Supporting information

Synthesis of fluorinated catharanthine analogues and investigation of their biomimetic coupling with vindoline

Emerson Giovanelli, Lionel Moisan, Sébastien Comesse, Sébastien Leroux, Bernard Rousseau, Paul Hellier, Marc Nicolas, and Eric Doris

General	S2
Difluorocatharanthine synthesis – Isomerization strategy	S3
Isocatharanthine ($\Delta^{4,20}$ - <i>exo</i> -isocatharanthine, 13)	S3
Synthesis of N_a -methoxycarbonyl-19-oxoisocatharanthine (14)	
Protection of the indole: Na-methoxycarbonylisocatharanthine	
$N_{\rm a}$ -methoxycarbonyl-19-oxoisocatharanthine (14)	S7
$N_{\rm a}$ -methoxycarbonyl-3-hydro-4,20-dihydroxy-19-oxocatharanthine (15)	S9
$N_{\rm a}$ -methoxycarbonyl-3-hydro-4,20-dihydroxy-19-oxocatharanthine cyclic	
sulfate (17)	S11
Difluorocatharanthine synthesis – Allylic oxidation strategy	S13
Synthesis of N_a -methoxycarbonyl-19-oxoisocatharanthine (23)	S13
Protection of the indole: N_a -methoxycarbonylcatharanthine	S13
$N_{\rm a}$ -methoxycarbonyl-19-oxocatharanthine (23)	S15
Difluorocatharanthine synthesis – Products common to both strategies	S17
$N_{\rm a}$ -methoxycarbonyl-20-hydroxy-19-oxocatharanthine (19)	S17
$N_{\rm a}$ -methoxycarbonyl-19,20-dioxocatharanthine (20)	S20
$N_{\rm a}$ -methoxycarbonyl-20,20-difluoro-19-oxocatharanthine (21)	S22
20,20-difluoro-19-oxocatharanthine (22)	S24
20,20-difluorocatharanthine (10)	S26
Hydrogenated derivatives of difluorocatharanthine	S29
20,20-difluoro-3,4-dihydrocatharanthine (32)	S29
$(4E)$ -20-fluoro- $\Delta^{4,20}$ - <i>exo</i> -isocatharanthine (33)	S31
(4 <i>Z</i>)-20-fluoro- $\Delta^{4,20}$ - <i>exo</i> -isocatharanthine (34)	
Coupling products	S35
4',5'-anhydro-20'-oxo-3'-vindolin-15"-ylvinblastine (26)	S35
4',5'-anhydro-3'-hydroxy-20'-oxovinblastine (27)	S37
4',5'-anhydro-20'-oxovinblastine (35)	S39

General

Unless otherwise specified, chemicals were purchased from Sigma-Aldrich and used without further purification. Catharanthine was provided by "Les laboratoires Pierre Fabre" (Gaillac, France). Reactions were carried out under nitrogen using dry solvent, unless otherwise noted. THF and Et₂O were distilled from sodium/benzophenone, and CH₂Cl₂, from calcium hydride. Flash chromatography was carried out on Kieselgel 60 (230-240 mesh, Merck) and analytical TLC was performed on Merck precoated silica gel (60 F₂₅₄); visualization was carried out with UV and/or heating with a solution of 5-7 wt.% phosphomolybdic acid in ethanol. Melting points were determined using open-ended capillary tubes on a Büchi 535 apparatus and are uncorrected. Mass spectra were recorded on an ESI-TOF Mariner spectrometer. HRMS were recorded at the "Service de Spectrométrie de Masse de l'Institut des Substances Naturelles" in Gif-sur-Yvette (France). ¹H (CHCl₃/7.26 ppm), ¹³C (CDCl₃/77.0 ppm), and ¹⁹F (CFCl₃/0.0 ppm) NMR spectra were recorded on a Bruker Avance DPX 400 spectrometer at 400, 100 and 376 MHz respectively. Chemical shifts (δ) are expressed in ppm, coupling constants (J) in hertz, and the following abbreviations are used: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), ddd (doublet of doublet of doublets), dddd (doublet of doublet of doublet of doublets), dq (doublet of quartets), dqd (doublet of quartet of doublets), qd (quartet of doublets), qdd (quartet of doublet of doublets), m (multiplet), l (enlarged) and app. (apparent). IR spectra were recorded on a Perkin-Elmer System 2000 FT-IR. Optical rotations were determined using the sodium D line (589 nm) on a Perkin Elmer 341 polarimeter.

Difluorocatharanthine synthesis – Isomerization strategy

Isocatharanthine ((4*E*)- $\Delta^{4,20}$ -*exo*-isocatharanthine, 13)

Pd (10 wt.% on carbon, 2.61 g, 0.2 equiv.) in 60 mL of MeOH was stirred under a 1-bar atmosphere of H₂ for 1 h. The gas was evacuated and replaced by N₂. Catharanthine **6** (3.88 g, 11.53 mmol, 1 equiv.) in 75 mL of MeOH was added, the gas was evacuated, and a pressure of 0.3 bar of H₂ was set. The reaction was gently stirred under 0.3 bar of H₂ for 2 h (progress of the reaction was monitored by ¹H NMR). The mixture was then filtered on a pad of celite, washed thoroughly with CH₂Cl₂/MeOH 1/1 (v/v), and the filtrate was evaporated to dryness. The crude product was recrystallized from MeOH to give compound **13** (2.82 g, 73%) as colorless crystals.

 $\mathbf{R}_{f} 0.35 \text{ (CH}_{2}\text{Cl}_{2}/\text{MeOH 98/2)}.$ $\mathbf{mp} = 78-81 \text{ °C}.$

¹**H NMR** (**CDCl**₃): δ 7.58 (sl, 1H), 7.49 (d app., J = 7.5 Hz, 1H), 7.25 (d app., J = 8.0 Hz, 1H), 7.16 (ddd, J = 8.0 Hz, J = 7.0 Hz, J = 1.0 Hz, 1H), 7.10 (ddd, J = 7.5 Hz, J = 7.0 Hz, J = 1.0 Hz, 1H), 5.35 (qdd, J = 6.5 Hz, J = 3.0 Hz, J = 3.0 Hz, 1H), 4.00 (s, 1H), 3.70 (s, 3H), 3.56-3.46 (m, 1H), 3.39-3.25 (m, 2H), 3.12 (ddd, J = 9.5 Hz, J = 2.5 Hz, J = 2.5 Hz, 1H), 3.02 (d app., J = 9.5 Hz, 1H), 3.00-2.93 (m, 1H), 2.78 (ddd, J = 13.5 Hz, J = 2.5 Hz, J = 2.5 Hz, 1H), 2.35 (d app., J = 18.5 Hz, 1H), 2.19-2.08 (m, 1H), 1.82 (ddd, J = 13.5 Hz, J = 2.5 Hz, 1H), 1.56 (d, J = 6.5 Hz, 3H).

¹³C NMR (CDCl₃): δ 174.6, 137.2, 137.1, 135.2, 128.8, 121.9, 119.3, 118.5, 118.3, 110.5, 110.4, 63.6, 55.5, 53.0, 52.7, 50.2, 37.3, 29.7, 27.2, 21.3, 12.7.

IR (KBr): 3368, 2916, 2855, 1714, 1461, 1264, 740 cm⁻¹. MS (ESI+ TOF): 337 [M+H]⁺ (100), 359 [M+Na]⁺ (2). $[\alpha]_{D}^{20} = +35 (c 2.3, CHCl_3).$

Synthesis of N_a-methoxycarbonyl-19-oxoisocatharanthine (14)

Protection of the indole: N_a -methoxycarbonylisocatharanthine

KH (0.72 g of a 35 wt.% suspension in oil, 1.6 equiv.) was washed three times with hexane, and suspended in 10 mL of anhydrous THF. To this suspension ĊO₂Me was added dropwise, at 0 °C, a solution of isocatharanthine 13 (1.34 g, 3.98 mmol, 1 equiv.) in 20 mL of anhydrous THF. The mixture was stirred 30 min at 0 °C before methyl chloroformate (500 μ L, 1.6 equiv.) was added dropwise. The mixture was further stirred for 1 h at 0 °C and for 18 h at rt. The reaction was then quenched by addition of 10 mL of sat. K₂CO₃ and 10

mL of brine. The organic layer was separated and the aqueous layer was extracted with Et₂O (2×20 mL) and CH₂Cl₂ (2×20 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude product was purified by chromatography on silica (CH₂Cl₂/MeOH, 97/3) to give isocatharanthine methylcarbamate (1.30 g, 83%) as a white solid.

R_f 0.48 (CH₂Cl₂/MeOH 95/5). $mp = 62-64 \ ^{\circ}C.$

MeO₂Ć

¹**H NMR (CDCl₃)**: δ 8.12 (d app., J = 8.0 Hz, 1H), 7.48 (dd, J = 7.5 Hz, J = 1.0 Hz, 1H), 7.33 (ddd, J = 8.0 Hz, J = 7.5 Hz, J = 1.5 Hz, 1H), 7.29 (ddd, J = 7.5 Hz, J = 7.0 Hz, J = 1.0 Hz, 1H), 5.29 (qdd, J = 6.5 Hz, J = 3.0 Hz, J = 3.0 Hz, 1H), 4.11 (s, 1H), 3.93 (s, 3H), 3.72 (ddd, J = 12.0 Hz, J = 12.05.0 Hz, J = 3.0 Hz, 1H), 3.58 (s, 3H), 3.34 (ddd, J = 9.0 Hz, J = 3.0 Hz, J = 3.0 Hz, 1H), 3.25 (ddd, J = 16.0 Hz, J = 13.0 Hz, J = 5.0 Hz, 1H), 3.03 (ddd, J = 16.0 Hz, J = 4.0 Hz, J = 4.0 Hz, 1H), 2.90 (ddd, J = 14.0 Hz, J = 2.5 Hz, J = 2.5 Hz, 1H), 2.78 (ddd, J = 13.0 Hz, J = 12.0 Hz, J = 4.0 Hz, 1H),2.71 (d app., J = 9.0 Hz, 1H), 2.48 (d app., J = 16.5 Hz, 1H), 2.35 (d app., J = 16.5 Hz, 1H), 2.12-2.08 (m, 1H), 1.79 (ddd, J = 14.0 Hz, J = 3.0 Hz, J = 3.0 Hz, 1H), 1.60 (d, J = 6.5 Hz, 3H).

¹³C NMR (CDCl₃): δ 173.4, 151.8, 138.1, 137.4, 135.7, 129.5, 124.6, 122.7, 119.7, 118.2, 117.4, 115.4, 60.5, 57.9, 56.5, 54.0, 53.1, 52.0, 37.5, 29.7, 27.9, 21.8, 12.7.

IR (**KBr**): 2943, 2849, 1738, 1460, 1441, 1360, 1332, 747 cm⁻¹. **MS** (**ESI+ TOF**): 395 $[M+H]^+$ (100), 789 $[2M+H]^+$ (22). **HRMS** (**ESI**+ **TOF**): Calc. for $[C_{23}H_{27}N_2O_4]^+$: 395.1971, Found: 395.1956. $[\alpha]_{D}^{20} = +48 \ (c \ 1.0, \ CHCl_3).$

$N_{\rm a}$ -methoxycarbonyl-19-oxoisocatharanthine (14)

Isocatharanthine methylcarbamate (1.22 g, 3.09 mmol, 1 equiv.) dissolved in 30 mL of THF was added to 15 mL of 2 M aq. Na_2CO_3 at 0 °C. Iodine (3.62 g, 4.6 equiv.) in 25 mL THF was then added dropwise. The dark mixture was stirred at

rt for 18 h before 50 mL of sat. Na₂S₂O₃ were added. The pale yellow solution was further stirred for 30 min. The aqueous phase was extracted with CH₂Cl₂ (3×30 mL). The combined organic phases were dried over Na₂SO₄, filtered and concentrated under vacuum. The crude product was purified by chromatography on silica (CH₂Cl₂/MeOH, 97/3) to give **14** (1.25 g, 99%) as a white solid.

 $\mathbf{R}_{f} 0.52 \text{ (CH}_{2}\text{Cl}_{2}\text{/MeOH 95/5)}.$ $\mathbf{mp} = 94-96 \text{ }^{\circ}\text{C}.$

¹**H NMR** (**CDCl**₃): δ 8.03 (d app., *J* = 8.0 Hz, 1H), 7.49 (dd, *J* = 7.0 Hz, *J* = 1.0 Hz, 1H), 7.35-7.24 (m, 2H), 5.48 (qdd, *J* = 6.5 Hz, *J* = 3.0 Hz, *J* = 3.0 Hz, 1H), 4.68 (s, 1H), 4.33-4.22 (m, 1H), 3.96 (s, 3H), 3.62 (s, 3H), 3.38-3.20 (m, 3H), 2.99 (dd, *J* = 14.0 Hz, *J* = 2.0 Hz, 1H), 2.84-2.79 (m, 1H), 2.59-2.47 (m, 2H), 1.96 (d app., *J* = 14.0 Hz, 1H), 1.62 (d app., *J* = 6.5 Hz, 3H).

¹³**C NMR (CDCl₃)**: δ 174.8, 172.1, 151.7, 136.6, 135.2, 132.6, 129.3, 125.0, 122.9, 121.1, 118.2, 117.1, 115.7, 61.6, 58.8, 53.4, 52.3, 40.5, 39.0, 37.3, 28.6, 21.3, 13.2.

IR (**KBr**): 3461, 2951, 1742, 1674, 1460, 1361, 1329, 1254, 1208, 1143, 747 cm⁻¹. **MS** (**ESI+ TOF**): 409 [M+H]⁺ (100), 817 [2M+H]⁺ (34). $[\alpha]_{\mathbf{p}}^{20} = +255 (c \ 0.4, \text{CHCl}_3).$

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

$N_{\rm a}$ -methoxycarbonyl-3-hydro-4,20-dihydroxy-19-oxocatharanthine (15)

To a solution of bis-protected isocatharanthine **14** (1.24 g, 3.04 mmol, 1 equiv.) in 27 mL of acetone/water 8/1 (v/v) at 0 °C were added OsO₄ (1.9 mL of a 2.5 wt.% soln. in *t*-BuOH, 0.05 equiv.) and NMO (0.72 g, 2 equiv.) in portions. After 15 min at 0 °C, the mixture was further stirred for 18 h at rt. The reaction was stopped by adding sat. Na₂S₂O₃ (15 mL) and water (15 mL), and stirred for 20 min. The solution was extracted with CH₂Cl₂ (4×30 mL). The organic phases were combined, dried over Na₂SO₄, filtered and concentrated under vacuum. The crude product was then purified by chromatography on silica (CH₂Cl₂/MeOH, 97/3) to give diol **15** (1.18 g, 88%) as a white solid.

 $\mathbf{R}_{f} 0.5 \text{ (CH}_{2}\text{Cl}_{2}\text{/MeOH 9/1)}.$ $\mathbf{mp} = 102\text{-}104 \text{ }^{\circ}\text{C}.$

¹**H NMR (CDCl₃)**: δ 8.00 (d, J = 8.0 Hz, 1H), 7.48 (d, J = 7.5 Hz, 1H), 7.34-7.23 (m, 2H), 4.79 (s, 1H), 4.31-4.19 (m, 1H), 4.05 (q, J = 6.0 Hz, 1H), 3.95 (s, 3H), 3.67 (s, 3H), 3.34-3.15 (m, 3H), 2.91 (dd, J = 14.0 Hz, J = 1.5 Hz, 1H), 2.69-2.64 (m, 1H), 1.99 (d app., J = 13.5 Hz, 1H), 1.91 (d app., J = 14.0 Hz, 1H), 1.83 (d app., J = 14.0 Hz, 1H), 1.22 (d, J = 6.0 Hz, 3H).

¹³C NMR (CDCl₃): δ 174.0, 172.5, 151.7, 137.6, 135.2, 129.0, 125.0, 123.0, 118.2, 117.1, 115.6, 77.3, 69.9, 59.2, 55.9, 53.4, 52.8, 42.0, 38.5, 37.2, 36.7, 21.0, 17.6.

IR (KBr): 3402, 2954, 1741, 1657, 1458, 760 cm⁻¹. MS (ESI+ TOF): 443 [M+H]⁺ (11), 465 [M+Na]⁺ (100), 907 [2M+Na]⁺ (36). HRMS (ESI+ TOF): Calc. for $[C_{23}H_{26}N_2NaO_7]^+$: 465.1638, Found: 465.1631. $[\alpha]_D^{20} = +97 (c \ 0.5, CHCl_3).$

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

$N_{\rm a}$ -methoxycarbonyl-3-hydro-4,20-dihydroxy-19-oxocatharanthine cyclic sulfate (17)

To a solution of diol **15** (473 mg, 1.07 mmol, 1 equiv.) in 20 mL of CH_2Cl_2 at 0 °C was added NEt₃ (350 μ L, 2.3 equiv.), followed by dropwise addition of SOCl₂ (100 μ L, 1.3 equiv.). After 30 min at 0 °C, the reaction was stopped by

adding brine (20 mL) and water (20 mL). The organic phase was separated and the aqueous phase was extracted with CH_2Cl_2 (3×20 mL). The organic phases were combined, dried over Na_2SO_4 , filtered and concentrated under vacuum.

The crude residue was dissolved in 28 mL of CH₃CN/H₂O 15/13 v/v and the solution was stirred vigorously at rt. NaIO₄ (572 mg, 2.5 equiv.) and RuCl₃ (11 mg, 0.05 equiv.) were then added. After 90 min, Et₂O (30 mL) was added and stirring was continued for another 10 min. The organic phase was separated and the aqueous phase was extracted with Et₂O (3×20 mL). The combined organic phases were washed with water (50 mL), sat. NaHCO₃ (50 mL) and brine (50 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated under vacuum. The crude product was purified by chromatography on silica (CH₂Cl₂/MeOH, 98/2) to give cyclic sulfate **17** (338 mg, 63%) as a white solid.

 $\mathbf{R}_f 0.49 \text{ (CH}_2\text{Cl}_2/\text{MeOH 95/5)}.$ $\mathbf{mp} = 140\text{-}142 \text{ }^\circ\text{C}.$

¹**H** NMR (CDCl₃): δ 7.98 (d app., J = 8.0 Hz, 1H), 7.53 (d app., J = 7.5 Hz, 1H), 7.39-7.27 (m, 2H), 5.13 (s, 1H), 4.77 (q, J = 6.5 Hz, 1H), 4.19 (ddd, J = 13.0 Hz, J = 12.5 Hz, J = 6.5 Hz, 1H), 4.00 (s, 3H), 3.70 (s, 3H), 3.50 (dd, J = 12.5 Hz, J = 6.5 Hz, 1H), 3.34-3.16 (m, 2H), 2.99 (dd, J = 14.0 Hz, J = 2.0 Hz, 1H), 2.89-2.84 (m, 1H), 2.45 (d app., J = 15.5 Hz, 1H), 2.39 (d app., J = 15.5 Hz, 1H), 2.00 (d app., J = 14.0 Hz, 1H), 1.64 (d, J = 6.5 Hz, 3H).

¹³**C NMR (CDCl₃)**: δ 173.2, 171.5, 152.4, 136.1, 134.8, 129.3, 125.6, 123.5, 118.8, 117.5, 116.0, 94.7, 84.9, 56.0, 55.1, 54.0, 53.3, 40.9, 38.4, 37.7, 32.3, 21.2, 15.7.

IR (KBr): 1735, 1687, 1459, 1382, 1215, 904 cm⁻¹. MS (ESI+ TOF): 505 [M+H]⁺ (100), 1009 [2M+H]⁺ (13). $[\alpha]_{D}^{20} = +165 (c \ 0.3, CHCl_3).$

Difluorocatharanthine synthesis - Allylic oxidation strategy

Synthesis of N_a -methoxycarbonyl-19-oxocatharanthine (23)

• Protection of the indole: *N*_a-methoxycarbonylcatharanthine

KH (5.00 g of a 30 wt.% suspension in oil, 2.5 equiv.) was washed three times with hexane, and suspended in 30 mL of anhydrous THF. To this suspension was added dropwise at 0 °C a solution of catharanthine **6** (5.00 g, 14.8 mmol, 1 equiv.) in 50 mL of anhydrous THF. The mixture was stirred 30 min at 0 °C before methyl chloroformate (2.9 mL, 2.5 equiv.) was added dropwise. The medium was further stirred for 1 h at 0 °C and for 18 h at rt. The reaction was then quenched by addition of 30 mL of sat. K₂CO₃ and 30 mL of brine. The organic layer was separated and the aqueous layer was extracted with Et₂O (2×40 mL) and CH₂Cl₂ (2×40 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude was purified by chromatography on silica (CH₂Cl₂/MeOH, 97/3) to give catharanthine methylcarbamate (5.04 g, 86%) as a white solid.

R_{*f*} 0.47 (CH₂Cl₂/MeOH, 95/5).

¹**H NMR** (**CDCl**₃): δ 8.12 (d app., J = 8.0 Hz, 1H), 7.51 (d app., J = 7.0 Hz, 1H), 7.35-7.25 (m, 2H), 6.00 (d app., J = 5.5 Hz, 1H), 4.23 (s, 1H), 3.89 (s, 3H), 3.66 (ddd, J = 12.0 Hz, J = 5.0 Hz, J = 3.0 Hz, 1H), 3.55 (s, 3H), 3.25 (ddd, J = 16.0 Hz, J = 13.5 Hz, J = 5.0 Hz, 1H), 3.05 (ddd, J = 8.0 Hz, J = 3.0 Hz, J = 2.5 Hz, 1H), 3.01 (ddd, J = 16.0 Hz, J = 4.0 Hz, J = 3.0 Hz, 1H), 2.91 (ddd, J = 13.5 Hz, J = 12.0 Hz, J = 4.0 Hz, 1H), 2.91 (ddd, J = 13.5 Hz, J = 12.0 Hz, J = 4.0 Hz, 1H), 2.69 (ddd, J = 10.5 Hz, J = 3.0 Hz, J = 3.0 Hz, 1H), 2.68-2.62 (m, 1H), 2.49 (d app., J = 8.0 Hz, 1H), 2.26 (dqd, J = 17.0 Hz, J = 7.5 Hz, J = 2.0 Hz, 1H), 1.73 (d app., J = 10.5 Hz, 1H), 1.09 (dd, J = 7.5 Hz, J = 7.5 Hz, 3H).

¹³C NMR (CDCl₃): δ 172.9, 151.8, 147.3, 138.5, 135.9, 129.5, 124.6, 123.4, 122.8, 119.6, 118.2, 115.5, 58.6, 55.9, 55.8, 53.1, 52.7, 52.1, 38.3, 31.5, 26.7, 21.9, 10.4.

MS (ESI+ TOF): 395 $[M+H]^+$ (100).

$N_{\rm a}$ -methoxycarbonyl-19-oxocatharanthine (23)

Catharanthine methylcarbamate (2.68 g, 6.8 mmol, 1 equiv.) dissolved in 30 mL of THF was added to 30 mL of 2 M aq. Na₂CO₃ at 0 °C. Iodine (8.0 g, 4.6 equiv.) in 40 mL THF was then added dropwise. The dark mixture was stirred for 18 h at rt, and 50 mL of sat. Na₂S₂O₃ were added. The pale yellow solution was further stirred for 30 min. The aqueous phase was extracted with CH₂Cl₂ (3×50 mL). The combined organic phases were dried over Na₂SO₄, filtered and concentrated under vacuum. The crude product was purified by chromatography on silica (CH₂Cl₂/MeOH, 98/2) to give **23** (2.56 g, 92%) as a white solid.

 $\mathbf{R}_f 0.53 \text{ (CH}_2\text{Cl}_2/\text{MeOH}, 95/5).$ $\mathbf{mp} = 154\text{-}156 \text{ }^\circ\text{C}.$

¹**H NMR** (**CDCl**₃): δ 8.05 (d app., J = 8.0 Hz, 1H), 7.51 (dd, J = 7.0 Hz, J = 1.0 Hz, 1H), 7.34 (ddd, J = 8.0 Hz, J = 7.5 Hz, J = 7.5 Hz, J = 1.0 Hz, 1H), 7.29 (ddd, J = 7.5 Hz, J = 7.0 Hz, J = 1.5 Hz, 1H), 6.23 (dddd, J = 6.5 Hz, J = 2.0 Hz, J = 2.0 Hz, J = 1.5 Hz, 1H), 4.88 (d, J = 2.0 Hz, 1H), 4.18-4.08 (m, 1H), 3.95 (s, 3H), 3.63 (s, 3H), 3.44 (ddd, J = 6.5 Hz, J = 2.5 Hz, J = 2.5 Hz, 1H), 3.39-3.20 (m, 3H), 2.81 (dd, J = 13.0 Hz, J = 2.5 Hz, 1H), 2.18 (dqd, J = 17.0 Hz, J = 7.5 Hz, J = 2.0 Hz, 1H), 1.11 (dd, J = 7.5 Hz, J = 7.5 Hz, 3H).

¹³**C NMR (CDCl₃)**: δ 174.5, 171.9, 151.8, 144.1, 136.7, 135.3, 129.3, 125.6, 125.0, 123.0, 118.3, 116.8, 115.7, 59.0, 57.7, 53.4, 52.4, 44.1, 41.0, 37.8, 26.5, 21.1, 11.0.

IR (neat): 2996, 2959, 2881, 1739, 1681, 1461, 1443, 1256, 751 cm⁻¹. MS (ESI+ TOF): 431 [M+Na]⁺ (100), 839 [2M+Na]⁺ (14). HRMS (ESI+ TOF): Calc. for $[C_{23}H_{24}N_2NaO_5]^+$: 431.1583, Found: 431.1365. $[\alpha]_D^{20} = +141$ (c 1.9, CHCl₃).

Difluorocatharanthine synthesis – Products common to both strategies

$N_{\rm a}$ -methoxycarbonyl-20-hydroxy-19-oxocatharanthine (19)

• Isomerization strategy: β-elimination and hydrolysis of cyclic sulfate 17

To a solution of sulfate **17** (300 mg, 0.59 mmol, 1 equiv.) in 5 mL of THF was added dropwise a solution of nBu_4NF (1 M in THF, 1.2 mL, 2 equiv.), and the reaction was stirred for 18 h at rt.

10 mL of a 2 M solution of H_2SO_4 in THF and 1 mL of water were added. The reaction was stirred for another 48 h and sat. NaHCO₃ (40 mL) was added. The aqueous phase was extracted with AcOEt (4×10 mL); the organic phases were

combined, dried over Na₂SO₄, filtered and concentrated under vacuum. The crude product was purified by chromatography on silica (CH₂Cl₂/MeOH, 98/2 \rightarrow 95/5) to give allylic alcohol **19** (155 mg, 62%, 2 steps) as a white solid.

• Allylic oxidation strategy: allylic oxidation of bis-protected catharanthine 23

In a 30-mL-pressure tube, selenium dioxide (2.72 g, 5 equiv.) was added in one portion to a solution of bis-protected catharanthine **23** (2.0 g, 4.90 mmol, 1 equiv.) in 20 mL of 95% ethanol. The tube was sealed with a Teflon stopper and heated to 120 °C (temperature of the oil bath) under stirring. After 24 h, temperature was lowered to rt, and another portion of SeO₂ (1.64 g, 3 equiv.) was added and the medium was heated at 120 °C under pressure. This operation was repeated again after 24 h. After 72 h of reaction (overall), the starting material was fully consumed (progress of the reaction was monitored by ¹H NMR). The medium was cooled to rt, diluted with 90 mL of Et₂O, and washed with 100 mL of brine. The aqueous phase was extracted by Et₂O (3×50 mL). The combined organic layers were dried over Na₂SO₄, filtered, and evaporated under vacuum. The crude product was purified by chromatography on silica (CH₂Cl₂/MeOH, 98/2 \rightarrow 95/5) to give allylic alcohol **19** (1.26 g, 61%) as a white solid. **R**_f 0.32 (CH₂Cl₂/MeOH, 95/5).

mp = 188-190 °C.

¹**H NMR** (**CDCl**₃): δ 8.02 (d app., J = 8.0 Hz, 1H), 7.51 (dd, J = 7.0 Hz, J = 1.0 Hz, 1H), 7.34 (ddd, J = 8.0 Hz, J = 7.5 Hz, J = 1.0 Hz, 1H), 7.29 (ddd, J = 7.5 Hz, J = 7.0 Hz, J = 1.0 Hz, 1H), 6.42 (dd, J = 6.5 Hz, J = 2.0 Hz, 1H), 5.26 (d, J = 2.0 Hz, 1H), 4.39 (qd, J = 6.5 Hz, J = 3.5 Hz, 1H), 4.17-4.06 (m, 1H), 3.96 (s, 3H), 3.58 (s, 3H), 3.45 (ddd, J = 6.5 Hz, J = 3.0 Hz, J = 2.5 Hz, 1H), 3.41-3.20 (m, 3H), 2.80 (dd, J = 13.0 Hz, J = 2.5 Hz, 1H), 2.04 (dd, J = 13.0 Hz, J = 3.0 Hz, 1H), 1.88 (d, J = 3.5 Hz, 1H), 1.34 (d, J = 6.5 Hz, 3H).

¹³C NMR (CDCl₃): δ 174.2, 173.8, 152.1, 145.3, 136.6, 135.3, 129.4, 128.6, 125.2, 123.2, 118.4, 116.7, 115.8, 67.1, 58.0, 54.4, 53.6, 52.9, 44.1, 40.7, 38.4, 21.4, 21.2.

IR (**KBr**): 3414, 2944, 1743, 1653, 1458, 1437, 1327, 1242, 1208, 1069, 754 cm⁻¹. **MS** (**ESI+ TOF**): 425 [M+H]⁺ (6), 447 [M+Na]⁺ (100), 871 [2M+Na]⁺ (64). **HRMS** (**ESI+ TOF**): Calc. for $[C_{23}H_{24}N_2NaO_6]^+$: 447.1532, Found 447.1532. $[\boldsymbol{\alpha}]_{\mathbf{p}}^{20} = + 181 (c \ 0.7, \text{CHCl}_3).$

$N_{\rm a}$ -methoxycarbonyl-19,20-dioxocatharanthine (20)

At 0 °C, to a solution of protected catharanthine allylic alcohol **19** (500 mg, 1.18 mmol, 1 equiv.) in 30 mL CH₂Cl₂ was added activated MnO₂ (85 wt.%, 7.0 g, 58 equiv.) in one portion. The black suspension was stirred at 0 °C for 3 h. The mixture was filtered on a pad of celite, washed thoroughly with CH₂Cl₂, and the filtrate was concentrated under vacuum to give enone **20** (425 mg, 85%) as a white solid.

 $\mathbf{R}_{f} 0.36 \text{ (CH}_{2}\text{Cl}_{2}/\text{MeOH}, 95/5).$ $\mathbf{mp} = 108\text{-}110 \text{ }^{\circ}\text{C}.$

¹**H NMR** (**CDCl**₃): δ 8.04 (d app., J = 8.0 Hz, 1H), 7.52 (dd, J = 7.5 Hz, J = 1.0 Hz, 1H), 7.47 (dd, J = 6.5 Hz, J = 1.5 Hz, 1H), 7.34 (ddd, J = 8.0 Hz, J = 7.5 Hz, J = 1.0 Hz, 1H), 7.30 (ddd, J = 7.5 Hz, J = 7.5 Hz, J = 1.0 Hz, 1H), 5.82 (d, J = 1.5 Hz, 1H), 4.12 (ddd, J = 13.5 Hz, J = 12.5 Hz, J = 6.0 Hz, 1H), 3.93 (s, 3H), 3.68 (ddd, J = 6.5 Hz, J = 3.0 Hz, J = 2.5 Hz, 1H), 3.52 (s, 3H), 3.44 (ddd, J = 15.5 Hz, J = 13.5 Hz, J = 7.0 Hz, 1H), 3.31-3.20 (m, 2H), 2.83 (dd, J = 13.0 Hz, J = 2.5 Hz, 1H), 2.37 (s, 3H), 2.09 (dd, J = 13.0 Hz, J = 3.0 Hz, 1H).

¹³**C NMR (CDCl₃)**: δ 193.3, 172.2, 171.7, 151.9, 143.6, 142.3, 135.8, 135.3, 129.2, 125.2, 123.2, 118.4, 117.0, 115.8, 57.3, 53.5, 52.6, 52.5, 45.5, 41.3, 37.4, 24.6, 20.9.

IR (KBr): 2953, 1740, 1668, 1459, 1442, 1252, 751 cm⁻¹. MS (ESI+ TOF): 423 [M+H]⁺ (10), 445 [M+Na]⁺ (100), 867 [2M+Na]⁺ (32). HRMS (ESI+ TOF): Calc. for $[C_{23}H_{22}N_2NaO_6]^+$: 445.1376, Found 445.1357. $[\alpha]_D^{20} = +183 (c \ 1.8, CHCl_3).$

$N_{\rm a}$ -methoxycarbonyl-20,20-difluoro-19-oxocatharanthine (21)

Enone **20** (302 mg, 0.71 mmol, 1 equiv.) was dissolved in neat DeoxofluorTM (3.0 mL, 22.9 equiv.) before three drops of EtOH were added. The mixture was stirred for 24 h at 70 °C. DeoxofluorTM (0.6 mL, 4.6 equiv.) and two drops of ethanol were again added and the reaction was further stirred for 48 h at 70 °C (progress of the reaction was monitored by ¹H NMR). The medium was diluted with 200 mL of CH₂Cl₂ and 100 mL of sat. K₂CO₃ were added. The mixture was stirred for 15 min at rt and the aqueous layer was extracted with CH₂Cl₂ (3×50 mL). The organic phases were combined, dried over Na₂SO₄, filtered and concentrated under vacuum. The crude product was purified by chromatography on silica (CH₂Cl₂/MeOH, 98/2 \rightarrow *c*-Hex/AcOEt, 6/4) to give *gem*-difluorinated **21** (152 mg, 48%) as a white solid.

R_{*f*} 0.33 (*c*-Hex/AcOEt, 4/6).

¹**H NMR** (**CDCl**₃): δ 8.05 (d app., J = 8.0 Hz, 1H), 7.52 (d app., J = 7.5 Hz, 1H), 7.34 (ddd, J = 8.0 Hz, J = 7.5 Hz, J = 1.0 Hz, 1H), 7.29 (ddd, J = 7.5 Hz, J = 7.5 Hz, J = 1.0 Hz, 1H), 6.86-6.80 (m, 1H), 5.38 (d, J = 2.0 Hz, 1H), 4.16-4.06 (m, 1H), 3.95 (s, 3H), 3.60 (s, 3H), 3.62-3.56 (m, 1H), 3.45-3.24 (m, 3H), 2.90 (dd, J = 13.0 Hz, J = 2.5 Hz, 1H), 2.06 (dd, J = 13.0 Hz, J = 2.5 Hz, 1H), 1.83 (dd, J = 18.0 Hz, J = 18.0 Hz, 3H).

¹³**C** NMR (CDCl₃): δ 172.8, 171.3, 151.8, 138.8 (t, *J* = 29 Hz), 136.1, 135.3, 133.7 (t, *J* = 9 Hz), 129.2, 125.2, 123.1, 119.2 (t, *J* = 231 Hz), 118.4, 116.9, 115.8, 57.9, 53.7, 53.4, 52.6, 44.3, 41.0, 36.9, 21.7 (t, *J* = 28 Hz), 21.1.

IR (KBr): 2955, 1743, 1685, 1665, 1460, 1442, 1327, 1256, 751 cm⁻¹. MS (ESI+ TOF): 445 $[M+H]^+$ (100). HRMS (ESI+ TOF): Calc. for $[C_{23}H_{22}F_2N_2NaO_5]^+$: 467.1394, Found 467,1385.

20,20-difluoro-19-oxocatharanthine (22)

To a solution of bis-protected difluorocatharanthine **21** (130 mg, 0.29 mmol, 1 equiv) in 100 mL of MeOH was added K_2CO_3 (2 g, 50 equiv.). The suspension was stirred at rt for 18 h, before 50 mL of H₂O were added. The aqueous phase

was extracted with CH_2Cl_2 (4×50 mL); the combined organic layers were dried over Na_2SO_4 , filtered and concentrated under reduced pressure. The crude residue was precipitated in *c*-Hex/AcOEt (8/2) to afford carbamate-free difluorocatharanthine analogue **22** (101 mg, 90%) as a white solid.

R_f 0.62 (CH₂Cl₂/MeOH, 95/5).

¹**H NMR** (**CDCl**₃): δ 7.91 (s, 1H), 7.52 (d app., J = 7.5 Hz, 1H), 7.26 (d app., J = 7.5 Hz, 1H), 7.21-7.10 (m, 2H), 6.86-6.79 (m, 1H), 5.55 (d, J = 1.5 Hz, 1H), 4.30-4.19 (m, 1H), 3.65 (s, 3H), 3.62-3.55 (m, 1H), 3.42-3.22 (m, 3H), 2.82 (dd, J = 13.0 Hz, J = 2.0 Hz, 1H), 2.28 (dd, J = 13.0 Hz, J = 2.5 Hz, 1H), 1.83 (dd, J = 18.0 Hz, J = 18.0 Hz, 3H).

¹³**C NMR** (**CDCl**₃): δ 172.8, 171.6, 139.5 (t, *J* = 30 Hz), 135.8, 135.2 (t, *J* = 9 Hz), 133.8, 127.7, 122.4, 119.7, 119.1 (t, *J* = 233 Hz), 118.4, 110.6, 108.7, 56.3, 53.6, 53.0, 44.0, 42.8, 35.5, 22.4 (t, *J* = 28 Hz), 20.7.

MS (ESI+ TOF): 387 $[M+H]^+$ (100). $[\alpha]_{\mathbf{p}}^{20} = +155 (c \ 0.4, \text{CHCl}_3).$

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

20,20-difluorocatharanthine (10)

To a solution of **22** (70 mg, 0.18 mmol, 1 equiv.) in 40 mL of dry THF was added NaBH₄ (180 mg, 26 equiv.) in one portion. The suspension was cooled to 0 °C before BF₃•OEt₂ (0.95 mL, 42 equiv.) was added dropwise. The yellow

mixture was stirred at rt for 7 h. The solvent was then evaporated under vacuum and MeOH (25 mL), water (5 mL) and 10 wt.% HCl (5 mL) were added. The resulting mixture was stirred for 15 h at rt. MeOH was evaporated and the residue was taken up in 75 mL of CH₂Cl₂. The solution was neutralized with 75 mL of sat. NaHCO₃. The aqueous layer was extracted with CH₂Cl₂ (3×50 mL); the combined organic phases were dried over Na₂SO₄, filtered and concentrated under vacuum. The crude residue was purified by chromatography on silica (CH₂Cl₂/MeOH, 98/2) to give difluorocatharanthine **10** (39 mg, 58%) as a white solid.

 $\mathbf{R}_{f} 0.54 \text{ (CH}_{2}\text{Cl}_{2}/\text{MeOH}, 95/5).$ $\mathbf{mp} = 70-72 \text{ °C}.$

¹**H NMR** (**CDCl**₃): δ 7.68 (s, 1H), 7.52 (d app., J = 8.0 Hz, 1H), 7.26 (d app., J = 8.0 Hz, 1H), 7.18 (ddd, J = 8.0 Hz, J = 7.0 Hz, J = 1.0 Hz, I = 1.0 Hz, 1H), 7.12 (ddd, J = 8.0 Hz, J = 7.0 Hz, J = 1.0 Hz, 1H), 6.63-6.58 (m, 1H), 4.63 (d, J = 1.0 Hz, 1H), 3.70 (s, 3H), 3.61 (ddd, J = 14.0 Hz, J = 10.5 Hz, J = 4.5 Hz, 1H), 3.41 (ddd, J = 14.0 Hz, J = 5.0 Hz, J = 4.5 Hz, 1H), 3.30 (ddd, J = 16.5 Hz, J = 10.5 Hz, J = 5.0 Hz, 1H), 3.00 (ddd, J = 16.5 Hz, J = 4.5 Hz, 1H), 2.90-2.83 (m, 3H), 2.79 (ddd, J = 13.0 Hz, J = 3.0 Hz, J = 2.5 Hz, 1H), 1.82 (dd, J = 18.0 Hz, J = 18.0 Hz, 3H), 1.79 (d app., J = 13.0 Hz, 1H).

¹³**C NMR** (**CDCl**₃): δ 173.5, 143.3 (t, *J* = 28 Hz), 136.2, 135.3, 132.1 (t, *J* = 9 Hz), 128.8, 122.1, 119.8 (dd, *J* = 232 Hz), 119.5, 118.4, 110.6, 110.4, 57.1, 55.3, 52.8, 52.4, 47.1, 37.0, 30.8, 22.6 (t, *J* = 28 Hz), 21.6.

¹⁹**F NMR (H-decoupled, CDCl₃)**: δ – 88.3 (d, J = 262 Hz, 1F), – 90.7 (d, J = 262 Hz, 1F).

IR (KBr): 3373, 2849, 1714, 1461, 1275, 1172, 743 cm⁻¹. MS (ESI+ TOF): 353 [M-HF+H]⁺ (4), 373 [M+H]⁺ (100). HRMS (ESI+ TOF): Calc. for $[C_{21}H_{23}F_2N_2O_2]^+$: 373.1728, Found 373.1728. $[\alpha]_D^{20} = +43$ (c 0.4, CHCl₃).

 $^{19}\mathrm{F}$ NMR spectrum of difluorocatharanthine 10 (inset: zoom in the – 87 / – 92 ppm region, H-coupled)

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 ppm

Hydrogenated derivatives of difluorocatharanthine

20,20-difluoro-3,4-dihydrocatharanthine (32)

 PtO_2 (160 mg, 1.3 equiv.) was suspended in 4 mL of MeOH and stirred for 1 h under hydrogen gas. To this suspension was added a solution of 20,20-difluorocatharanthine **10** (200 mg, 0.537 mmol, 1 equiv.) in 4 mL of MeOH and

a few drops of CH_2Cl_2 . The mixture was stirred under 1 bar of hydrogen for 24 h. The catalyst was removed by filtration through a pad of celite and the filtrate was concentrated under reduced pressure. The residue was purified by chromatography on silica (*c*-Hex/AcOEt, 4/1) to give hydrogenated difluorocatharanthine **32** (16 mg, 8%), and isomerized flurocatharanthines **33** (81 mg, 43%) and **34** (46 mg, 24%) as white solids.

R_f 0.62 (CH₂Cl₂/MeOH, 95/5).

¹**H NMR** (**CDCl**₃): δ 8.00 (sl, 1H), 7.49 (dd, J = 7.5 Hz, J = 1.0 Hz, 1H), 7.27 (dd, J = 7.5 Hz, J = 1.0 Hz, 1H), 7.16 (ddd, J = 7.5 Hz, J = 7.5 Hz, J = 1.0 Hz, 1H), 7.10 (ddd, J = 7.5 Hz, J = 7.5 Hz, J = 1.0 Hz, 1H), 4.18 (d, J = 2.0 Hz, 1H), 3.63 (s, 3H), 3.61-3.54 (m, 1H), 3.13-2.98 (m, 4H), 2.81 (d, J = 9.0 Hz, 1H), 2.80-2.67 (m, 1H), 2.55 (d, J = 13.5 Hz, 1H), 2.13 (ddd, J = 13.0 Hz, J = 2.5 Hz, J = 2.5 Hz, 1H), 2.02 (s app., 1H), 1.93 (t app., J = 12.5 Hz, 1H), 1.67 (dd, J = 18.5 Hz, J = 18.5 Hz, 3H), 1.67-1.61 (m, 1H).

¹³**C NMR (CDCl₃)**: δ 174.2, 136.3, 135.3, 128.1, 123.7 (t, *J* = 240 Hz), 121.9, 119.2, 118.3, 110.4, 110.0, 53.0, 52.5, 52.1, 51.9, 50.9, 48.7 (t, *J* = 24 Hz), 37.5, 27.0, 26.1, 22.7 (t, *J* = 28 Hz), 21.5.

IR (KBr): 3371, 2949, 2855, 1717, 1462, 1434, 1265, 1123, 908, 744, 730 cm⁻¹. MS (ESI+ TOF): 375 $[M+H]^+$ (100). HRMS (ESI+ TOF): Calc. for $[C_{21}H_{25}F_2N_2O_2]^+$: 375.1884, Found: 375.1886.

(4*E*)-20-fluoro- $\Delta^{4,20}$ -*exo*-isocatharanthine (33)

R_f 0.34 (CH₂Cl₂/MeOH, 95/5).

¹**H NMR** (**CDCl**₃): δ 7.95 (sl, 1H), 7.56 (d app., J = 8.0 Hz, 1H), 7.30 (d app., J = 8.0 Hz, 1H), 7.22 (ddd, J = 8.0 Hz, J = 8.0 Hz, J = 1.0 Hz, 1H), 7.17 (ddd, J = 8.0 Hz, J = 8.0 Hz, J = 1.0 Hz, 1H), 4.26 (d, J = 3.0 Hz, 1H), 3.79 (s, 3H), 3.61-3.54 (m, 1H), 3.42-3.30 (m, 2H), 3.13 (ddd, J = 9.5 Hz, J = 3.0 Hz, 1H), 3.07-2.99 (m, 2H), 2.82 (ddd, J = 13.5 Hz, J = 2.5 Hz, J = 2.5 Hz, 1H), 2.47-2.44 (m, 2H), 2.18-2.14 (m, 1H), 2.00 (ddd, J = 18.0 Hz, J = 2.0 Hz, J = 2.0 Hz, 3H), 1.91 (d app., J = 13.5 Hz, 1H).

¹³**C NMR (CDCl₃)**: δ 174.2, 151.2 (d, *J* = 245 Hz), 136.7, 135.3, 128.8, 122.2, 119.5, 118.3, 113.8 (d, *J* = 11 Hz), 110.5 (2C), 57.0 (d, *J* = 11 Hz), 55.0 (d, *J* = 4 Hz), 53.2, 52.6, 50.1, 37.3, 27.2 (d, *J* = 7 Hz), 26.6, 21.4, 14.5 (d, *J* = 30 Hz).

IR (KBr): 3376, 2923, 2845, 1722, 1460, 1434, 1246, 1170, 1155, 1085, 742 cm⁻¹. **MS (ESI+ TOF)**: 355 [M+H]⁺ (100).

(4Z)-20-fluoro- $\Delta^{4,20}$ -exo-isocatharanthine (34)

R_{*f*} 0.22 (CH₂Cl₂/MeOH, 95/5).

¹**H NMR** (**CDCl**₃): δ 7.85 (sl, 1H), 7.53 (d app., J = 8.0 Hz, 1H), 7.28 (d app., J = 8.0 Hz, 1H), 7.20 (ddd, J = 8.0 Hz, J = 8.0 Hz, J = 1.0 Hz, 1H), 7.14 (ddd, J = 8.0 Hz, J = 8.0 Hz, J = 1.0 Hz, 1H), 4.73 (s, 1H), 3.74 (s, 3H), 3.62-3.54 (m, 1H), 3.38-3.26 (m, 2H), 3.13 (ddd, J = 9.5 Hz, J = 2.5 Hz, J = 2.5 Hz, 1H), 3.08-2.99 (m, 2H), 2.82 (dd, J = 13.5 Hz, J = 2.5 Hz, J = 2.5 Hz, 1H), 2.35 (d app., J = 15.0 Hz, 1H), 2.20 (d app., J = 15.0 Hz, 1H), 2.20-2.16 (m, 1H), 1.87 (d app., J = 13.0 Hz, 1H), 1.86 (d app., J = 17.0 Hz, 3H).

¹³**C NMR (CDCl₃)**: δ 174.3, 149.5 (d, *J* = 246 Hz), 136.9, 135.3, 128.8, 122.0, 119.4, 118.3, 112.2 (d, *J* = 16 Hz), 110.4 (2C), 54.7 (d, *J* = 2 Hz), 54.4 (d, *J* = 6 Hz), 53.0, 52.6, 50.1, 37.0, 28.2 (d, *J* = 4 Hz), 27.0, 21.4, 14.3 (d, *J* = 31 Hz).

IR (KBr): 3369, 2921, 2844, 1717, 1461, 1434, 1258, 1155, 1087, 742 cm⁻¹. MS (ESI+ TOF): 355 $[M+H]^+$ (100). HRMS (ESI+ TOF): Calc. for $[C_{21}H_{24}FN_2O_2]^+$: 355.1822, Found: 355.1828.

Coupling products

4',5'-anhydro-20'-oxo-3'-vindolin-15"-ylvinblastine (26)

20,20-difluorocatharanthine **10** (100 mg, 0.269 mmol, 1 equiv.) was added in one portion to a mixture of 10 mL of glycine buffer (0.75 g of glycine and 0.585 g of NaCl in 100 mL of water) and 20 mL of 0.1 M aq. HCl. After dissolution of **10**, vindoline **7** (124 mg, 1 equiv.) and FeCl₃ (220 mg, 5 equiv.) were added in one portion. The reaction mixture was stirred for 30 min at rt, before 2

mL of 28 wt.% aq. NH₃ were added dropwise. After 10 min at rt, 20 mL of CH_2Cl_2 and 20 mL of sat. Rochelle's salt were added and the mixture was stirred vigorously for 1 h. The aqueous layer was extracted with CH_2Cl_2 (3×30 mL) and the combined organic extracts were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by chromatography on silica ($CH_2Cl_2/MeOH$, 98/2) to give trimer **26** (96 mg, 57%) as a pale yellow solid and dimer **27** (35 mg, 16%) as an off-white solid.

R_{*f*} 0.43 (CH₂Cl₂/MeOH, 9/1).

¹**H NMR** (**CDCl**₃): δ 9.73-9.55 (m, 2H), 8.02 (sl, 1H), 7.81 (sl, 1H), 7.51 (d, J = 7.5 Hz, 1H), 7.22-7.11 (m, 3H), 6.58 (s, 1H), 6.38 (s, 1H), 6.24 (s, 1H), 5.88 (s, 1H), 5.87-5.80 (m, 2H), 5.51 (s, 1H), 5.30 (d, J = 10.5 Hz, 1H), 5.23 (s, 1H), 5.19 (d, J = 10.5 Hz, 1H), 3.92-3.55 (m, 14H), 3.50-3.18 (m, 13H), 2.87-2.48 (m, 13H), 2.23-1.96 (m, 14H), 1.87 (dq, J = 14.5 Hz, J = 7.5 Hz, 1H), 1.49-1.26 (m, 4H), 0.85 (dd, J = 7.5 Hz, J = 7.5 Hz, 3H), 0.76 (dq, J = 14.5 Hz, J = 7.5 Hz, 1H), 0.31 (dd, J = 7.5 Hz, 3H).

¹³C NMR (CDCl₃): δ 194.8, 171.8, 171.6, 171.0, 170.3, 158.1, 157.2, 152.8, 151.7, 147.4, 141.4, 138.2, 134.6, 132.8, 130.1, 129.7, 128.7, 125.4, 124.5, 124.0, 122.6, 122.4, 119.3, 117.8, 114.2, 110.9, 94.5, 92.7, 83.4 (2C), 79.6, 79.3, 76.3, 76.2, 66.0, 65.9, 56.1, 55.6, 55.3, 53.1, 53.0, 52.3, 52.2, 52.1, 51.1, 50.6 (2C), 50.4, 44.8, 44.4, 44.0, 42.7, 42.6, 38.9, 37.6, 35.8, 34.7, 33.5, 30.9, 29.8, 28.2, 24.8, 21.1, 21.0, 8.6, 7.9.

MS (**ESI**+ **TOF**): 631 $[M+2H]^{2+}$ (12), 1261 $[M+H]^{+}$ (100). **HRMS** (**ESI**+ **TOF**): Calc. for $[C_{71}H_{84}N_6NaO_{15}]^{+}$: 1283.5892, Found 1283.5918.

4',5'-anhydro-3'-hydroxy-20'-oxovinblastine (27)

R_{*f*} 0.40 (CH₂Cl₂/MeOH, 9/1).

¹**H NMR** (**CDCl**₃): δ 9.71 (sl, 1H), 8.06 (sl, 1H), 7.51 (d, J = 7.5 Hz, 1H), 7.45 (s, 1H), 7.24-7.11 (m, 3H), 6.74 (s, 1H), 6.12 (s, 1H), 5.88 (dd, J = 10.5 Hz, J = 4.0 Hz, 1H), 5.52 (s, 1H), 5.32 (d, J = 10.5 Hz, 1H), 4.18 (s, 1H), 3.78 (s, 3H), 3.75 (s, 1H), 3.74 (s, 3H), 3.75-3.71 (m, 1H), 3.54 (s, 3H), 3.58-3.50 (m, 2H), 3.45-3.28 (m, 3H), 3.24-3.18 (m, 1H), 3.14 (d, J = 12.5 Hz, 1H), 2.75 (s, 3H), 2.81-2.71 (m, 1H), 2.67 (s, 1H), 2.53-2.37 (m, 2H), 2.36-2.25 (m, 1H), 2.21 (s, 3H), 2.11 (s, 3H), 1.97-1.82 (m, 3H), 1.40 (dq, J = 14.5 Hz, J = 7.0 Hz, 1H), 1.31 (d, J = 12.5 Hz, 1H), 0.87 (dd, J = 7.0 Hz, J = 7.0 Hz, 3H).

¹³C NMR (CDCl₃): δ 194.6, 173.6, 171.7, 171.0, 158.0, 153.3, 147.5, 134.6, 132.5, 129.9, 128.7, 124.4, 123.3, 123.2, 122.7, 119.8, 119.5, 117.8, 113.9, 112.8, 110.8, 94.3, 83.3, 79.5, 76.3, 66.4, 66.2, 55.9, 55.8, 55.1, 53.2, 52.4, 52.3, 50.9, 50.5, 44.5 (2C), 42.7, 38.0, 34.2, 31.6, 30.8, 28.5, 24.0, 21.1, 8.6.

MS (**ESI**+ **TOF**): 823 $[M+H]^+$ (100). **HRMS** (**ESI**+ **TOF**): Calc. for $[C_{46}H_{55}N_4O_{10}]^+$: 823.3918, Found: 823.3920.

4',5'-anhydro-20'-oxovinblastine (35)

20,20-difluoro-3,4-dihydrocatharanthine **32** (4.0 mg, 10.7 μ mol, 1 equiv.) was added in one portion to a mixture of 0.5 mL of a glycine buffer (0.75 g of glycine and 0.585 g of NaCl in 100 mL of water) and 1 mL of 0.1 M aq. HCl. After complete solubilization, vindoline **7** (5 mg, 1 equiv.) and FeCl₃ (10 mg, 5.6 equiv.) were added in one portion

successively. The reaction mixture was stirred for 30 min at rt, before 200 μ L of 28 wt.% aq. NH₃ were added dropwise. After 10 min at rt, 2 mL of CH₂Cl₂ and 2 mL of sat. Rochelle's salt were added, and the mixture was stirred vigorously for 1 h. The aqueous layer was extracted with CH₂Cl₂ (3×3 mL) and the combined organic extracts were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by chromatography on silica (CH₂Cl₂/MeOH, 95/5) to give dimer **35** (5 mg, 58%) as an off-white solid.

Alternative protocol

Preceding protocol was applied to a mixture of fluorinated isomers **33** and **34** (50 mg, 0.141 mmol, 1 equiv.) in a glycine buffer (5 mL) and 0.1 M aq. HCl (10 mL). Vindoline (64 mg, 1 equiv.) and FeCl₃ (115 mg, 5 equiv.) were added and the mixture was stirred for 1 h. The reaction was quenched by addition of 1.5 mL of aq. 28 wt.% NH₃. After 10 min at rt, 20 mL of CH₂Cl₂ and 20 mL of sat. Rochelle's salt were added, and the mixture was stirred vigorously for 1 h. The aqueous layer was extracted with CH₂Cl₂ (3×30 mL) and the combined organic extracts were dried over Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the residue by chromatography on silica afforded dimer **35** (88 mg, 77%) as an off-white solid.

R_f 0.45 (CH₂Cl₂/MeOH, 9/1).

¹**H NMR** (**CDCl**₃): δ 9.72 (sl, 1H), 9.08 (sl, 1H), 7.50 (d, J = 7.5 Hz, 1H), 7.38 (s, 1H), 7.20-7.08 (m, 3H), 6.73 (s, 1H), 6.14 (s, 1H), 5.87 (dd, J = 10.5 Hz, J = 4.5 Hz, 1H), 5.50 (s, 1H), 5.32 (d, J = 10.5 Hz, 1H), 3.81 (s, 3H), 3.78 (m, 4H), 3.70-3.61 (m, 1H), 3.55 (s, 3H), 3.55-3.49 (m, 1H), 3.48-3.15 (m, 5H), 2.94-2.74 (m, 3H), 2.74 (s, 3H), 2.68 (s, 1H), 2.49-2.40 (m, 1H), 2.32-2.23 (m, 1H), 2.18 (s, 3H), 2.19-2.13 (m, 1H), 2.11 (s, 3H), 2.11-2.04 (m, 2H), 1.88-1.79 (m, 2H), 1.38 (dq, J = 14.5 Hz, J = 7.5 Hz, 1H), 1.34-1.28 (m, 1H), 0.85 (dd, J = 7.5 Hz, J = 7.5 Hz, 3H).

¹³**C NMR (CDCl₃)**: δ 193.7, 173.7, 171.5, 170.7, 157.9, 153.0, 146.8, 134.5, 132.0, 129.8, 128.7, 124.3, 122.9, 122.8, 122.4, 120.5, 119.2, 117.8, 114.2, 110.6, 108.9, 94.1, 83.2, 79.4, 76.1, 66.0, 55.7, 55.5, 55.2, 53.1, 52.2, 52.1, 50.5, 50.3, 48.3, 44.5, 42.5, 38.0, 33.3, 30.6, 28.7, 28.2, 26.5, 23.9, 20.9, 8.4.

MS (**ESI**+ **TOF**): 807 $[M+H]^+$ (100). **HRMS** (**ESI**+ **TOF**): Calc. for $[C_{46}H_{55}N_4O_9]^+$: 807.3969, Found: 807.3950.

