Highly efficient synthesis of 2,5-disubstitutedpyrazines from

(Z)-β-haloenol acetates

Zhengwang Chen,* Dongnai Ye, Guohai Xu, Min Ye, Liangxian Liu*

School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China E-mail: <u>chenzwang@126.com</u>; lxliu@mail.xmu.edu.cn

Supporting Information

List of Contents

A. General method	S2
B. General procedure for synthesis of 2,5-disubstitutedpyrazines	S2
C. Analytical data	S2
D. NMR Spectra	S6

A. General method

¹H and ¹³C NMR spectra were recorded using a Bruker Avance 400 MHz NMR spectrometer. The chemical shifts are referenced to signals at 7.24 and 77.0 ppm, respectively, chloroform is solvent with TMS as the internal standard. Mass spectra were recorded on a Shimadzu GCMS-QP5050A spectrometer at an ionization voltage of 70 eV equipped with a DB-WAX capillary column (internal diameter: 0.25 mm, length: 30 m). Elemental analyses were performed with a Vario EL elemental analyzer. TLC was performed by using commercially prepared 100-400 mesh silica gel plates (GF254) and visualization was effected at 254 nm. All the other chemicals were purchased from Aldrich Chemicals.

synthesis B. General procedure for of

2,5-disubstitutedpyrazines

The mixture of (Z)-β-haloenol acetates (0.5 mmol), ammonium formate (0.5 mmol) and DMF (1 mL) were stirred at 120 °C for 6 h in a 25 mL schlenk tube. Water (8 mL) was added after completion of the reaction, the aqueous solution was extracted with diethyl ether (3×5 mL) and the combined extract was dried with anhydrous MgSO₄. The solvent was removed and the crude product was separated by column chromatography to give the pure sample.

C. Analytical data

2,5-diphenylpyrazine (2a)

¹H NMR (400 MHz, CDCl₃): δ = 9.06 (s, 2H), 8.05 (d, *J* = 7.2 Hz, 4H), 7.46-7.53 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 150.7, 141.2, 136.3,$ 129.7, 129.0, 126.8. MS (EI) m/z: 232, 204, 178, 155, 102, 76, 51. Anal. Calcd for C₁₆H₁₂N₂: C, 82.73; H, 5.21; N, 12.06. Found: C, 82.47; H, 5.29; N, 12.01.

2,5-di*p*-tolylpyrazine (2b) ¹H NMR (400 MHz, CDCl₃): δ = 8.89 (s, 2H), 8.03 (d, *J* = 8.4 Hz, 4H), 7.31 (d, J = 8.0 Hz, 4H), 2.42 (s, 6H). ¹³C

NMR (100 MHz, CDCl₃): δ = 151.5, 140.0, 139.2, 133.8, 129.7, 126.9, 21.3. MS (EI) m/z: 260, 245, 229, 218, 164, 115, 89. Anal. Calcd for C₁₈H₁₆N₂: C, 83.04; H, 6.19; N, 10.76. Found: C, 83.49; H, 6.04; N, 10.67.

2,5-dim-tolylpyrazine (2c)

¹H NMR (400 MHz, CDCl₃): $\delta = 8.92$ (s, 2H), 7.92 (t, J = 8.0 Hz, 4H), 7.41 (t, J = 7.6 Hz, 2H), 7.29 (d, J = 7.6 Hz, 2H), 2.46 (s,

2H). ¹³C NMR (100 MHz, CDCl₃): δ = 151.8, 139.8, 138.7, 136.5, 130.6, 128.9, 128.7, 124.2, 21.6. MS (EI) m/z: 260, 245, 207, 169, 130, 115, 89. Anal. Calcd for C₁₈H₁₆N₂: C, 83.04; H, 6.19; N, 10.76. Found: C, 83.51; H, 6.02; N, 10.83.

2,5-dio-tolylpyrazine (2d)

¹H NMR (400 MHz, CDCl₃): δ = 8.65 (s, 2H), 7.46-7.48 (m, 2H), 7.28-7.37 (m, 6H), 2.44 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 154.5, 142.0, 136.8, 136.4, 131.1, 130.0, 129.2, 126.1, 20.5. MS (EI)

m/z: 260, 245, 207, 169, 130, 115, 89. Anal. Calcd for $C_{18}H_{16}N_2$: C, 83.04; H, 6.19; N, 10.76. Found: C, 83.65; H, 6.00; N, 10.62.

2,5-bis(4-butylphenyl)pyrazine (2e)

^t ¹H NMR (400 MHz, CDCl₃): $\delta = 8.91$ (s, 2H), 8.07 (d, J = 8.4 Hz, 4H), 7.54 (d, J = 8.4 Hz, 4H), 1.37 (s, 9H). ¹³C

NMR (100 MHz, CDCl₃): δ = 153.2, 151.6, 139.2, 133.8, 126.7, 125.9, 34.8, 31.2. MS (EI) m/z: 344, 329, 316, 301, 264, 239, 212, 185, 172, 158, 145, 133, 105. Anal. Calcd for C₂₄H₂₈N₂: C, 83.68; H, 8.19; N, 8.13. Found: C, 83.45; H, 8.31; N, 8.06.

2,5-bis(4-methoxyphenyl)pyrazine (2f)

¹H NMR (400 MHz, CDCl₃): δ = 8.82 (s, 2H), 8.09 (d, *J* = 8.8 Hz, 4H), 7.03 (d, *J* = 8.8 Hz, 4H), 3.87 (s,

6H). ¹³C NMR (100 MHz, CDCl₃): δ =161.1, 151.0, 138.4, 129.2, 128.3, 114.3, 55.4. MS (EI) m/z: 292, 277, 249, 206, 158, 132, 89, 63. Anal. Calcd for C₁₈H₁₆N₂O₂: C, 73.95; H, 5.52; N, 9.58. Found: C, 73.70; H, 5.59; N, 9.51.

2,5-di([1,1'-biphenyl]-4-yl)pyrazine (2g)

¹H NMR (400 MHz, CDCl₃): δ = 9.00 (s, 2H), 8.24 (d, *J* = 8.4 Hz, 4H), 7.76 (d, *J* = 8.4 Hz, 4H),

7.67 (t, J = 7.2 Hz, 4H), 7.47 (t, J = 7.6 Hz, 4H), 7.38 (t, J = 7.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 151.2, 142.7, 140.3, 139.7, 135.3, 128.9, 127.7, 127.7, 127.4, 127.1$. MS (EI) m/z: 384, 307, 230, 204, 178, 155, 77, 51. Anal. Calcd for C₂₈H₂₀N₂: C, 87.47; H, 5.24; N, 7.29. Found: C, 87.68; H, 5.17; N, 7.33.

2,5-di(naphthalen-1-yl)pyrazine (2h)

¹H NMR (400 MHz, CDCl₃): δ = 9.12 (s, 2H), 8.64 (s, 2H), 8.31-8.33 (m, 4H), 8.01 (t, *J* = 4.0 Hz, 4H), 7.89-7.91 (m, 2H), 7.53-7.57 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ = 151.6, 140.1, 134.0, 133.8,

133.4, 128.8, 128.8, 127.8, 127.1, 126.8, 126.6, 124.2. MS (EI) m/z: 332, 280, 228, 206, 180, 153, 102, 77. Anal. Calcd for C₂₄H₁₆N₂: C, 86.72; H, 4.85; N, 8.43. Found: C, 86.39; H, 4.97; N, 8.35.

2,5-bis(4-fluorophenyl)pyrazine (2i)

¹H NMR (400 MHz, CDCl₃): δ = 8.98 (s, 2H), 8.09-8.12 (m, 4H), 7.16-7.24 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ =

165.3, 162.8, 150.6, 139.4, 132.5, 132.5, 128.9, 128.8, 116.1, 115.9. MS (EI) m/z: 268, 240, 214, 173,

120, 94, 74, 50. Anal. Calcd for C₁₆H₁₀F₂N₂: C, 71.64; H, 3.76; N, 10.44. Found: C, 71.43; H, 3.85; N, 10.49.

2,5-bis(3-fluorophenyl)pyrazine (2j)

¹H NMR (400 MHz, CDCl₃): δ = 8.94 (s, 2H), 7.84-7.88 (m, 4H), 7.47-7.51 (m, 2H), 7.16-7.19 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ = 164.6, 162.1, 150.3, 150.3, 140.2, 138.5, 138.4, 130.6, 130.5,

122.5, 122.4, 117.1, 116.9, 114.1, 113.9. MS (EI) m/z: 268, 240, 214, 173, 120, 94, 74, 50. Anal. Calcd for C₁₆H₁₀F₂N₂: C, 71.64; H, 3.76; N, 10.44. Found: C, 71.37; H, 3.90; N, 10.29.

2,5-bis(2-fluorophenyl)pyrazine (2k)

¹H NMR (400 MHz, CDCl₃): δ = 9.09 (s, 2H), 8.16-8.21 (m, 2H), 7.46-7.52 (m, 2H), 7.34-7.38 (m, 2H), 7.26-7.29 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ = 161.9, 159.4, 148.5, 144.8, 144.7, 143.4, 143.3,

131.5, 131.5, 131.4, 131.0, 131.0, 124.8, 124.8, 124.4, 124.3, 116.5, 116.3. MS (EI) m/z: 268, 240, 214, 173, 120, 94, 74, 50. Anal. Calcd for $C_{16}H_{10}F_2N_2$: C, 71.64; H, 3.76; N, 10.44. Found: C, 71.34; H, 3.93; N, 10.47.

2,5-bis(4-chlorophenyl)pyrazine (21)

¹H NMR (400 MHz, CDCl₃): $\delta = 8.91$ (s, 2H), 8.04-8.06 (m, 4H), 7.47-7.49 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): $\delta =$

150.5, 139.7, 136.3, 134.6, 129.3, 128.2. MS (EI) m/z: 300, 265, 136, 101, 75, 51. Anal. Calcd for $C_{16}H_{10}Cl_2N_2$: C, 63.81; H, 3.35; N, 9.30. Found: C, 63.45; H, 3.47; N, 9.25.

2,5-bis(2-chlorophenyl)pyrazine (2m)

¹H NMR (400 MHz, CDCl₃): δ = 8.95 (s, 2H), 8.12 (t, *J* = 1.2 Hz, 2H), 7.97-7.99 (m, 2H), 7.45-7.46 (t, *J* = 4.0 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃): δ = 150.3, 140.4, 138.0, 135.2, 130.3, 130.1, 127.2, 125.0. MS

(EI) m/z: 300, 265, 136, 101, 75, 51. Anal. Calcd for $C_{16}H_{10}Cl_2N_2$: C, 63.81; H, 3.35; N, 9.30. Found: C, 63.55; H, 3.43; N, 9.41.

2,5-bis(4-bromophenyl)pyrazine (2n)

¹H NMR (400 MHz, CDCl₃): δ = 8.93 (s, 2H), 7.98 (d, *J* = 8.8 Hz, 4H), 7.64 (d, *J* = 8.8 Hz, 4H). ¹³C NMR (100 MHz,

CDCl₃): $\delta = 150.6$, 139.8, 135.1, 132.2, 128.5, 124.7. MS (EI) m/z: 390, 309, 229, 182, 127, 101, 75, 51. Anal. Calcd for C₁₆H₁₀Br₂N₂: C, 49.27; H, 2.58; N, 7.18. Found: C, 49.44; H, 2.50; N, 7.26.

2,5-bis(3-bromophenyl)pyrazine (20)

¹H NMR (400 MHz, CDCl₃): δ = 8.91 (s, 2H), 8.24 (t, *J* = 1.6 Hz, 2H), 7.98-8.01 (m, 2H), 7.57-7.60 (m, 2H), 7.37 (t, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ = 150.1, 140.4, 138.1, 133.0, 130.5,

130.0, 125.5, 123.3. MS (EI) m/z: 390, 309, 229, 182, 127, 101, 75, 51. Anal. Calcd for $C_{16}H_{10}Br_2N_2$: C, 49.27; H, 2.58; N, 7.18. Found: C, 49.57; H, 2.49; N, 7.07.

4,4'-(pyrazine-2,5-diyl)dibenzonitrile (2p)

¹H NMR (400 MHz, CDCl₃): δ = 9.07 (s, 2H), 8.25 (d, *J* = 8.4 Hz, 4H), 7.83 (d, *J* = 8.4 Hz, 4H). ¹³C NMR (100 MHz,

CDCl₃): δ = 149.8, 141.3, 140.0, 132.8, 127.5, 118.3, 113.9. MS (EI) m/z: 282, 256, 230, 207, 169, 130, 89, 51. Anal. Calcd for C₁₈H₁₀N₄: C, 76.58; H, 3.57; N, 19.85. Found: C, 76.31; H, 3.63; N, 19.80.

2,5-bis(3-nitrophenyl)pyrazine (2q)

¹H NMR (400 MHz, CDCl₃): δ = 9.13 (s, 2H), 8.99 (t, *J* = 2.0 Hz, 2H), 8.50-8.52 (m, 2H), 8.36-8.38 (m, 2H), 7.76 (t, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ = 149.5, 148.9, 141.1,

137.6, 132.8, 130.3, 124.8, 121.9. MS (EI) m/z: 322, 306, 290, 276, 234, 206, 179, 101, 77. Anal. Calcd for $C_{16}H_{10}N_4O_4$: C, 59.63; H, 3.13; N, 17.38. Found: C, 59.29; H, 3.27; N, 17.23.

13 2,5-dihexylpyrazine (2r)

¹H NMR (400 MHz, CDCl₃): δ = 8.22 (s, 2H), 2.74 (t, *J* = 7.6 Hz, 4H), 1.65-1.72 (m, 4H), 1.26-1.33 (m, 12H), 0.85 (t, *J* = 7.2 Hz, 3H). ¹³C

NMR (100 MHz, CDCl₃): δ = 156.8, 141.2, 35.5, 31.6, 29.6, 28.9, 22.5, 14.0. MS (EI) m/z: 248, 233, 219, 205, 191, 178, 163, 149, 135, 121, 108, 94, 81, 66, 53. Anal. Calcd for C₁₆H₂₈N₂: C, 77.36; H, 11.36; N, 11.28. Found: C, 77.58; H, 11.27; N, 11.34.

2,5-dicyclohexylpyrazine (2s)

¹H NMR (400 MHz, CDCl₃): $\delta = 8.23$ (s, 2H), 2.64-2.71 (m, 2H), 1.81-1.93 (m, 8H), 1.36-1.57 (m, 8H), 1.22-1.32 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 160.3$, 140.0, 44.1, 32.5, 26.3, 25.9. MS (EI) m/z: 244, 229, 215, 203, 189, 176, 161, 145, 133, 120, 107, 91, 79, 67, 55. Anal. Calcd for C₁₆H₂₄N₂: C, 78.64; H, 9.90; N, 11.46. Found: C, 78.38; H, 9.97;

N, 11.38.

2,6-diphenylpyrazine (3a)

¹H NMR (400 MHz, CDCl₃): δ = 8.95 (s, 2H), 8.14 (d, *J* = 6.8 Hz, 4H), 7.45-7.54 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 151.6, 139.8, 136.5, 129.9, 129.0, 127.0. MS (EI) m/z: 232, 204, 178, 155, 102, 76, 51. Anal.

Calcd for C₁₆H₁₂N₂: C, 82.73; H, 5.21; N, 12.06. Found: C, 82.45; H, 5.12; N, 12.13.

D. NMR Spectra

¹H NMR and ¹³C NMR of 2,5-diphenylpyrazine (2a)

¹H NMR and ¹³C NMR of 2,5-dim-tolylpyrazine (2c)

¹H NMR and ¹³C NMR of 2,5-dio-tolylpyrazine (2d)

¹H NMR and ¹³C NMR of 2,5-bis(4-butylphenyl)pyrazine (2e)

¹H NMR and ¹³C NMR of 2,5-bis(4-methoxyphenyl)pyrazine (2f)

¹H NMR and ¹³C NMR of 2,5-di([1,1'-biphenyl]-4-yl)pyrazine (2g)

¹H NMR and ¹³C NMR of 2,5-di(naphthalen-1-yl)pyrazine (2h)

¹H NMR and ¹³C NMR of 2,5-bis(4-fluorophenyl)pyrazine (2i)

¹H NMR and ¹³C NMR of 2,5-bis(3-fluorophenyl)pyrazine (2j)

¹H NMR and ¹³C NMR of 2,5-bis(2-fluorophenyl)pyrazine (2k)

¹H NMR and ¹³C NMR of 2,5-bis(4-chlorophenyl)pyrazine (2l)

¹H NMR and ¹³C NMR of 2,5-bis(2-chlorophenyl)pyrazine (2m)

¹H NMR and ¹³C NMR of 2,5-bis(4-bromophenyl)pyrazine (2n)

¹H NMR and ¹³C NMR of 2,5-bis(3-bromophenyl)pyrazine (20)

¹H NMR and ¹³C NMR of 4,4'-(pyrazine-2,5-diyl)dibenzonitrile (2p)

¹H NMR and ¹³C NMR of 2,5-bis(3-nitrophenyl)pyrazine (2q)

¹H NMR and ¹³C NMR of 2,5-dihexylpyrazine (2r)

¹H NMR and ¹³C NMR of 2,5-dicyclohexylpyrazine (2s)

¹H NMR and ¹³C NMR of 2,6-diphenylpyrazine (3a)