Supporting Information

DDQ-Promoted direct Transformation of Benzyl Hydrocarbons to Amides under Transition Metal-Free Conditions

Jun Qiu and Ronghua Zhang* Department of Chemistry, Tongji University, Shanghai 200092, P. R. China E-mail: rhzhang@tongji.edu.cn

1. General Methods	
2. Experimental Procedure	S-2
3. Characterization of the Compounds	§-3
4. References	S-7
5. NMR Charts	S-8

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013 I. General Methods

Unless stated otherwise, all reagents were purchased commercially without further purification. All reagents were weighed and handled in air at room temperature. All glassware was oven or flame dried immediately prior to use.

¹H NMR and ¹³C NMR were were obtained at 400 MHz and recorded relative to the tetramethylsilane signal (0 ppm) or residual protio-solvent. Chemical shifts are expressed in parts per million values (δ , ppm). ¹H NMR spectra were calibrated with DMSO- d_{δ} (δ = 2.50 ppm) and CDCl₃ (δ = 7.26 ppm). ¹³C-NMR spectra were obtained at 100 MHz and were calibrated with DMSO- d_{δ} (δ = 39.50 ppm) and CDCl₃ (δ = 77.00 ppm). Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s= singlet, d= doublet, t= triplet, q= quartet, m= multiplet or unresolved, br= broad singlet, coupling constant(s) in Hz, integration). Mass spectra were recorded using a PE SCLEX QSTAR spectrometer. Purification was done by column chromatography on silica gel (200–300 mesh) with petroleum ether and ethyl acetate as the eluent to give the pure product.

2. General procedure

2.1 Synthesis of amides from 1, 3-diarylpropene and diarylmethane:

Condition A: An oven-dried Schlenk tube was charge with **1a-o** (0.5 mmol), NH₂-OH.HCl (0.108g, 1.5 mmol), DDQ (0.34 g, 1.5 mmol), PPA (0.052g, 0.15 mmol), HCOOH (1.5 mL) and CH₃CN (1.5 mL). The reaction mixture was stirred at 80 °C for 12 h monitored by TLC. The mixture was allowed to cool to room temperature and was quenched with H₂O (10 mL).The mixture was extracted with DCM ($3 \times 10 \text{ mL}$), and the organic layer was washed with brine (10mL). The combined organic layers were dried with Na₂SO₄, concentrated under reduced pressure, and dried under high vacuum. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, 15:1 to 8:1) to obtain the desired products **2a-o**.

2.2 Synthesis of amides from diarylmethane:

Condition B: An oven-dried Schlenk tube was charge with **3a-h** (1.5 mmol), NH₂-OH.HCl (0.035g, 0.5 mmol), DDQ (0.34 g, 1.5mmol), AlCl₃ (0.052g, 0.15mmol), HCOOH (1.5 mL) and CH₃CN (1.5 mL). The reaction mixture was stirred at 80°C for 12 h monitored by TLC. The mixture was allowed to cool to room temperature and was quenched with H₂O (10 mL).The mixture was extracted with DCM (3×10 mL), and the organic layer was washed with brine (10mL). The combined organic layers were dried with Na₂SO₄, concentrated under reduced pressure, and dried under high vacuum. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, 15:1 to 8:1) to obtain the desired products **4a-h**.

2.3 Investigation of the mechanism and possible key intermediates:

An oven-dried Schlenk tube was charge with **1a** (0.5 mmol), NH₂-OH.HCl (0.108g, 1.5 mmol), DDQ (0.114 g, 0.5mmol), HCOOH (1.5 mL) and CH₃CN (1.5 mL). The reaction mixture was stirred at room temperature for 12h monitored by TLC. The mixture was quenched with H₂O (10 mL).The mixture was extracted with DCM (3×10 mL), and the organic layer was washed with brine (10 mL). The combined organic layers were dried with Na₂SO₄, concentrated under reduced pressure, and dried under high vacuum. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, 4:1) to obtain the desired products **5a** (97% yield).

N-[1, 3-Diphenyl-(2E)-propenyl] hydroxylamine (5a)¹

¹H NMR (400 MHz, CDCl₃, ppm): δ 7.43-7.31 (m, 9H), 7.26-7.19 (m, 1H), 6.64(d, J = 15.6Hz, 1H), 6.39 (dd, J = 7.6, 12.0 Hz, 1H), 5.43 (br, 1H), 4.74(d, J = 7.6Hz, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm): δ 139.9, 136.6, 132.8, 156.1, 128.7, 128.6, 128.5, 127.9, 127.8, 126.5, 69.2.

An oven-dried Schlenk tube was charge with **5a** (0.5 mmol), DDQ (0.227 g, 1mmol), CH₃CN (2 mL). The reaction mixture was stirred at 80 °C for 4 h monitored by TLC. The mixture was allowed to cool to room temperature and was quenched with H₂O (10 mL). The mixture was extracted with DCM (3×10 mL), and the organic layer was washed with brine (10 mL). The combined organic layers were dried with Na₂SO₄, concentrated under reduced pressure, and dried under high vacuum. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, 8:1) to obtain the desired products **6a** (98% yield).

(1E,2E)-Chalcone O-acetyloxime $(6a)^2$

¹H NMR (400 MHz, CDCl₃, ppm): δ 8.93 (br, 1H), 7.71 (d, J = 16.4Hz, 1H), 7.57-7.47 (m, 7H), 7.40-7.34 (m, 3H), 6.84(d, J = 16.4Hz, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm): δ 157.8, 139.7, 136.2, 134.8, 129.3, 129.2, 128.8, 128.5, 127.5, 117.5.

An oven-dried Schlenk tube was charge with **6a** (0.5 mmol), PPA (0.052 g, 0.15mmol), HCOOH (1.5 mL) and CH₃CN (1.5 mL). The reaction mixture was stirred at room temperature for 12h monitored by TLC. The mixture was quenched with H₂O (10 mL). The mixture was extracted with DCM (3×10 mL), and the organic layer was washed with brine (10 mL). The combined organic layers were dried with Na₂SO₄, concentrated under reduced pressure, and dried under high vacuum. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, 15:1) to obtain the desired products **2a** (91% yield).

3. Characterization of the Compounds

N-Phenylcinnamamide (2a)³

Condition A. Eluent: petroleum ether/ethyl acetate (15:1). White solid (83% yield); **2a** ¹H NMR (400 MHz, CDCl₃, ppm): 7.79 (d, J = 15.6 Hz, 1H), 7.66-7.64 (m, 2H), 7.57-7.55 (m, 2H), 7.44-7.36 (m, 5H), 7.16 (t, J = 7.2 Hz, 1H), 6.59 (d, J = 15.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm): δ 164.4, 142.3, 138.1, 134.6, 129.9, 129.1, 128.9, 128.0, 124.5, 121.0, 120.2. HRMS m/z (ESI) calcd. for C₁₅H₁₄NO (M+Na)⁺: 246.0895, found 246.0893.

(E)- N, 3-Di- p-tolylacrylamide (2b)³

Condition A. Eluent: petroleum ether/ethyl acetate (15:1). White solid (89% yield); **2b** ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.72 (d, *J* = 15.6 Hz, 1H), 7.50 (d, *J* = 6.8 Hz, 2H), 7.42 (d, *J* = 7.6 Hz, 2H), 7.33 (s, 1H), 7.19-7.14 (m, 4H), 6.49 (d, *J* = 15.6 Hz, 1H), 2.37 (s, 3H), 2.33 (s, 3H).¹³C NMR (101MHz, CDCl₃, ppm): δ 164.1, 142.1, 140.2, 135.5, 134.0, 132.0, 129.6, 127.9, 120.0, 21.4, 20.9. HRMS m/z (ESI) calcd. for C₁₇H₁₇NO (M+Na)⁺: 274.1208, found 274.1190.

(E)- N, 3-Bis(4-fluoropheny l)acrylamide (2d)³

Condition A. Eluent: petroleum ether/ethyl acetate (15:1). White solid (78% yield); **2d** ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.73 (d, *J* = 15.6 Hz, 1H), 7.60-7.50(m, 5H), 7.07 (dd, *J* = 18.4, 9.2 Hz, 4H), 6.49 (d, *J* = 15.6 Hz, 1H).¹³C NMR (101 MHz, CDCl₃, ppm): δ 165.0, 163.9, 162.5, 160.7, 141.3, 133.9, 130.8, 130.7, 129.8, 129.7, 121.8, 120.3, 116.2, 115.9, 115.7. HRMS m/z (ESI) calcd. for C₁₅H₁₁F₂NO (M+Na)⁺: 282.0706, found 282.0701.

(E)- N, 3-Bis(4-chlorophenyl)acrylamide (2e)³

Condition A. Eluent: petroleum ether/ethyl acetate (15:1). White solid (85% yield); **2e** ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.73 (d, *J* = 15.6 Hz, 1H), 7.59 (d, *J* = 8.0 Hz, 2H), 7.49-7.33 (m, 7H), 6.52 (d, *J* = 15.6 Hz, 1H).¹³C NMR (101 MHz, DMSO-*d*₆, ppm): δ 163.9, 139.6, 138.6, 134.8, 134.1, 129.9, 129.5, 129.2, 127.5, 123.3, 121.2. HRMS m/z (ESI) calcd. for C₁₅H₁₁Cl₂NO (M+Na)⁺: 314.0115, found 314.0113.

(E)- N, 3-Bis(4-bromophenyl)acrylamide (2f)

Condition A. Eluent: petroleum ether/ethyl acetate (15:1). White solid (82% yield); **2f** ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.72 (d, *J* = 15.6 Hz, 1H), 7.56-7.47 (m, 6H), 7.41 (d, *J* = 8.4 Hz, 1H), 7.36 (br, 1H), 6.53 (d, *J* = 15.2 Hz, 1H) 7.36 (br, 1H), ¹³C NMR (101 MHz, DMSO-*d*₆, ppm): δ 163.9, 139.7, 139.0, 134.4, 132.5, 132.1, 130.2, 123.5, 123.3, 121.6, 115.5. HRMS m/z (ESI) calcd. for C₁₅H₁₁Br₂NO (M+Na)⁺: 403.9085, found 403.9095.

N-*p*-Tolylcinnamamide (2g)⁴

(E)-3-(p-Tolyl)-N-phenylacrylamide (2g')

Condition A. Eluent: petroleum ether/ethyl acetate (15:1). White solid (86% yield); **2g**: ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.77 (d, *J* = 15.6 Hz, 1H), 7.64 (d, *J* = 7.6 Hz, 1H), 7.54(br, 1H), 7.46-7.35 (m, 5H), 7.22-7.14 (m, 3H), 6.58 (d, *J* = 15.6 Hz, 1H), 2.35(s, 3H). **2g**': ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.76 (d, *J* = 15.6 Hz, 1H), 7.64 (d, *J* = 6.4 Hz, 1H), 7.45 (d, *J* = 7.6 Hz, 2H), 7.40 (br, 1H), 7.37 (t, *J* = 8.0 Hz, 2H), 7.21(d, *J* = 7.6 Hz, 2H), 7.15 (t, *J* = 7.2 Hz, 1H), 6.53 (d, *J* = 15.6 Hz, 1H), 2.40 (s, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm): δ 164.1, 163.7, 140.4, 140.6, 140.1, 139.8, 132.5, 130.2, 129.6, 129.5, 130.1, 129.2, 128.2, 123.7, 123.5, 121.7, 119.7, 21.4, 21.0. HRMS m/z (ESI) calcd. for C₁₆H₁₅NO (M+Na)⁺: 260.1051, found 260.1048.

*N- o-*Tolylcinnamamide (2h)⁵ (*E*)-3-(*o*-Tolyl)-*N*-phenylacrylamide (2h') Condition A. Eluent: petroleum ether/ethyl acetate (15:1). White solid (64% yield); 2h: ¹H NMR (400

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry

This journal is The Boyal Society of Chemistry 2013 MHZ, CDCl₃, ppm): δ 8.08 (d, J = 15.2 Hz, 1H), 7.67(m, 3H), 7.55(d, J = 7.2 Hz, 1H), 7.37 (t, J = 8.0Hz, 2H), 7.23-7.14 (m, 3H), 6.51 (d, J = 15.6 Hz, 1H), 2.45(s, 3H). **2h'**: ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.00 (br, 1H), 7.79 (d, J = 15.6 Hz, 1H), 7.57 (s, 2H), 7.40 (s, 3H), 7.27-7.14 (m, 4H), 6.62 (d, J = 15.2 Hz, 1H), 2.34 (s, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm): δ 164.2, 163.9, 142.4, 140.2, 138.1, 137.8, 136.0, 135.8, 134.7, 133.7, 130.8, 130.5, 129.9, 129.7, 129.1, 128.9, 128.0, 126.9, 126.2, 124.4, 122.0, 120.0, 100.0, 19.8, 17.8. HRMS m/z (ESI) calcd. for C₁₆H₁₅NO (M+Na)⁺: 260.1051, found 260.1036.

N-(3- (Trifluoromethyl) phenyl)cinnamamide (2j) (*E*)-3-(3- (Trifluoromethyl) phenyl)-*N*-phenylacrylamide (2j')

Condition A. Eluent: petroleum ether/ethyl acetate (15:1). White solid (75% yield); **2j**: ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.38(br, 1H), 7.93 (s, 1H), 7.86(d, *J* = 8.0 Hz, 1H), 7.76 (d, *J* = 15.6 Hz, 1H), 7.43-7.30 (m, 7H), 6.65 (d, *J* = 15.6 Hz, 1H). **2j**': ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.25(br, 1H), 7.93 (s, 1H), 7.86(d, *J* = 8.0 Hz, 1H), 7.76 (d, *J* = 15.6 Hz, 1H), 7.93 (s, 1H), 7.86(d, *J* = 8.0 Hz, 1H), 7.76 (d, *J* = 15.6 Hz, 1H), 7.43-7.30 (m, 7H), 6.64 (d, *J* = 15.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm): δ 164.7, 143.2, 138.6, 134.3, 131.9, 131.6, 131.3, 130.9, 130.2, 129.6, 128.9, 128.0, 125.2, 123.2, 122.5, 121.0, 121.0, 120.3, 116.9. HRMS m/z (ESI) calcd. for C₁₆H₁₂F₃NO (M+Na)⁺: 314.0769, found 324.0747.

N-(3-Bromophenyl)cinnamamide (2k)⁶

(E)-3-(3-Bromophenyl)-N-phenylacrylamide (2k')

Condition A. Eluent: petroleum ether/ethyl acetate (15:1). White solid (68% yield); **2k**: ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.93 (d, *J* = 16.0 Hz, 1H), 7.65(d, *J* = 6.0 Hz, 1H), 7.49(d, *J* = 7.6 Hz, 2H), 7.39-7.34 (m, 3H), 7.27-7.14 (m, 3H), 6.57 (d, *J* = 15.6 Hz, 1H). **2k**' ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.85(br, 1H), 7.77 (d, *J* = 15.6 Hz, 1H), 7.70-7.64 (m, 2H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.39-7.34 (m, 3H), 7.27-7.14 (m, 3H), 6.57 (d, *J* = 15.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm): δ 164.4, 164.0, 142.9, 140.7, 139.5, 136.7, 134.4, 132.7, 130.5, 130.4, 130.3, 130.1, 129.1, 128.9, 128.0, 127.4, 126.7, 124.8, 123.2, 123.0, 122.7, 122.4, 120.6, 120.3, 118.7. HRMS m/z (ESI) calcd. for C₁₅H₁₂BrNO (M+Na)⁺: 325.9979, found 325.9969.

N-(4-Bromophenyl)cinnamamide (2l)⁷

(E)-3-(4-Bromophenyl)-N-phenylacrylamide (2l')

Condition A. Eluent: petroleum ether/ethyl acetate (15:1). White solid (83% yield); **21**: ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.77 (d, *J* = 15.2 Hz, 1H), 7.64 (d, *J* = 7.2 Hz, 1H), 7.56(br, 1H), 7.54-7.51 (m, 3H), 7.47 (d, *J* = 7.2 Hz, 1H), 7.40-7.35 (m, 3H), 6.57 (d, *J* = 15.6 Hz, 1H). **21**': ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.70 (d, *J* = 15.2 Hz, 1H), 7.56(br, 1H), 7.54-7.51 (m, 3H), 7.47 (d, *J* = 7.2 Hz, 1H), 7.40-7.35 (m, 2H), 7.56(br, 1H), 7.54-7.51 (m, 3H), 7.47 (d, *J* = 7.2 Hz, 1H), 7.40-7.35 (m, 2H), 7.16(d, *J* = 7.2 Hz, 1H), 6.57 (d, *J* = 15.2 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆, ppm): δ 164.1, 163.8, 141.0, 139.7, 139.3, 139.1, 135.1, 134.5, 132.5, 132.1, 130.4, 130.1, 129.5, 129.3, 128.2, 123.4, 123.9, 123.7, 123.4, 122.4, 119.7, 115.4. HRMS m/z (ESI) calcd. for C₁₅H₁₂BrNO (M+Na)⁺: 324.0000, found 324.0022.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013

N-(4-Fluorophenyl)cinnamamide (2n')

(E)-3-(4-Fluorophenyl)-N-phenylacrylamide (2n)⁴

Condition A. Eluent: petroleum ether/ethyl acetate (15:1). White solid (76% yield); **2n**: ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.78(d, *J*= 15.6 Hz, 1H), 7.65-7.50 (m, 5H), 7.40-7.36 (m, 2H), 7.16 (t, *J* = 7.2 Hz, 1H), 7.10-7.04 (m, 2H), 6.58 (d, *J* = 15.6 Hz, 1H). **2n**': ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.74 (d, *J* = 15.2 Hz, 1H), 7.65-7.50(m, 5H), 7.40-7.36(m, 3H), 7.10-7.04 (m, 2H), 6.52 (d, *J* = 15.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm): δ 165.0, 164.1, 162.5, 142.5, 141.2, 141.0, 139.3, 137.9, 134.5, 134.1, 132.5, 132.1, 130.9, 130.1, 130.0, 129.8, 129.7. 129.5, 129.3, 129.1, 128.9, 128.2, 128.0, 124.6, 123.4, 122.4, 121.8, 120.6, 120.0, 119.7, 116.1, 115.9, 115.8, 115.6. HRMS m/z (ESI) calcd. for C₁₅H₁₂FNO (M+Na)⁺: 264.0801, found 264.0791.

4-Methoxy- N- (4- Methoxyphenyl)benzamide (4a)⁸

Condition B. Eluent: petroleum ether/ethyl acetate (8:1). White solid (96% yield); **4a**: ¹H NMR (400 MHz, DMSO-*d*₆, ppm): δ 9.96 (s, 1H), 7.94 (d, *J* = 8.8 Hz, 2H), 7.65(d, *J* = 9.2Hz, 2H), 7.05 (d, *J* = 8.8 Hz, 2H), 6.91 (d, *J* = 8.8 Hz, 2H), 3.83 (s, 3H), 3.74 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆, ppm): δ 164.9, 162.2, 155.9, 132.9, 129.9, 127.5, 122.4, 114.2, 114.0, 55.9, 55.0. HRMS m/z (ESI) calcd. for C₁₅H₁₅NO₃ (M+Na)⁺: 280.0950, found 280.0948.

p-Tolyl- *N*- (*p*- tolyl)benzamide (4b)⁹

Condition B. Eluent: petroleum ether/ethyl acetate (15:1). White solid (89% yield); **4b**: ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.79 (d, J = 8.4 Hz, 3H), 7.54(d, J = 7.6Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 2.44 (s, 3H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm): δ 165.6, 142.2, 135.5, 134.1, 132.2, 129.6, 129.4, 127.0, 120.2, 21.5, 20.9. HRMS m/z (ESI) calcd. for C₁₅H₁₅NO₃ (M+Na)⁺: 248.1051, found 248.1024.

N- (4-Methoxyphenyl)- *p*- toluamide (4c)¹⁰ 4-Methoxy- *N*- (*p*- tolyl) benzamide (4c')⁹

Condition B. Eluent: petroleum ether/ethyl acetate (15:1). White solid (93% yield); **4c**: ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.86 (s, 1H), 7.85 (d, *J* = 8.0Hz, 2H), 7.54(d, *J* = 8.8Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 6.91 (d, *J* = 8.4 Hz, 2H), 3.83 (s, 3H), 2.43 (s, 3H). **4c**' ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.86 (s, 1H), 7.85 (d, *J* = 7.6 Hz, 2H), 7.53(d, *J* = 8.8Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 6.96 (d, *J* = 8.8 Hz, 2H), 3.88 (s, 3H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm): δ 165.6, 165.2, 162.4, 156.5, 142.2, 135.6, 134.0, 132.2, 131.2, 129.5, 129.4, 128.9, 127.3, 127.0, 122.1, 120.3, 114.2, 113.9, 55.5, 21.5, 20.9. HRMS m/z (ESI) calcd. for C₁₅H₁₅NO₂ (M+Na)⁺: 264.1000, found 264.1028.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013 N-(4-Methoxyphenyl)benzamide (4d)¹¹

4-Methoxy-*N*-phenylbenzamide (4d')¹²

Condition B. Eluent: petroleum ether/ethyl acetate (15:1). White solid (87% yield); **4d**: ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.88 (d, *J* = 7.2Hz, 2H), 7.83 (br, 1H), 7.65(d, *J* = 8.0Hz, 1H), 7.56 (d, *J* = 8.8 Hz, 2H), 7.50 (d, *J* = 8.8 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 2H), 6.93 (d, *J* = 8.8 Hz, 1H), 3.84 (s, 3H). **4d**' ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.86 (d, *J* = 8.8 Hz, 2H), 7.83 (br, 1H), 7.65(d, *J* = 8.0Hz, 1H), 7.56 (d, *J* = 8.0Hz, 1H), 7.56 (d, *J* = 8.8 Hz, 2H), 7.65 (d, *J* = 8.8 Hz, 2H), 7.49 (d, *J* = 7.2 Hz, 1H), 7.16 (t, *J* = 7.6 Hz, 2H), 6.99 (d, *J* = 8.8 Hz, 1H), 3.89 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm): δ 162.5, 156.7, 138.1, 135.1, 131.7, 131.0, 129.1, 128.9, 128.8, 127.0, 124.3, 122.1, 120.2, 114.3, 114.0, 55.5. HRMS m/z (ESI) calcd. for C₁₄H₁₃NO₂ (M+Na)⁺: 250.0844, found 250.0828.

4-Fluoro-*N*-(4-Methoxyphenyl)benzamide (4e)¹³ 4-Methoxy- *N*-(4-fluorophenyl)benzamide (4e')¹⁴

Condition B. Eluent: petroleum ether/ethyl acetate (15:1). White solid (61% yield); **4e**: ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.86 (br, 1H), 7.85 (d, *J* = 7.6Hz, 2H), 7.60(d, *J* = 7.6Hz, 2H), 7.06 (t, *J* = 8.0 Hz, 2H), 6.98 (d, *J* = 8.0 Hz, 2H), 3.89 (s, 3H). **4e**' ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.86 (br, 1H), 7.85 (d, *J* = 7.6Hz, 2H), 7.53 (d, *J* = 7.2 Hz, 2H), 7.16 (t, *J* = 8.0 Hz, 2H), 6.92 (d, *J* = 8.8 Hz, 2H), 3.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm): δ 165.2, 162.6, 160.7, 158.1, 131.2, 130.8, 129.4, 129.3, 128.9, 126.9, 122.2, 122.1, 122.0, 115.9, 115.8, 115.7, 115.6, 114.3, 114.0, 55.5. HRMS m/z (ESI) calcd. for C₁₄H₁₂FNO₂ (M+Na)⁺: 268.0750, found 268.0731.

4-Chloro-*N*-(4-Methoxyphenyl)benzamide (4f)¹⁴ 4-Methoxy- *N*-(4-chlorophenyl)benzamide (4f)⁹

Condition B. Eluent: petroleum ether/ethyl acetate (15:1). White solid (73% yield); **4f**: ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.83 (d, *J* = 9.2Hz, 2H), 7.76 (br, 1H), 7.61(d, *J* = 8.4Hz, 1H), 7.54 (d, *J* = 8.0Hz, 1H), 7.47 (d, *J* = 7.6 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 2H), 6.93 (d, *J* = 8.0 Hz, 1H), 3.84 (s, 3H). **4f**' ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.85 (d, *J* = 9.2 Hz, 2H), 7.76 (br, 1H), 7.61(d, *J* = 8.4Hz, 1H), 7.54 (d, *J* = 8.0Hz, 1H), 7.47 (d, *J* = 7.6 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 2H), 6.93 (d, *J* = 8.0 Hz, 1H), 3.84 (s, 3H). **4f**' ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.85 (d, *J* = 9.2 Hz, 2H), 7.76 (br, 1H), 7.61(d, *J* = 8.4Hz, 1H), 7.54 (d, *J* = 8.0Hz, 1H), 7.47 (d, *J* = 7.6 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 2H), 6.99 (d, *J* = 7.6 Hz, 1H), 3.90 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm): δ 165.4, 164.4, 162.5, 156.1, 138.8, 136.7, 134.2, 132.5, 130.1, 130.0, 128.9, 127.5, 127.2, 122.5, 122.3, 114.2, 114.1, 55.9, 55.7. HRMS m/z (ESI) calcd. for C₁₄H₁₂ClNO₂ (M+Na)⁺: 284.0405, found 250.0448.

3-Trifluoromethyl-*N*-(4-Methoxyphenyl)benzamide (4g) 4-Methoxy-*N*-(3-(trifluoromethyl)phenyl)benzamide (4g')

Condition B. Eluent: petroleum ether/ethyl acetate (15:1). White solid (38% yield); **4g**: ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.14 (br, 1H), 8.08 (d, *J* = 7.6Hz, 1H), 7.83(d, *J* = 7.6Hz, 2H), 7.65 (t, *J* = 8.0Hz, 1H), 7.57 (d, *J* = 8.8 Hz, 2H), 6.95 (d, *J* = 8.8 Hz, 2H), 3.85 (s, 3H). **4g**[•] ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.95 (br, 1H), 7.91-7.86 (m, 3H), 7.83(d, *J* = 7.6Hz, 1H), 7.51(t, *J* = 8.0Hz, 1H), 7.41 (d, *J* = 7.6Hz, 1H), 7.01 (d, *J* = 8.8 Hz, 2H), 3.85 (s, 3H).

4. References

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry

- This journal is The Royal Society of Chemistry 2013 (a) T. Ishikawa, M. Kawakami, M. Fukui, A. Yamashita, J. Urano, S. Saito, Journal of the American Chemical Society, 2001, 123, 7734; (b) Z. Liu, Z. Cao, H. Du, Organic & Biomolecular Chemistry, 2011, 9, 5369.
 - 2 S. Liu, L. S. Liebeskind, *Journal of the American Chemical Society*, 2008, **130**, 6918.
 - 3 (a) M. A. Ali, P. Saha, T. Punniyamurthy, Synthesis 2010, 2010, 908; (b) C. Qin, W. Zhou, F. Chen,
 Y. Ou, N. Jiao, Angew. Chem. Int. Ed. 2011, 50, 12595.
 - 4 S. Ueda, T. Okada, H. Nagasawa, Chemical Communications 2010, 46, 2462.
 - 5 Y. Ma, C. Song, Q. Chai, C. Ma, M. B. Andrus, Synthesis 2003, 18, 2886.
 - 6 L. Legoabe, J. Kruger, A. Petzer, J. J. Bergh, J. P. Petzer, *European Journal of Medicinal Chemistry*, 2011, 46, 5162.
 - 7 A. H. Blatt, R. P. Barnes, Journal of the American Chemical Society, 1934, 56, 1148.
 - 8 R. D. Parra, H. Zeng, J. Zhu, C. Zheng, X. C. Zeng, B. Gong, *Chemistry-A European Journal* 2001, 7, 4352.
 - 9 Y. Wu, S. Wang, L. Zhang, G. Yang, X. Zhu, Z. Zhou, H. Zhu, S. Wu, European Journal of Organic Chemistry 2010, 2, 326.
 - 10 S. Hwang, S. Y. Choi, J. H. Lee, S. Kim, J. In, S. K. Ha, E. Lee, T. Y. Kim, S. Y. Kim, S. Choi, S. Kim, *Bioorganic & Medicinal Chemistry* 2010, 18, 5602.
 - 11 C. K. Lee, J. S. Yu, Y. R. Ji, Journal of Heterocyclic Chemistry 2002, 39, 1219.
 - 12 L. Zhang, S. Su, H. Wu, S. Wang, Tetrahedron 2009, 65, 10022.
 - 13 K. Serdons, C. Terwinghe, P. Vermaelen, K. Van Laere, H. Kung, L. Mortelmans, G. Bormans, A. Verbruggen, *Journal of Medicinal Chemistry* 2009, 52, 1428.
 - 14 Q. L. Dong, G. S. Liu, H. B. Zhou, L. Chen, Z. J. Yao, Tetrahedron Letters 2008, 49, 1636.

5. NMR Charts

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013 QI-120623 PROTON CC13 (D:\Bruker\TOPSPIN\data\data\data

-4 f1 (ppm) 4 -2 -3 -1

