Electronic Supplementary Information (ESI)

Synthesis of Charged Bis-heteroaryl Donor-Acceptor (D-A⁺) NLO-phores Coupling (π-deficient-π-excessive) Heteroaromatic Rings

Marco Antonio Ramirez,^[a] Raul Custodio,^[a] Ana M. Cuadro,^{[a]*} Julio Alvarez-Builla,^[a] Koen Clays,^[b] Inge Asselberghs,^[b] Francisco Mendicuti,^[c] Obis Castaño, ^[c] José L. Andrés,^[c] Juan J. Vaquero^{[a]*}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX

a Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28871-Alcalá de Henares, Madrid, Spain. Fax: +34-91-8854686; Tel: +34-91-8854628 e-mail: ana.cuadro@uah.es; juanjose.vaquero@uah.es b Department of Chemistry, University of Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium; E-mail: <u>Koen.Clays@fys.kuleuven.be</u> c Departamento de Química Analítica, Química Física e Ingeniería Química,Universidad de Alcalá,28871 Alcalá de Henares, Madrid, Spain.

Table of contents (16 pages)

Contents

1.	General datas	
1a.	General information	S2
1b.	Synthesis of	
1c.	Copies of ¹ H and ¹³ C NMR for all new compounds reported	S5
2	Linear properties	S15
Ge	neral information	
3 . 1	Non-linear properties	
G	eneral information	S16

General information. Melting points were uncorrected. Infrared spectra were recorded on KBr pellets and spectral bands were reported in cm⁻¹. ¹H NMR and ¹³C NMR spectra were recorded at 200 MHz and 300 MHz respectively. Chemical shifts were reported as δ values (ppm). Mass spectra (MS) were obtained as (ESI⁺). CuI, PdCl(PPh₃)₂, Pd(PPh₃)₄, Pd₂(dba)₃, were purchased from Aldrich. The stannanes 4-Tributylstannanyl-1-trityl-1H-pyrazole¹, 3-tributylstannanyl -1-Triisopropyl-1H- $Pyrrole^2$, (2-tributylstannanyl-phenyl)carbamic acid tert-butyl ester³. 3tributylstannanyl-indazol-1-carbamic acid tert-butyl ester⁴, 3-tributylstannanyl-1terbutyldimethylsilyl-indole⁵ were prepared according to literature procedures. DMF was distille over activated molecular sieves were obtained by previously described methods.

General Procedure for the Synthesis of D-A⁺ Pyridinium Salts.

A flame-dried flask was charged under argon with 1 equiv. of bromopiridinium iodine (0.2 g, 0.667 mmol) or hexafluorophosphate (0.2 g, 0.629 mmol); 5 mol % Pd(PPh₃)₄ *Method A* or 5 mol % Pd₂(dba)₃ and 5 mol % P(*o*-Tol)₃ *Method B* in dry DMF (10 mL). Then, the 2.1 equiv. of the corresponding stannanyl heterocycle was added. After stirring at 65° C temperature for 15-20 h, the solution was filtered through a small pad of celite and washed with methanol. The solution was concentrated and the solid were purified by flash chromatography on silica gel in CH₂Cl₂/MeOH (9:1) as eluent, to give **4**, **5** and **6**.

1-Methyl-4-(1H-pyrrol-3-yl)pyridinium iodide (4a).

Following the general procedure B, 0.0250 g (13 %) were obtained as a brown dust: mp 142-144 °C; IR (KBr) 3445; 3031; 1488; 664cm⁻¹; ¹H NMR (200 MHz, CD₃OD) 9.27 (s, 1H); 8.72 (d, 1H, *J*=8.1); 8.60 (d, 1H, *J*=6.2); 7.98 (t, 1H, *J*=6.2); 7.73-7.71 (m, 1H); 7.04-7.01 (m, 1H); 6.90-6.88 (m, 1H); 4.46 (s, 3H); ¹³C NMR (75 MHz, acetone) δ 142.2; 141.6; 139.9; 137.6; 128.4; 127.5; 126.3; 120.5; 109.6; 48.8. MS (ES⁺) *m/z* (relative intensity) 159 (M⁺, 100). Anal. Calcd for

C₁₀H₁₁N₂I: C 41.96; H: 3.85; N: 9.79. Found: C, 41.93; H, 3.90; N, 9.80.

1-Methyl-3-(1H-indol-3-yl)pyridinium iodide (4b).

Following the general procedure A, 0.114 g (51 %) were obtained as a brown solid: mp 290 °C; IR (KBr) 3416, 3178.76 cm⁻¹; ¹H NMR (200 MHz, CD₃OD) : 9.24 (s, 1H); 8.88 (d, 1H, *J*=8.4); 8.67 (d, 1H, *J*=5.9); 8.04 (t, 1H, *J*=4.7); 8.0 (s, 1H); 7.58-7.54 (m, 2H); 7.33-7.28 (m, 2H); 4.5 (s, 3H). ¹³C NMR (75 MHz, CD₃OD) 142.9; 141.7; 138.8; 128.9; 127.5; 125.5; 124.0; 122.4; 119.5; 113.4; 110.3; MS (ES⁺) *m/z* (relative intensity) 209 (M⁺, 100).

Anal. Calcd for C₁₄H₁₃N₂I: C 50.02; H 3.87; N 8.33. Found: C 49.94; H 3.90; N 8.33.

⁵ a)Amat, M.; Hadida, S.; Sathyanarayana, S.; Bosch, J. J. Org. Chem. 1994, 59, 10. b) Amat, M.; Hadida,

¹ Elguero, J.; Jaramillo, C.; Pardo, C. Synthesis 1997, 563.

² Álvarez, A.; Guzmán, A.; Ruiz, A.; Velarde, E. J. Org. Chem. **1992**, 57, 1653.

³ Iwao, M.; Takehara, H.; Furkawa, S.; Watanabe, M.; *Heterocycles*, **1993**, *36*, 1483.

⁴ Arnautu, A.; Collot, V.; Calvo, J.; Alayrac, C.; Witulski, B.; Rault, S.; *Tetrahedron Lett.* **2002**, *43*, 2695.

S.; Pshenichnyi, G.; Bosch, J. Tetrahedron Lett. 1994, 35, 793.

1-Methyl-3-(1-trityl-1H-pyrazol-4-yl)pyridinium iodide (4c)

Following the general procedure A, 0.187 g (53 %) were obtained as a brown solid: mp 246 °C; IR (KBr) 3419,3055, 1631,1373 cm⁻¹; ¹H NMR (200 MHz, CD₃OD) 9.25 (s, 1H); 8.74-8.69 (m, 2H); 8.27 (s, 2H); 8.01 (t, 1H, *J*=6.2); 7.41-7.38 (m, 9H); 7.24-7-19 (m, 6H); 4.41 (s, 3H); ¹³C NMR (75 MHz, acetone) δ 143.7; 143.1; 141.4; 138.5; 134.6; 132.4; 130.9; 128.8; 128.8; 128.7; 115.9; 73.0; 61.7; 49.1. MS (ES⁺) *m/z*

(relative intensity) 402 (M^+ , 100). Anal. Calcd for $C_{28}H_{24}N_3I$: C 63.52; H 4.54; N 7.94. Found: C 62.93; H 3.71; N 7.25.

1-Methyl-3-(1H-indazol-3-yl)pyridinium iodide (4d).

Following the general procedure A, gave 0.0742 g (33 %) of brown solid: mp 158-160 °C; IR (KBr) 3133, 1633, 1588, 1172 cm⁻¹; ¹H NMR (200 MHz, CD₃OD) : 9.54 (s, 1H); 9.19 (d, 1H, *J*=8.0); 8.90 (d, 1H, *J*=5.8); 8.28-8.19 (m, 2H); 7.71 (d, 1H, *J*=8.4); 7.55 (t, 1H, *J*=8.0); 7.40 (t, 1H, *J*=7.5); 4.58 (s, 3H). ¹³C NMR (75 MHz, CD₃OD) 146.1; 132.7; 131.5; 131.3; 128.2; 127.7; 127.5; 127.1; 124.8; MS (ES⁺) *m/z* (relative intensity) 210 (M⁺, 100). Anal. Calcd for C₁₃H₁₂N₃I: C 46.29; H 3.56; N

12.46. Found: C 46.21; H 3.44; N: 11.65.

1-Methyl-2-(1-trityl-1H-pyrazol-4-yl)pyridinium iodide (5c).

Procedure A, orange solid (0.120 g, 34 %): mp 249-250 °C; IR (KBr) 3428, 2920, 1625,1382 cm⁻¹; ¹H NMR (200 MHz, CD₃OD) : 8.89 (d, 1H, *J*=6.2); 8.48 (t, 1H, *J*=7.5); 8.24 (s, 1H); 8.21 (s, 1H); 8.17 (d, 1H, *J*= 8.4); 7.92 (t, 1H, *J*=7.0), 7.43-7.40 (m, 9H); 7.27-7.22 (m, 6H) ; 4.36 (s, 3H); ¹³C NMR (75 MHz, DMSO) : 145.6; 143.8; 141.4; 139.7; 134.5; 129.0; 128.3; 127.4; 124.4; 111.9; 78.6; 46.7. MS (ES⁺) *m/z* (relative intensity) 402 (M⁺, 100). Anal. Calcd for C₂₈H₂₄N₃I: C, 63.41; H, 4.71; N, 7.93. Found: C 63.43; H 4.74;

N 7.95.

1-Methyl-2-(1-tert-Butoxycarbonyl-1H-indazol-3-yl)pyridinium iodide (5d).

Procedure A, orange oil (0.0903 g, 31 %); IR (KBr) 3133, 1633, 1588, 1172 cm⁻¹; ¹H NMR (200 MHz, CD₃OD) : 9.10 (d, 1H, *J*=6.2); 8.65 (t, 1H, *J*=8.1); 8.10 (t, 2H, *J*=6.2); 8.00 (d, 1H, *J*=7.7); 7.83 (d, 1H, *J*=7.7); 7.67 (t, 2H, *J*=7.9); 4.91 (s, 3H); 1.57 (s, 9H). ¹³C NMR (75 MHz, CD₃OD): 152.0; 145.0; 143.8; 135.7; 135.0; 131.2; 129.5; 129.2; 128.2; 122.0; 116.6; 114.7; 111.7; 72.0, 49.0; 45.5. MS (ES⁺) *m/z* (relative intensity) 310

(M⁺, 100). Anal. Calcd for $C_{18}H_{20}N_3O_2I$: C 49.44; H 4.58; N 9.61. Found: C 49.2; H 4.44; N 9.65.

1-Methyl-4-(1H-pyrrol-3-yl)pyridinium hexafluorophosphate (6a).

Procedure B, brown solid (0.188 g , 98 %): mp 106-108 °C; IR (KBr) 3420, 3199, 1638 cm⁻¹; ¹H NMR (200 MHz, CD₃OD) 8.52 (d, 2H, J=6.9); 8.07 (d, 2H, J=6.9); 7.84 (s,1H); 7.00-6.98 (m, 1H); 6.85-6.82 (m, 1H), 4.23 (s, 3H); ¹³C NMR (75 MHz, CD₃OD) δ 145.2; 128.2; 125.7; 122.9; 121.9; 109.6; 108.2; 47.7. MS (ES⁺) *m/z* (relative intensity) 159 (M⁺, 100). Anal. Calcd for C₁₀H₁₁N₂PF₆: C 69.08; H 3.62; N 9.21. Found: C 69.24; H 3.50; N 9.33.

1-Methyl-4-(1H-indol-3-yl)pyridinium hexafluorophosphate (6b).

Procedure A, brown solid (0.174 g , 78 %): mp 222 °C; IR (KBr) 3414; 1644; 836 cm⁻¹; ¹H NMR (200 MHz, CD₃OD) : 8.56 (d, 2H, J=7.3); 8.38 (s, 1H); 8.30 (d, 2H, J=6.9); 8.16-8.12 (m, 1H); 7.61-7.57 (m, 1H), 7.40-7.34 (m, 2H); 4.26 (s, 3H). ¹³C NMR (75 MHz, CD₃OD) 145.1; 132.4; 124.6; 123.6; 122.5; 121.5; 120.5; 113.9; 47.7. MS (ES⁺) *m/z* (relative intensity) 209 (M⁺, 100). Anal. Calcd for C₁₄H₁₃N₂PF₆: C 47.46; H 3.67; N 7.91. Found: C 47.33; H 3.52; N 8.02

1-Methyl-4-(1-trityl-1H-pyrazol-4-yl)pyridinium hexafluoro phosphate (6c).

Procedure A, yellow solid (0.313 g, 91 %): mp 204-206 °C; IR (KBr) 3431, 3134, 1640, 1385 cm⁻¹; ¹H NMR (200 MHz, CD₃OD) 8.65 (d, 2H, J=6.6); 8.43 (s, 1H); 8.42 (s, 1H); 8.18 (d, 2H, J=6.7); 7.41-7.39 (m, 9H) 7.23-7.20 (m, 6H); 4.30 (s, 3H); ¹³C NMR (75 MHz, CD₃OD) δ 147.1; 144.5; 141.6; 138.9; 133.3; 129.1; 127.6; 127.5; 127.4; 121.6; 116.4; 78.7; 46.1. MS (ES⁺) m/z (relative intensity) 402 (M⁺, 100). Anal. Calcd for C₂₈H₂₄N₃ PF₆: C 61.43; H 4.39; N 7.68. Found: C, 61.05; H, 3.95; N, 6.85.

1-Methyl-4-(1-tert-Butoxycarbonyl-1H-indazol-3-yl)pyridinium hexafluorophosphate (6d).

Procedure A, orange solid (0.258 g, 90 %): mp 119-121 °C; IR (KBr) 3413, 1644, 1265, 834 cm⁻¹; ¹H NMR (200 MHz, acetone): 9.10 (d, 2H, *J*=6.3); 8.73 (d, 2H, *J*=6.3); 8.38 (d, 1H, *J*=8.4); 8.25 (d, 1H, *J*=7.4); 7.78 (t, 1H, *J*=8.5); 7.60 (t, 1H, *J*=7.3); 4.41 (s, 3H); 1.70 (s, 9H); ¹³C NMR (75 MHz, CD₃OD):147.3; 145.6; 142.4; 140.2; 129.5; 124.9; 124.5; 122.3; 120.7; 114.3; 85.6; 47.2. MS (ES⁺) *m/z* (relative intensity) 310 (M⁺, 100). Anal. Calcd for $C_{18}H_{20}N_3O_2$ PF₆: C 47.47; H 4.40; N 9.23. Found: C 47.63; H 4.23; N 9.10.

<u>1c. Copies of ¹H and ¹³C NMR for all new compounds reported</u>

1-Methyl-4-(1H-pyrrol-3-yl)pyridinium iodide (4a)

¹**H NMR** (200 MHz, CD₃OD) 9.27 (s, 1H); 8.72 (d, 1H, *J*=8.1); 8.60 (d, 1H, *J*=6.2); 7.98 (t, 1H, *J*=6.2); 7.73-7.71 (m, 1H); 7.04-7.01 (m, 1H); 6.90-6.88 (m, 1H); 4.46 (s, 3H);

¹³C NMR (75 MHz, acetone) δ 142.2; 141.6; 139.9; 137.6; 128.4; 127.5; 126.3; 120.5; 109.6; 48.8.

1-Methyl-3-(1H-indol-3-yl)pyridinium iodide (4b)

¹H NMR (200 MHz, CD₃OD) : 9.24 (s, 1H); 8.88 (d, 1H, *J*=8.4); 8.67 (d, 1H, *J*=5.9); 8.04 (t, 1H, *J*=4.7); 8.0 (s, 1H); 7.58-7.54 (m, 2H); 7.33-7.28 (m, 2H); 4.5 (s, 3H).
¹³C NMR (75 MHz, CD₃OD) 142.9; 141.7; 138.8; 128.9; 127.5; 125.5; 124.0; 122.4; 119.5; 113.4; 110.3;

1-Methyl-3-(1-trityl-1H-pyrazol-4-yl)pyridinium iodide (4c)

1H NMR (200 MHz, CD3OD) 9.25 (s, 1H); 8.74-8.69 (m, 2H); 8.27 (s, 2H); 8.01 (t, 1H, J=6.2); 7.41-7.38 (m, 9H); 7.24-7-19 (m, 6H); 4.41 (s, 3H);
13C NMR (75 MHz, acetone) δ 143.7; 143.1; 141.4; 138.5; 134.6; 132.4; 130.9; 128.8; 128.8; 128.7; 115.9; 73.0; 61.7; 49.1.

1H NMR (200 MHz, CD3OD) : 9.54 (s, 1H); 9.19 (d, 1H, J=8.0); 8.90 (d, 1H, J=5.8); 8.28-8.19 (m, 2H); 7.71 (d, 1H, J=8.4); 7.55 (t, 1H, J=8.0); 7.40 (t, 1H, J=7.5); 4.58 (s, 3H). **13C NMR** (75 MHz, CD3OD) 146.1; 132.7; 131.5; 131.3; 128.2; 127.7; 127.5; 127.1;

124.8;

1-Methyl-2-(1-trityl-1H-pyrazol-4-yl)pyridinium iodide (5c)

1H NMR (200 MHz, CD3OD) : 8.89 (d, 1H, J=6.2); 8.48 (t, 1H, J=7.5); 8.24 (s, 1H); 8.21 (s, 1H); 8.17 (d, 1H, J= 8.4); 7.92 (t, 1H, J=7.0), 7.43-7.40 (m, 9H) ; 7.27-7.22 (m, 6H) ; 4.36 (s, 3H);

13C NMR (75 MHz, DMSO) : 145.6; 143.8; 141.4; 139.7; 134.5; 129.0; 128.3; 127.4; 124.4; 111.9; 78.6; 46.7.

8.00 (d, 1H, J=7.7); 7.83 (d, 1H, J=7.7); 7.67 (t, 2H, J=7.9); 4.91 (s, 3H); 1.57 (s, 9H). ¹³C NMR (75 MHz, CD₃OD): 152.0; 145.0; 143.8; 135.7; 135.0; 131.2; 129.5; 129.2; 72.0, 128.2; 122.0; 116.6; 114.7; 111.7; 49.0; 45.5.

 ^{1}H

¹H NMR (200 MHz, CD₃OD) 8.52 (d, 2H, *J*=6.9); 8.07 (d, 2H, *J*=6.9); 7.84 (s,1H); 7.00-6.98 (m, 1H); 6.85-6.82 (m, 1H), 4.23 (s, 3H);
¹³C NMR (75 MHz, CD₃OD) δ 145.2; 128.2; 125.7; 122.9; 121.9; 109.6; 108.2; 47.7.

1-Methyl-4-(1H-indol-3-yl)pyridinium hexafluorophosphate (6b)

1H NMR (200 MHz, CD3OD) : 8.56 (d, 2H, J=7.3); 8.38 (s, 1H); 8.30 (d, 2H, J=6.9); 8.16-8.12 (m, 1H); 7.61-7.57 (m, 1H), 7.40-7.34 (m, 2H); 4.26 (s, 3H). **13C NMR** (75 MHz, CD3OD) 145.1; 132.4; 124.6; 123.6; 122.5; 121.5; 120.5; 113.9; 47.7.

1H NMR (200 MHz, CD3OD) 8.65 (d, 2H, J=6.6); 8.43 (s, 1H); 8.42 (s, 1H); 8.18 (d, 2H, J=6.7); 7.41-7.39 (m, 9H) 7.23-7.20 (m, 6H); 4.30 (s, 3H);

13C NMR (75 MHz, CD3OD) δ 147.1; 144.5; 141.6; 138.9; 133.3; 129.1; 127.6; 127.5; 127.4; 121.6; 116.4; 78.7; 46.1.

1-Methyl-4-(1-tert-Butoxycarbonyl-1H-indazol-3-yl)pyridinium hexafluorophosphate (6d)

1H NMR (200 MHz, acetone): 9.10 (d, 2H, J=6.3); 8.73 (d, 2H, J=6.3); 8.38 (d, 1H, J=8.4); 8.25 (d, 1H, J=7.4); 7.78 (t, 1H, J=8.5); 7.60 (t, 1H, J=7.3); 4.41 (s, 3H); 1.70 (s, 9H);

13C **NMR** (75 MHz, CD3OD):147.3; 145.6; 142.4; 140.2; 129.5; 124.9; 124.5; 122.3; 120.7; 114.3; 85.6; 47.2.

2. Linear properties General information

Absorption Spectra were recorded in a UV-Vis Perkin-Elmer L35 Spectrophotometer in the 200-1000 nm range. Steady-state fluorescence measurements were performed by using an SLM 8100 AMINCO spectrofluorimeter equipped with polarizers and a double (single) concave grating monochromator in the excitation (emission) path and a cooled photomultiplier. Slit widths were set at 8 nm for excitation and emission and polarizers at the magic angle. Fluorescence decay measurements were performed on a time-correlated single-photon-counting FL900 Edinburgh Instruments Spectrometer. The thyratrongated lamp (nF900) was filled with H₂. Concave gratings monochromators were used at the excitation and emission. Photons were detected by a red sensitive cooled photomultiplier. The data acquisition was carried out by using 1024 channels of the multichannel analyzer with a time window width of 125 ns. A total of 10000-5000 counts in the peak channel were taken for each measurement. Instrumental response functions were regularly achieved by measuring the scattering of a Ludox solution and the quality of the fit was judged by the reduced χ^2 criterion, the inspection of the weighted residuals per channel and the autocorrelation function of the weighted residuals. Decay intensity profiles were fitted to a sum of exponential decay functions as

$$I(t) = \sum_{i=1}^{n} B_{i} e^{-t/r_{i}}$$
 (1)

by the iterative reconvolution method. The average lifetime of a multiple-exponential decay function was then defined as

$$\left\langle \tau \right\rangle = \frac{\sum_{i=1}^{n} B_{i} \tau_{i}^{2}}{\sum_{i=1}^{n} B_{i} \tau_{i}}$$
(2)

where B_i is the pre-exponential factor of the component with a lifetime τ_i of the multiexponential function intensity decay.

3. Non-linear properties

General Information

The second-order noninear polarizability, or first hyperpolarizability, β , of the compounds was determined by Hyper-Rayleigh scattering (HRS).⁶ This is the only available experimental technique that can measure directly the molecular second-order nonlinear response of ionic species in solution.

The HRS measurements were performed at room temperature in methanol, with crystal violet as the reference molecule and with high-frequency demodulation of the the multiphoton fluorescence contribution.⁷ The HRS signal was analyzed towards a single major dipolar hypepolarizability tensor element β_{zzz} along the molecular z-axis. The dynamic, on resonantly-enhanced, $\beta_{zzz,800}$ value obtained at 800nm was reduced to the static, or off-resonance $\beta_{zzz,0}$ value by applying the classical two-level model.⁸ From the fitting of the apparent $\beta_{zzz,800}$ as a function of modulation frequency, a fluorescence lifetime could be obtained, as well as the accurate fluorescence-free hyperpolarizability value.⁹

⁶ Ref. 6 in text. K.Clays and A. Peersons, *Phys. Rev. Lett.* **1991**, *66*, 2980-2983. (b) K.Clays and A. Peersons, *Rev, Sci. Instrum.* **1992**, 63, 3285- 3289.

⁷ Olbrechts, G.; Strobbe, R.; Clays, K.; Persoons, A. Rev. Sci. Instrum. 1998, 69, 2233-2241.

⁸ Oudar, J. L.; Chemla, D. S.; J. Chem. Phys. 1997, 66, 2664.

⁹ Clays, K.; Wostyn, K.; Binnemans, K.; Persoons, A. Rev. Sci. Instrum. 2001, 72 3215-3220.