Figure S4 ¹H NMR spectrum of 7α

Figure S5 13 C NMR spectrum of 7α

Figure S6 ¹H NMR spectrum of 7β

Figure S7 ¹³C NMR spectrum of 7β

Figure S8 ¹H NMR spectrum of 10α

Figure S9 ¹³C NMR spectrum of 10a

Figure S10 ¹H NMR spectrum of **10β**

Figure S11¹³C NMR spectrum of 10β

Figure S12 ¹H NMR spectrum of 11a

Figure S13 ¹³C NMR spectrum of 11a

Figure S14 ¹H NMR spectrum of 11β

Figure S15¹³C NMR spectrum of 11β

Figure S16 ¹H NMR spectrum of 17α

Figure S17 13 C NMR spectrum of 17 α

Figure S18 ¹H NMR spectrum of 17β

Figure S19 ¹H NMR spectrum of 17β

Figure S20 ¹H NMR spectrum of 18α

Figure S21¹³C NMR spectrum of 18α

Figure S22 ¹H NMR spectrum of 18β

Figure S23 ¹³C NMR spectrum of 18β

Figure S24 ¹H NMR spectrum of 19a

Figure S25 ¹³C NMR spectrum of 19a

Figure S26 ¹H NMR spectrum of 19β

Figure S27 13 C NMR spectrum of 19β

Figure S28 ¹H NMR spectrum of 20a

Figure S29 ¹³C NMR spectrum of 20a

Figure S30 ¹H NMR spectrum of 20β

Figure S31 ¹³C NMR spectrum of 20β

Figure S32 ¹H NMR spectrum of 21a

Figure S33 ¹³C NMR spectrum of 21a

Figure S34 ¹H NMR spectrum of 21β

Figure S35 ¹³C NMR spectrum of 21β

Figure S36 ¹H NMR spectrum of 22α

Figure S37 13 C NMR spectrum of 22 α

Figure S38 ¹H NMR spectrum of 22β

Figure S39 $^{13}\mathrm{C}$ NMR spectrum of 22β

Figure S40 ¹H NMR spectrum of 23a

Figure S41 ¹³C NMR spectrum of 23a

Figure S42 ¹H NMR spectrum of 23β

Figure S43 13 C NMR spectrum of 23β

Figure S44 ¹H NMR spectrum of 24a

Figure S45 ¹³C NMR spectrum of 24α

Figure S46 ¹H NMR spectrum of 24β

Figure S47 ¹³C NMR spectrum of 24β