First Total Synthesis of (+)-Apotrisporin E and (+)-Apotrientriols A-B: A Cyclization Approach to Apocarotenoids

José A. González-Delgado,^{a,b} Jesús F. Arteaga,^{*b} M. Mar Herrador^a and Alejandro F. Barrero^{*a}

^aDepartment of Organic Chemistry, and Institute of Biotechnology, University of Granada,

Avda Fuentenueva 18071 Granada, Spain. ^bDepartment of Chemical Engineering, Physical

Chemistry and Organic Chemistry, and CIQSO - Center for Research in Sustainable Chemistry.

University of Huelva, Avda 3 Marzo s/n 21071 Huelva. Spain.

* jesus.fernandez@diq.uhu.es; afbarre@ugr.es;

Supporting Information

TABLE OF CONTENTS

General Experimental Section	S-3
Experimental Procedures	S-4
Spectra:	
¹ H and ¹³ C NMR spectra of 9 :	S-18
¹ H and ¹³ C NMR spectra of 11 :	S-19
¹ H and ¹³ C NMR spectra of 7 :	S-20
¹ H and ¹³ C NMR spectra of 6b :	S-21
NOE experiments of 6b	S-22
¹ H and ¹³ C NMR spectra of 6 :	S-23
¹ H and ¹³ C NMR spectra of 12 :	S-24
¹ H and ¹³ C NMR spectra of 13 :	S-25

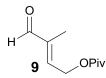
¹ H and ¹³ C NMR spectra of 14 :	S-26
¹ H and ¹³ C NMR spectra of 5 :	S-27
¹ H and ¹³ C NMR spectra of 15 :	S-28
¹ H and ¹³ C NMR spectra of 4 :	S-29
¹ H and ¹³ C NMR spectra of 16 :	S-30
¹ H and ¹³ C NMR spectra of 17 :	S-3 1
¹ H and ¹³ C NMR spectra of 18 :	S-32
¹ H and ¹³ C NMR spectra of 19 :	S-33
¹ H and ¹³ C NMR spectra of 20 :	S-3 4
¹ H and ¹³ C NMR spectra of 2 :	S-35
¹ H and ¹³ C NMR spectra of $2-3$:	S-36
¹ H and ¹³ C NMR spectra of 1 :	S-37

General Experimental section:

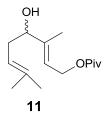
All NMR spectra (δ values, ppm) were recorded with a Varian Direct-Drive 600 (¹H 500 MHz/¹³C 150 MHz), Varian Direct-Drive 500 (¹H 500 MHz/¹³C 125 MHz), Varian Direct-Drive 400 (¹H 400 MHz/¹³C 100 MHz) and Varian Inova Unity 300 (¹H 300 MHz/¹³C 75 MHz) spectrometers. Tetramethylsilane (TMS) was used as an external reference for recording ¹H (of residual proton; $\delta = 7.26$ ppm) and ¹³C ($\delta = 77.0$ ppm) spectra in CDCl₃. Chemical shift multiplicities are reported as s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet and br = broad. The accurate mass determination was carried out with a mass spectometer equipped with a TOF, system Triwave® WATERS model SYNAP G2 and an AutoSpec-Q mass spectrometer arranged in an EBE geometry (Micromass Instrument, Manchester, UK) and equipped with a FAB (LSIMS) source. The instrument was operated at 8 KV of accelerating voltage and Cs⁺ were used as primary ions. Optical rotations were measured on a Perkin-Elmer 141 polarimeter, using CH₂Cl₂ as the solvent. Reactions were monitored by thin layer chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates (60F-254) using UV light as the visualizing agent and a solution of phosphomolybdic acid in ethanol and heat as developing agent. Silica gel SDS 60 (35-70 mm) was used for flash column chromatography. HPLC with UV and RI detection was used. Semi-preparative HPLC separations were carried out on a column (5 µm Silica, 10 x 250 mm) at a flow rate of 2.0 mL/min in an Agilent Series 1100 instrument. All air- and water-sensitive reactions were performed in flaks flame-dried under a positive flow of argon and conducted under an argon atmosphere. The solvents used were purified according to standard literature techniques and stored under argon. THF and toluene were freshly distilled immediately prior to use from sodium/benzophenone and strictly deoxygenated for 30 min under argon for each of the Cp₂TiCl₂/Mn or Zn reactions. Reagents were purchased at the higher commercial quality and used without further purification, unless otherwise stated.

Experimental Procedures

Strains and culture conditions: Strains of *Phycomyces blakesleeanus* Bgff: Strain NRRL1555, sexually (–), is the standard wild-type; Strain NRRL1554, (+) is a different natural isolate. Strain A56 is a (+) wild type derived from ten successive backcrosses into NRRL1555, and therefore largely consanguineous with this strain.¹ Standard culture media and handling were used.² Plates containing 25.0 mL minimal agar were inoculated with 10⁴ heat-activated spores each and incubated in the dark at 22 °C for five days. Growth on the same agar enriched with yeast extract (1.0 g/L) did not sensibly modify the results. Mated cultures were incubated with 5 x 10^3 spores of each sex.³


Extraction and isolation of natural compounds: For extraction and isolation of natural (+)apotrisporin E and natural (+)-apotrientriols A-B see our previous works.⁴ Starting from an extract (1.0 L) of mated cultures A56 × NRRL1555 (80 minimal agar plates) yielded 302 mg dry neutral and 258 mg dry acid extract. The neutral extract was fractionated by semipreparative HPLC. (+)-Apotrisporin E was present in the fraction $21.9 < t_R < 23.5$ min (5.5 mg). $[\alpha]_D^{20} + 7.8$ (c 0.1, CH₂Cl₂). (+)-Apotrientriol A was present in the fraction $24.9 < t_R < 26.7$ min (3.4 mg). $[\alpha]_D^{20} = +5.9$ (c 0.12, CH₂Cl₂) and (+)-apotrientriols A-B in the fraction $26.7 < t_R < 29.3$ min (7.8 mg). $[\alpha]_D^{20} = +4.3$ (c 0.35, CH₂Cl₂)

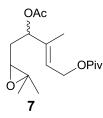
¹ M. I. Alvarez and A. P. Eslava, *Genetics*, 1983, **105**, 873–879.


² E. Cerdá-Olmedo, in *Phycomyces*, ed. E. Cerdá-Olmedo and E. D. Lipson, Cold Spring Harbor Laboratory: Cold Spring Harbor, New York, USA, 1987, pp 337–339.

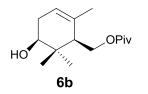
³ E. Cerdá-Olmedo and A. Hüttermann, Angew. Botan., 1986, **60**, 59–70.

⁴ (a) S. Polaino, M. M. Herrador, E. Cerdá-Olmedo and A. F. Barrero, *Org. Biomol. Chem.*, 2010, **8**, 4229–4231; (b) S. Polaino, J. A. González-Delgado, P. Arteaga, M. M. Herrador, A. F. Barrero and E. Cerdá-Olmedo, *Org. Biomol. Chem.*, 2012, **10**, 3002–3009.

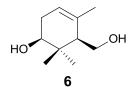
(*E*)-3-methyl-4-oxobut-2-en-1-yl pivalate (9): A mixture of SeO₂ (1080 mg, 9.70 mmol), *t*-BuOOH (5.0–6.0 M in decane, 3.6 mL) and CH₂Cl₂ (21 mL) was stirred at 0 °C for 7 hours, then prenyl pivalate⁵ (5000 mg, 29.37 mmol) was added and the complete mixture stirred at the same temperature (TLC monitoring). The reaction was quenched by addition of CH₂Cl₂, washed with H₂O, dried over anhyd Na₂SO₄ and concd under reduced pressure. The resulting crude was purified by column chromatography (hexane/*t*-BuOMe, 90:10) on silica gel to yield 61% of aldehyde **9** as a colorless oil.⁶ TLC (hexane/*t*-BuOMe, 70:30) *R_f*: 0.18; ¹H NMR: $\delta_{\rm H}$ (500 MHz; CDCl₃; Me₄Si) 5.48 (t, 1H, *J* = 5.5 Hz), 4.51 (d, 2H, *J* = 6.8 Hz), 3.90 (s, 2H), 1.60 (s, 3H), 1.08 (s, 9H); ¹³C NMR: $\delta_{\rm C}$ (125 MHz; CDCl₃; Me₄Si) 178.7, 140.5, 118.7, 67.3, 61.0, 38.8, 27.2 (3C), 13.8 ppm.

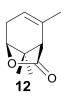

(*E*)-4-hydroxy-3,7-dimethylocta-2,6-dien-1-yl pivalate (11): *Method A*: To a -78 °C solution of aldehyde 9 (3300 mg, 17.92 mmol) and prenyl stannane 10b (12.8 mL, 38.2 mmol) in CH₂Cl₂ (150 mL) was added, rapidly, BCl₃ (1.0 M in CH₂Cl₂, 1.58 mL).⁷ After 10 minutes, the reaction was poured into saturated aq NaHCO₃ and extracted with CH₂Cl₂. The combined organics layers were washed with saturated aq KF, dried over Na₂SO₄, filtered, concd and

⁵ B. M. Smith, E. J. Skellam, S. J. Oxley and A. E. Graham, *Org. Biomol. Chem.*, 2007, **5**, 1979–1982.


⁶ A. F. Barrero, J. F. Quílez del Moral, M. M. Herrador, E. M. Sánchez and J. F. Arteaga, *J. Mex. Chem. Soc.*, 2006, **50**, 149–156.

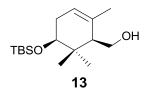
⁷ E. Schöttner, K. Simon, M. Friedel, P. G. Jones and T. Lindel, *Tetrahedron Lett.*, 2008, **49**, 5580–5582.


purified by silica gel column chromatography (hexane/*t*-BuOMe, 80:20) to yield 24% of α,α' product (790 mg, 4.30 mmol). *Method B*: A mixture of Cp₂TiCl₂ (1227 mg, 4.53 mmol) and Mn dust (865 mg, 15.75 mmol) in strictly deoxygenated THF (45 mL) was stirred at rt until the red solution turned green. Then, a solution of the aldehyde **9** (363 mg, 1.97 mmol) and prenyl bromide **10a** (0.45 mL, 3.94 mmol) in strictly deoxygenated THF (50 mL) was added to the solution of Cp₂TiCl. The reaction mixture was stirred until consumption of the starting material (20 min). The mixture was diluted with *t*-BuOMe, filtered through a Buchner, and washed with 2.0 N HCl and brine, and the resultant organic phase was dried over anhyd Na₂SO₄ and concd under reduced pressure. The resulting crude was purified by column chromatography (hexane/*t*-BuOMe, 80:20) on silica gel to afford 180 mg (0.71 mmol, 36% overall yield) of **11** as a colorless oil. TLC (hexane/*t*-BuOMe, 70:30) *R_f*: 0.25; ¹H NMR: δ_H (500 MHz; CDCl₃; Me₄Si) 5.57 (t, 1H, *J* = 6.7 Hz), 5.08 (t, 1H, *J* = 8.9 Hz), 4.61 (d, 1H, *J* = 6.5 Hz), 4.02 (t, 2H, *J* = 6.5 Hz), 1.72 (s, 3H), 1.70 (s, 3H), 1.19 (s, 9H); ¹³C NMR: δ_C (125 MHz; CDCl₃; Me₄Si) 178.6, 142.4, 135.9, 119.9, 119.7, 76.3, 61.1, 38.9, 34.2, 27.3 (3C), 26.0, 18.1, 12.5 ppm; HRFABMS: calcd. for C₁₅H₂₆O₃Na [M+Na]⁺ 277.1780, found: 277.1783.

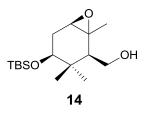

(*E*)-4-acetoxy-5-(3,3-dimethyloxiran-2-yl)-3-methylpent-2-en-1-yl pivalate (7): 3–Chloroperoxybenzoic acid (802 mg, 4.66 mmol) in anhyd CH_2Cl_2 (7 mL) was added to a solution of acetylated derivate of **11** (1000 mg, 3.38 mmol) in anhyd CH_2Cl_2 (6 mL) under an argon atmosphere at 0 °C, and the mixture was stirred for 3 hours. Then, CH_2Cl_2 (25 mL) was added and was successively washed with saturated aq NaHCO₃ solution and brine, dried with anhyd Na₂SO₄, filtered, and evaporated to give a crude residue which yielded 855 mg (2.74 mmol, 59% yield) of **7** after chromatography (hexane/*t*-BuOMe, 60:40) as a colorless oil. TLC (hexane/*t*-BuOMe, 50:50) R_f : 0.53; ¹H NMR: $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 5.63 (t, 1H, J = 6.3 Hz), 5.33 (m, 1H), 4.61 (d, 2H, J = 6.3 Hz), 2.72 (dt, 1H, J = 10.4, 6.2 Hz), 2.07 (s, 3H), 1.88 (t, 2H, J = 6.8 Hz), 1.73 (s, 3H), 1.29 (s, 3H), 1.26 (s, 3H), 1.19 (s, 9H); ¹³C NMR: $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 178.5, 170.1, 138.3, 122.3, 75.9, 60.9, 60.7, 58.1, 38.9, 32.8, 27.3 (3C), 24.8, 21.3, 19.1, 13.0 ppm; TOFESMS: calcd. for C₁₇H₂₉O₅ [M+H]⁺ 313.2015, found: 313.2008.

((1*R*,5*S*)-5-hydroxy-2,6,6-trimethylcyclohex-2-en-1-yl)methyl pivalate (6b): Strictly deoxygenated THF (7.0 mL) was added to a mixture of Cp₂TiCl₂ (1920 mg, 7.69 mmol) and Mn dust (1130 mg, 20.50 mmol) under an Ar atmosphere and the suspension was stirred at rt until it turned green. Then, a solution of epoxide (800 mg, 2.56 mmol) in THF (7.0 mL) was added and the solution was stirred for 6 hours at 40 °C. The reaction was then quenched with saturated aq NaHCO₃ and extracted with EtOAc. The organic layer was washed with brine and dried over Na_2SO_4 and the solvent was removed. Product was purified by flash chromatography on silica gel (hexane/t-BuOMe, 65:35) to yield 436 mg (1.72 mmol, 67% yield) of monocycle 6b as a colorless solid. TLC (hexane/*t*-BuOMe, 50:50) R_{f} : 0.43; $[\alpha]_{D}^{20}$ +23.1 (c 1.40, CH₂Cl₂); ¹H NMR: $\delta_{\rm H}$ (500 MHz; CDCl₃; Me₄Si) 5.39 (br t, 1H), 4.46 (dd, 1H, J = 4.4 Hz), 4.11 (dd, 1H, J = 3.9Hz), 3.46 (t, 1H, J = 6.3 Hz), 2.31 (m, 1H), 2.07 (m, 1H), 2.00 (br t, 1H), 1.70 (s, 3H), 1.55 (br s, 1H), 1.19 (s, 9H), 1.03 (s, 3H), 0.95 (s, 3H); ¹³C NMR: δ_{C} (125 MHz; CDCl₃; Me₄Si) 178.5, 132.9, 120.5, 73.9, 63.2, 48.6, 38.9, 37.3, 31.9, 27.3 (3C), 26.5, 22.3, 18.9 ppm; HRFABMS: calcd. for C₁₅H₂₆O₃Na [M+Na]⁺ 277.1780, found: 277.1783.

(15,5*R*)-5-(Hydroxymethyl)-4,6,6-trimethylcyclohex-3-enol (6): Solid ZrCl₄ (4920 mg, 21.15 mmol) was added to a solution of (*S*)-epoxygeraniol (8)⁸ (1200 mg, 7.05 mmol) in freshly distilled CH₂Cl₂ (1000 mL) at rt. The resulting whitish suspension was stirred for 10 min, then 1.0 M HCl (150 mL) was added and the two layers were separated. The aq layer was extracted with CH₂Cl₂ (3 x 150 mL) and the combined organic layers were washed with saturated aq NaHCO₃ and brine, dried over Na₂SO₄, and concd under reduced pressure. The residue was purified by silica gel flash chromatography (hexane/*t*-BuOMe, 40:60) to yield 706 mg of **6** (4.16 mmol, 59% yield) as a colorless solid.^{14b} TLC (*t*-BuOMe) R_f : 0.4; $[\alpha]_D^{20}$ +54.1 (c 1.63, CH₂Cl₂), lit. $[\alpha]_D^{20}$ +57.8 (c 2.00, CH₂Cl₂);⁹ ¹H NMR: δ_H (400 MHz; CDCl₃; Me₄Si) 5.42 (bs, 1H), 4.65 (bs, 2H), 3.72 (s, 2H), 3.35 (d, 2H, *J* = 4.5 Hz), 2.34 (br dt, 1H, *J* = 2.3, 18.6 Hz), 2.10 (br dd, 1H, *J* = 18.5 Hz), 1.73 (s, 3H), 1.08 (s, 3H), 0.92 (s, 3H); ¹³C NMR: δ_C (100 MHz; CDCl₃; Me₄Si) 131.6, 120.4, 71.3, 58.7, 51.1, 37.1, 32.2, 28.6, 24.4, 22.6 ppm; TOFESMS: calcd. for C₁₀H₁₉O₂ [M+H]⁺ 171.1307, found: 171.1310.

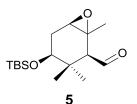


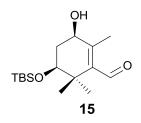
(1*R*,5*S*)-2,8,8-trimethyl-6-oxabicyclo[3.2.1]oct-2-en-7-one (12): A solution of diol 6 (170 mg, 1.00 mmol), TEMPO (15.6 mg, 0.10 mmol) and TBACl (27.7 mg, 0.10 mmol) in 10 mL of CH_2Cl_2 and 10 mL of an aq solution of NaHCO₃ (0.5 M) and K_2CO_3 (0.05 M) were vigorously stirred at rt. Solid *N*-Chlorosuccinimide (200 mg, 1.50 mmol) was then added. Stirring was


⁸ M. Bovolenta, F. Castronovo, A. Vadalá, G. Zanoni and G. Vidari, J. Org. Chem., 2004, **69**, 8959–8962.

⁹ S. Serra, F. G. Gatti and C. Fuganti, *Tetrahedron Asymm.*, 2009, **20**, 1319–1329.

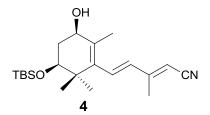
maintained and the reaction monitored by TLC. After 1 hour the organic layer was separated, and the aq phase was extracted with CH_2Cl_2 (2 x 10 mL). The dichloromethane extracts were washed with brine (2 x 10 mL), dried, and evaporated. The residue was purified by silica gel flash chromatography (hexane/*t*-BuOMe, 50:50) to yield 123 mg of lactone **12** (0.74 mmol, 74% yield) as a colorless solid. TLC (*t*-BuOMe) R_f : 0.5; $[\alpha]_D^{20}$ +46.3 (c 1.30, CH₂Cl₂); ¹H NMR: δ_H (400 MHz; CDCl₃; Me₄Si) 5.41 (bs, 1H), 4.15 (bs, 1H), 2.41 (s, 1H), 2.34 (m, 2H), 1.82 (s, 3H), 1.17 (s, 3H), 1.05 (s, 3H); ¹³C NMR: δ_C (100 MHz; CDCl₃; Me₄Si) 176.4, 132.5, 119.4, 83.1, 54.5, 39.5, 29.6, 25.1, 22.9, 17.9 ppm; HRFABMS: calcd. for C₁₀H₁₄O₂Na [M+Na]⁺ 189.0886, found: 189.0891.

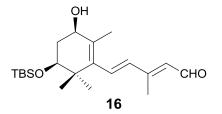

((1*R*,5*S*)-5-((tert-butyldimethylsilyl)oxy)-2,6,6-trimethylcyclohex-2-en-1-yl)methanol (13): Benzoylated derivated of 13 (1200 mg, 3.09 mmol) was added to a solution of NaOH (865 mg, 21.60 mmol) in MeOH (129 ml) and the resulting mixture was stirred at rt overnight. After evaporation of MeOH under reduced pressure and addition of water, the resulting solid crude was extracted with *t*-BuOMe. The organic extract was washed with water, dried over Na₂SO₄ and the solvent was removed. The residue was purified by silica gel flash chromatography (hexane/*t*-BuOMe, 85:15) to yield 598 mg of alcohol 13 (2.10 mmol, 68% yield) as a colorless oil. TLC (hexane/*t*-BuOMe, 65:35) R_{j} : 0.48; [α]_D²⁰ +34.1 (c 1.03, CH₂Cl₂); ¹H NMR: δ_H (600 MHz; CDCl₃; Me₄Si) 5.39 (bs, 1H), 4.26 (d, 1H, J = 10.0 Hz), 3.75 (dd, 2H, J = 13.0, 1.2 Hz), 3.68 (td, 1H, J = 11.7, 11.0, 3.8 Hz), 3.47 (d, 1H, J = 4.8 Hz), 2.35 (ddq, 1H, J = 18.5, 4.9, 2.4 Hz), 2.07 (m, 1H), 1.76 (s, 3H), 1.05 (s, 3H), 0.95 (s, 3H), 0.91 (s, 9H), 0.12 (s, 3H), 0.11 (s, 3H); ¹³C NMR: δ_C (150 MHz; CDCl₃; Me₄Si) 132.5, 118.9, 73.8, 59.0, 51.4, 37.6, 31.9, 28.7 (3C), 26.0, 24.9, 22.7, 18.3, -4.4, -4.7 ppm; TOFESMS: calcd. for $C_{16}H_{33}O_2Si [M+H]^+$ 285.2247, found: 285.2250.


((1S,2R,4S,6R)-4-((tert-butyldimethylsilyl)oxy)-1,3,3-trimethyl-7-oxabicyclo[4.1.0]heptan-

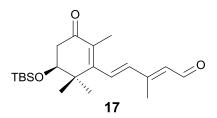
2-yl) methanol (**14**): 3–Chloroperoxybenzoic acid (435 mg, 2.52 mmol) in anhyd CH₂Cl₂ (14 mL) was added to a solution of **13** (598 mg, 2.10 mmol) in anhyd CH₂Cl₂ (9 mL) under an argon atmosphere at rt, and the mixture was stirred for 3 hours. Then, CH₂Cl₂ (50 mL) was added and was successively washed with saturated aq NaHCO₃ solution and brine, dried over anhyd Na₂SO₄, filtered, and evaporated to give a crude which yielded 537 mg of **14** after silica gel chromatography (hexane/*t*-BuOMe, 60:40) as a colorless oil.¹⁰ (hexane/*t*-BuOMe, 50:50) R_{jc} 0.25; $[\alpha]_D^{20}$ +14.1 (c 0.96, CH₂Cl₂); ¹H NMR: δ_H (400 MHz; CDCl₃; Me₄Si) 4.04 (dd, 1H, *J* = 11.1, 5.8 Hz), 3.93 (dd, 1H, *J* = 11.1, 3.4 Hz), 3.30 (t, 1H, *J* = 5.2 Hz), 2.91 (d, 1H, *J* = 3.3 Hz), 2.03 (m, 2H), 1.67 (t, 1H, *J* = 4.1 Hz), 1.41 (s, 3H), 0.95 (s, 3H), 0.92 (s, 3H), 0.89 (s, 9H), 0.06 (s, 3H), 0.02 (s, 3H); ¹³C NMR: δ_C (100 MHz; CDCl₃; Me₄Si) 73.9, 61.2, 58.5, 57.8, 49.2, 36.9, 30.3, 28.5, 25.9 (3C), 24.8, 21.1, 18.1, -4.2, -4.8 ppm; HRFABMS: calcd. for C₁₆H₃₂O₃SiNa [M+Na]⁺ 300.2121, found: 300.2119.

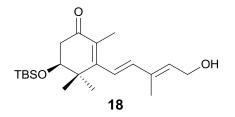
¹⁰ L. Alcaraz, J. J. Harnett, C. Mioskowski, T. Le Gall, S. Dong-Soo and J. R. Falck, *J. Org. Chem.*, 1995, **60**, 7209–7214


(15,25,45,6*R*)-4-((tert-butyldimethylsily)oxy)-1,3,3-trimethyl-7-oxabicyclo[4.1.0]heptane-2-carbaldehyde (5): Dess-Martin periodinane (938 mg, 2.21 mmol) was added to a solution of alcohol 14 (537 mg, 1.79 mmol) in anhyd CH₂Cl₂ (10 mL) at rt. After 15 min of stirring at rt, the reaction was quenched by addition of a saturated aq 1:1 mixture of NaHCO₃ and Na₂S₂O₃ and stirring was continued until two clear layers were obtained (10 min). The aq phase was extracted with CH₂Cl₂ (3 x 15 mL) and the combined organic layers were washed with brine, dried over Na₂SO₄, and concd under reduced pressure. The crude product was purified by silica gel flash chromatography (hexane/t-BuOMe, 60:40) to yield 453 mg of epoxyaldehyde 5 (1.88 mmol, 85% yield) as a white solid.³ TLC (hexane/t-BuOMe, 50:50) R_{f} : 0.63; $[\alpha]_D^{20}$ –40.4 (c 0.73, CH₂Cl₂); ¹H NMR: δ_H (400 MHz; CDCl₃; Me₄Si) 9.90 (d, *J* = 4.3 Hz, 1H), 3.35 (t, *J* = 5.7 Hz, 1H), 3.01 (dd, *J* = 3.3, 1.8 Hz, 1H), 2.17 (d, *J* = 4.2 Hz, 1H), 2.09 (m, 2H), 1.31 (s, 3H), 0.98 (s, 3H), 0.93 (s, 3H), 0.88 (s, 9H), 0.07 (s, 3H), 0.02 (s, 3H); ¹³C NMR: δ_C (100 MHz; CDCl₃; Me₄Si) 205.4, 73.0, 60.2, 56.5, 56.4, 38.0, 30.3, 27.1, 25.9 (3C), 24.3, 20.5, 18.1, -4.1, -4.8 ppm.

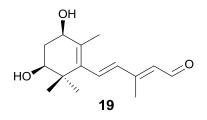

(3R,5S)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxy-2,6,6-trimethylcyclohex-1-

enecarbaldehyde (15): To a solution of 5 (453 mg, 1.52 mmol) in Et_2O (91 mL) was added freshly distilled pyrrolidine (0.28 mL, 3.37 mmol) at rt, and the reaction was stirred overnight.


Once the reaction was finished (TLC monitoring), water (25 mL) was added. The mixture was extracted with *t*-BuOMe (3 x 20 mL), the organic layer washed successively with brine, dried over Na₂SO₄, concd in vacuo, and purified by silica gel column chromatography (hexane/*t*-BuOMe, 75:25) to give 408 mg of **15** (1.37 mmol, 90% yield) as a white solid.¹⁶ TLC (hexane/*t*-BuOMe, 50:50) R_{j} : 0.3; $[\alpha]_D^{20}$ +27.7 (c 1.11, CH₂Cl₂); ¹H NMR: δ_H (400 MHz; CDCl₃; Me₄Si) 10.2, (s, 1H), 3.90 (m, 1H), 3.64 (t, 1H, J = 2.7 Hz), 2.24 (s, 3H), 2.06 (q, 2H, J = 4.2 Hz), 1.24 (s, 3H), 1.14 (s, 3H), 0.90 (s, 9H), 0.16 (s, 3H), 0.11 (s, 3H); ¹³C NMR: δ_C (100 MHz; CDCl₃; Me₄Si) 193.8, 152.5, 137.7, 77.3, 70.0, 38.9, 33.1, 26.5, 26.1 (3C), 23.4, 18.2, 16.5, -4.0, -4.6 ppm.


(2*E*,4*E*)-5-((3*R*,5*S*)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxy-2,6,6-trimethylcyclohex-1en-1-yl)-3-methylpenta-2,4-dienenitrile (4): In a flame-dried flask, *n*-BuLi (1.6 M in hexane, 0.30 mL) was added to a solution of diethyl (cyanomethylallyl)phosphonate (367 mg, 1.69 mmol) in dry THF (7.0 mL), and the mixture stirred at rt for 30 min. The solution was then cooled to 0 °C and **15** (408 mg, 1.37 mmol) in dry THF (10.0 mL) was added dropwise. After 2 hours of stirring at rt, the reaction was quenched by adding saturated aq NH₄Cl and the mixture was extracted with *t*-BuOMe (3 x 25 mL). The combined organic layers were washed with brine, dried with Na₂SO₄ and concd in vacuo. After purification on a silica gel column (hexane/*t*-BuOMe, 80:20), **4** (286 mg, 0.79 mmol, 58% yield) was obtained as a colorless oil. TLC (hexane/*t*-BuOMe, 50:50) R_f : 0.35; $[\alpha]_D^{20}$ +49.8 (c 0.66, CH₂Cl₂); ¹H NMR: δ_H (400 MHz; CDCl₃; Me₄Si) 6.48 (d, 1H, *J* = 16.1 Hz), 6.15 (d, 1H, *J* = 16.1 Hz), 5.20 (s, 1H), 3.90 (t, 1H, *J* = 4.4 Hz), 3.68 (dd, 1H, *J* = 6.0, 2.2 Hz), 2.21 (s, 3H), 2.06 (m, 1H), 2.00 (m, 1H), 1.82 (s, 3H), 1.01 (s, 3H), 0.98 (s, 3H), 0.90 (s, 9H), 0.13 (s, 3H), 0.08 (s, 3H); ¹³C NMR: δ_{C} (100 MHz; CDCl₃; Me₄Si) 156.8, 136.4, 135.0, 134.2, 132.5, 117.8, 97.5, 75.9, 69.5, 40.2, 34.3, 27.1, 26.1 (3C), 24.5, 18.7, 18.2, 16.7, -4.0, -4.7 ppm; HRFABMS: calcd. for C₂₁H₃₅NO₂SiNa [M+Na]⁺ 384.2344, found: 384.2335.

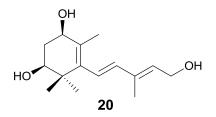
(2*E*,4*E*)-5-((3*R*,5*S*)-5-((tert-butyldimethylsilyl)oxy)-3-hydroxy-2,6,6-trimethylcyclohex-1en-1-yl)-3-methylpenta-2,4-dienal (16): A solution of 4 (286 mg, 0.79 mmol) in dry toluene (6.0 mL) was cooled to -20 °C and DIBALH (1.82 mL, 1.82 mmol) was added. The solution was allowed to warm to rt and stirred for 6 h (TLC monitoring). The reaction was then quenched by adding H₂O and the mixture was extracted with CH₂Cl₂ (3 x 25 mL). The combined organic layers were washed with saturated aq NaCl, dried over Na₂SO₄ and concd in vacuo. After purification on a silica gel column (hexane/*t*-BuOMe, 30:70), 205 mg of 16 (0.56 mmol, 71% yield) were obtained as a colorless oil. TLC (hexane/*t*-BuOMe, 50:50) *R_j*: 0.30; $[\alpha]_D^{20}$ +21.1 (c 0.70, CH₂Cl₂); ¹H NMR: $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 10.14 (d, 1H, *J* = 8.1 Hz), 6.65 (d, 1H, *J* = 16.2 Hz), 6.22 (d, 1H, *J* = 16.1 Hz), 5.96 (d, 1H, *J* = 8.1 Hz), 3.92 (t, 1H, *J* = 4.3 Hz), 3.70 (dd, 1H, *J* = 5.9, 2.2 Hz), 2.32 (s, 3H), 2.00 (m, 2H), 1.85 (s, 3H), 1.04 (s, 3H), 1.00 (s, 3H), 0.91 (s, 9H), 0.14 (s, 3H), 0.09 (s, 3H); ¹³C NMR: $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 191.5, 154.3, 137.2, 136.7, 134.9, 132.5, 129.5, 76.0, 69.5, 40.3, 34.3, 27.2, 26.1 (3C), 24.5, 18.7, 18.2, 13.1, -4.0, -4.7 ppm; TOFESMS: calcd. for C₂₁H₃₇O₃Si [M+H]⁺ 365.2526, found: 365.2512.



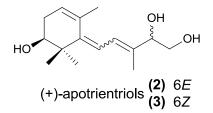
(2*E*,4*E*)-5-((S)-5-((tert-butyldimethylsilyl)oxy)-2,6,6-trimethyl-3-oxocyclohex-1-en-1-yl)-3methylpenta-2,4-dienal (17): Dess-Martin periodinane (295 mg, 0.70 mmol) was added to a solution of 16 (205 mg, 0.56 mmol) in anhyd CH₂Cl₂ (3.3 mL) and stirred at rt for 15 min. At this point, the reaction was quenched by addition of a saturated aq 1:1 mixture of NaHCO₃ and Na₂S₂O₃ and stirring was continued until two clear layers were obtained (10 min). The aq phase was extracted with CH₂Cl₂ (3 x 15 mL) and the combined organic layers were washed with brine, dried over Na₂SO₄, and concd under reduced pressure. The crude product was purified by silica gel flash chromatography (hexane/*t*-BuOMe, 70:30) to yield 171 mg of 17 (0.47 mmol, 84% yield) as a colorless oil. TLC (hexane/*t*-BuOMe, 35:65) R_{f} : 0.59; $[\alpha]_D^{20}$ +24.6 (c 0.58, CH₂Cl₂); ¹H NMR: $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 10.17 (d, 1H, *J* = 8.0 Hz), 6.74 (d, 1H, *J* = 16.3 Hz), 6.29 (d, 1H, *J* = 16.3 Hz), 6.01 (d, 1H, *J* = 7.6 Hz), 3.84 (m, 1H), 2.63 (m, 2H), 2.35 (s, 3H), 1.81 (s, 3H), 1.16 (s, 3H), 1.14 (s, 3H), 0.89 (s, 9H), 0.08 (s, 3H), 0.06 (s, 3H); ¹³C NMR: $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 197.8, 191.3, 159.7, 152.9, 138.4, 132.8, 131.3, 130.9, 74.2, 43.5, 42.0, 30.3, 29.8 (2C), 25.9 (3C), 13.7, 13.1, -4.0, -4.8 ppm; TOFESMS: caled. for C₂₁H₃₅O₃Si [M+H]⁺ 363.2355, found: 363.2362.

(S)-5-((tert-butyldimethylsilyl)oxy)-3-((1E,3E)-5-hydroxy-3-methylpenta-1,3-dien-1-yl)-2,4,4-trimethylcyclohex-2-enone (18): A solution of 17 (171 mg, 0.47 mmol) and zinc

borohydride (45 mg, 0.47 mmol, prepared from sodium borohydride and zinc chloride),¹¹ in THF (5.0 mL) was stirred at -40 °C for 2 h. The reaction was then quenched by careful dropwise addition of water. The THF layer was separated and the aq phase was extracted with *t*-BuOMe (3 x 20 mL). The combined THF and ether extract was washed with brine, dried over Na₂SO₄ and concd under reduced pressure. The resulting crude was purified by silica gel flash chromatography (hexane/*t*-BuOMe, 30:70) to yield 139 mg of **18** (0.38 mmol, 81% yield) as a colorless oil. TLC (hexane/*t*-BuOMe, 35:65) R_f : 0.35; $[\alpha]_D^{20}$ +11.2 (c 0.50, CH₂Cl₂); ¹H NMR: δ_H (500 MHz; CDCl₃; Me₄Si) 6.20 (s, 2H), 5.75 (t, 1H, *J* = 6.8 Hz), 4.34 (d, 2H, *J* = 6.9 Hz), 3.82 (dd, 1H, *J* = 10.4, 4.6 Hz), 2.60 (m, 2H), 1.88 (s, 3H), 1.82 (s, 3H), 1.14 (s, 3H), 1.12 (s, 3H), 0.89 (s, 9H), 0.07 (s, 3H), 0.05 (s, 3H); ¹³C NMR: δ_C (125 MHz; CDCl₃; Me₄Si) 198.2, 160.5, 140.0, 135.8, 132.4, 130.3, 125.0, 74.2, 59.6, 43.6, 42.1, 25.9 (3C), 25.6, 21.1, 18.2, 13.8, 12.6, -3.9, -4.8 ppm; TOFESMS: calcd. for C₂₁H₃₇O₃Si [M+H]⁺ 365.2497, found: 365.2512.

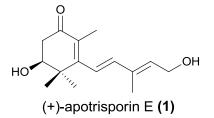


(2E,4E)-5-((3R,5S)-3,5-dihydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3-methylpenta-2,4-

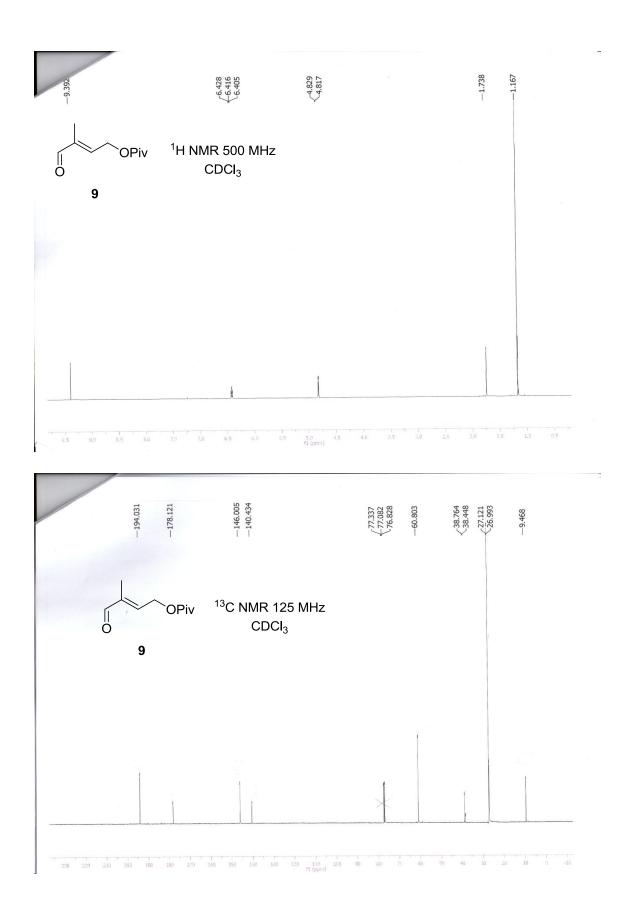

dienal (19): To a solution of **16** (90 mg, 0.25 mmol) in anhyd THF (3.4 mL) at rt, was added 1.0 M TBAF in THF (0.12 mL, 0.12 mmol) and the mixture stirred for 30 min at the same temperature. Solvent was then removed under reduced pressure and the crude extracted with EtOAc. Organic extracts were washed with brine, dried over anhyd Na₂SO₄ and concd under reduced pressure. The resulting crude was purified by column chromatography (hexane/*t*-BuOMe, 5:95) on silica gel yielding 46 mg of **19** (0.19 mmol, 74% yield) as a colorless oil. TLC (EtOAc) R_{f} : 0.35; $[\alpha]_{D}^{20}$ +10.1 (c 0.52, CH₂Cl₂); ¹H NMR: δ_{H} (500 MHz; CDCl₃; Me₄Si) 10.14

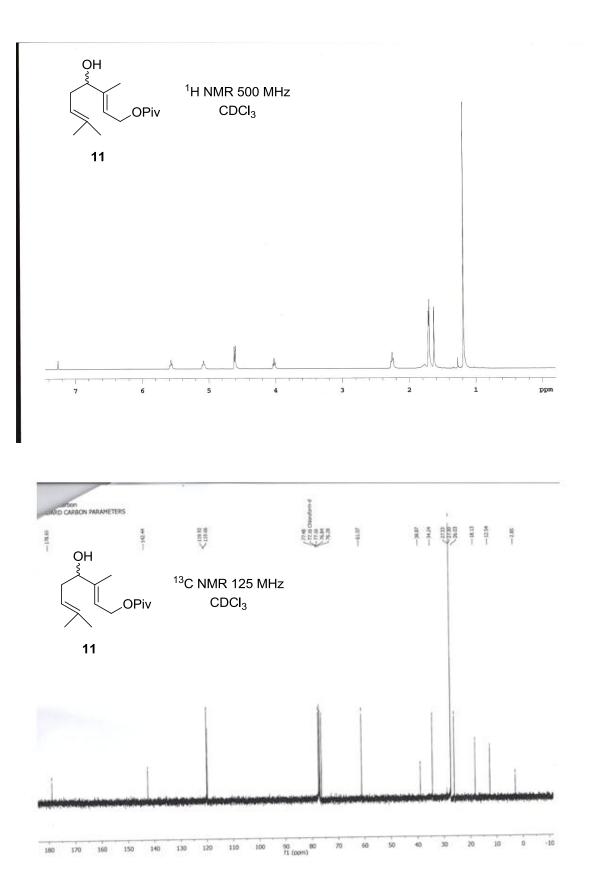
¹¹ S. Narasimhan and R. Balakumar, *Aldrichimica Acta*, 1998, **31**, 19–26.

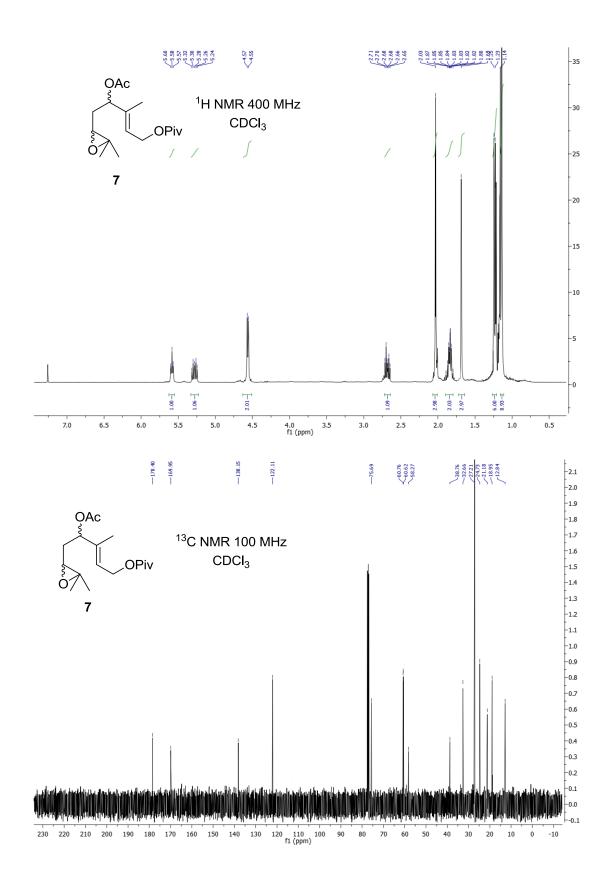
(d, 1H, J = 8.1 Hz), 6.66 (d, 1H, J = 16.2 Hz), 6.25 (d, 1H, J = 16.2 Hz), 5.96 (d, 1H, J = 8.0 Hz), 4.01 (t, 1H, J = 3.6 Hz), 3.73 (m, 1H), 2.33 (s, 3H), 2.17–2.04 (m, 2H), 1.88 (s, 3H), 1.14 (s, 3H), 1.03 (s, 3H); ¹³C NMR: $\delta_{\rm H}$ (125 MHz; CDCl₃; Me₄Si) 191.5, 154.2, 137.4, 136.7, 134.4, 131.9, 129.6, 75.5, 69.2, 39.8, 33.4, 27.0, 24.3, 19.0, 13.1 ppm; TOFESMS: calcd. for C₁₅H₂₃O₃ [M+H]⁺ 251.1640, found: 251.1647.

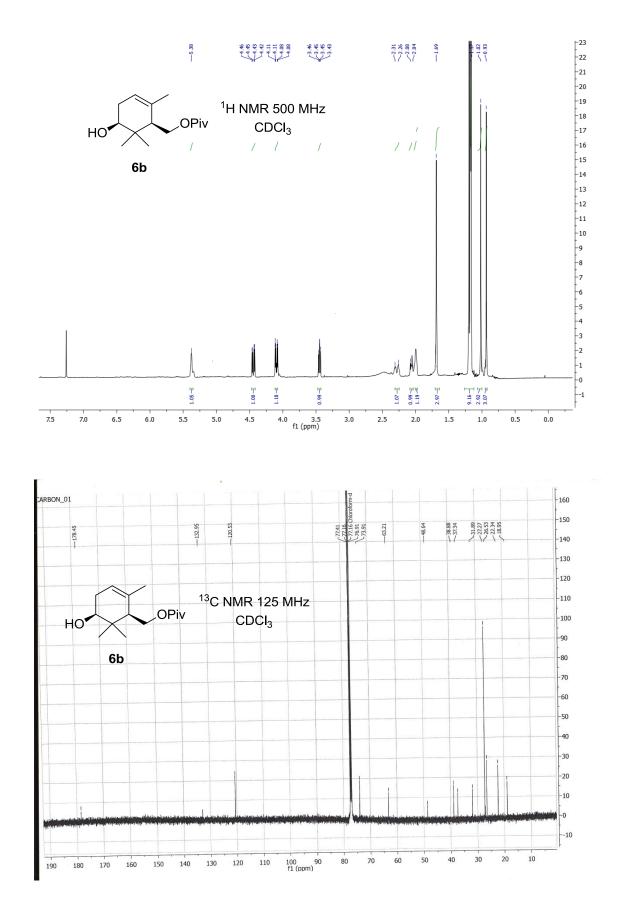


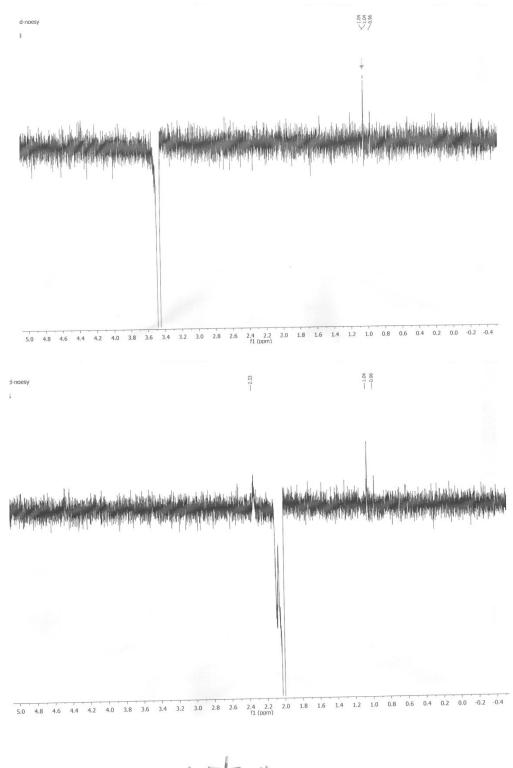
(1*S*,3*R*)-5-((1*E*,3*E*)-5-hydroxy-3-methylpenta-1,3-dien-1-yl)-4,6,6-trimethylcyclohex-4-ene-1,3-diol (20): In a similar DIBALH reduction to the one described earlier, **19** (46 mg, 0.18 mmol) was reduced with DIBALH (0.04 mL, 0.04 mmol) in dry toluene (1.0 mL). After column purification (hexane/EtOAc, 5:95), 38 mg of compound **20** (0.15 mmol, 82% yield) were obtained as a colorless oil. TLC (EtOAc) R_{f} : 0.23; $[\alpha]_{D}^{20}$ +15.7 (c 0.63, CH₂Cl₂); ¹H NMR: δ_{H} (500 MHz; CDCl₃; Me₄Si) 6.09 (s, 2H), 5.66 (t, 1H, *J* = 7.3 Hz), 4.32 (d, 2H, *J* = 6.9 Hz), 4.00 (t, 1H, *J* = 3.8 Hz), 3.72 (dd, 1H, *J* = 4.9, 2.4 Hz), 2.00 (m, 2H), 1.85 (s, 6H), 1.11 (s, 3H), 1.00 (s, 3H); ¹³C NMR: δ_{C} (125 MHz; CDCl₃; Me₄Si) 138.5, 137.6, 136.5, 129.8, 129.5, 125.9, 75.7, 69.5, 59.6, 39.8, 33.5, 26.9, 24.2, 18.9, 12.6 ppm; HRFABMS: calcd. for C₁₅H₂₄O₃Na [M+Na]⁺ 275.1629, found: 275.1623.

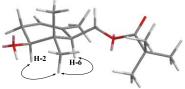
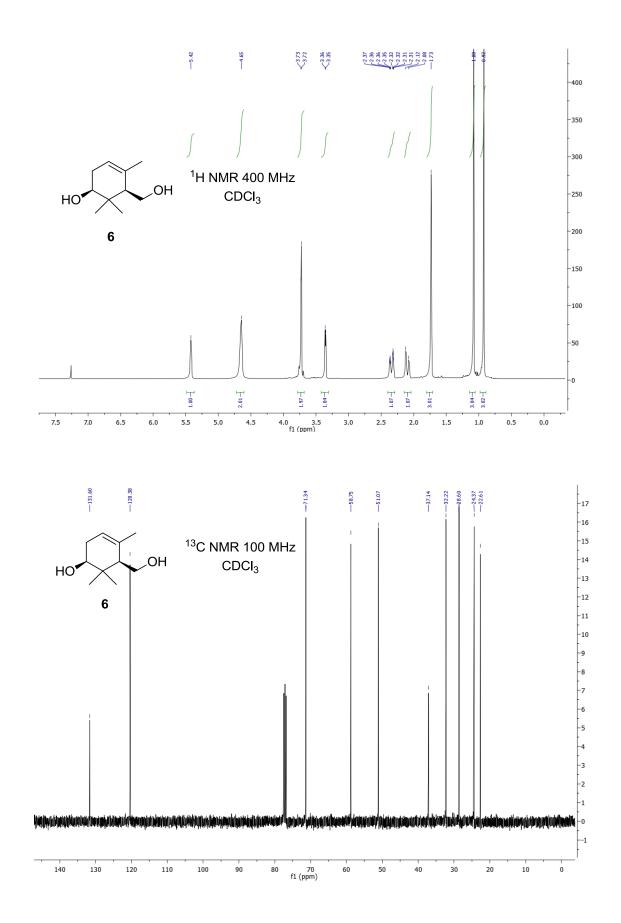
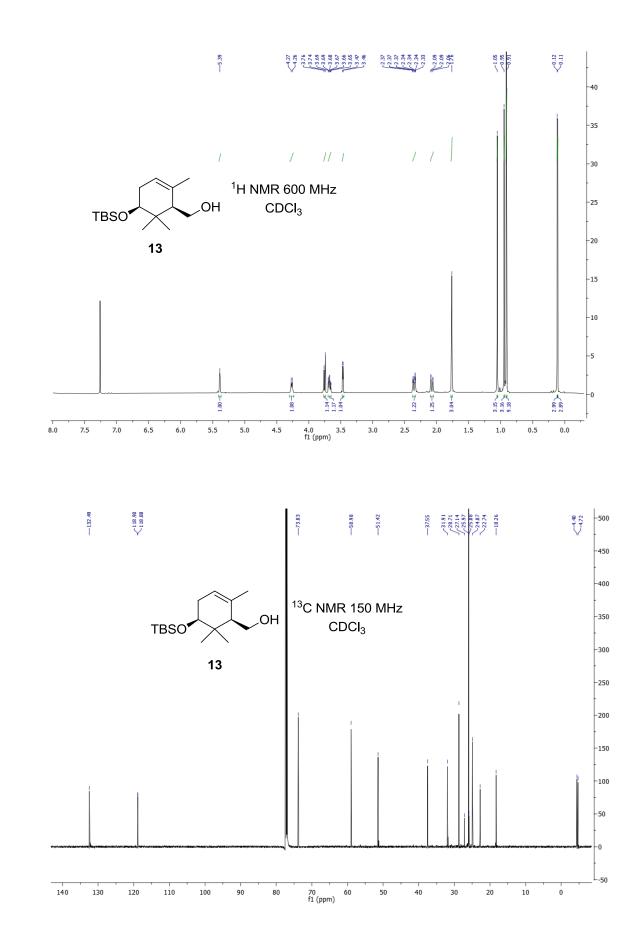
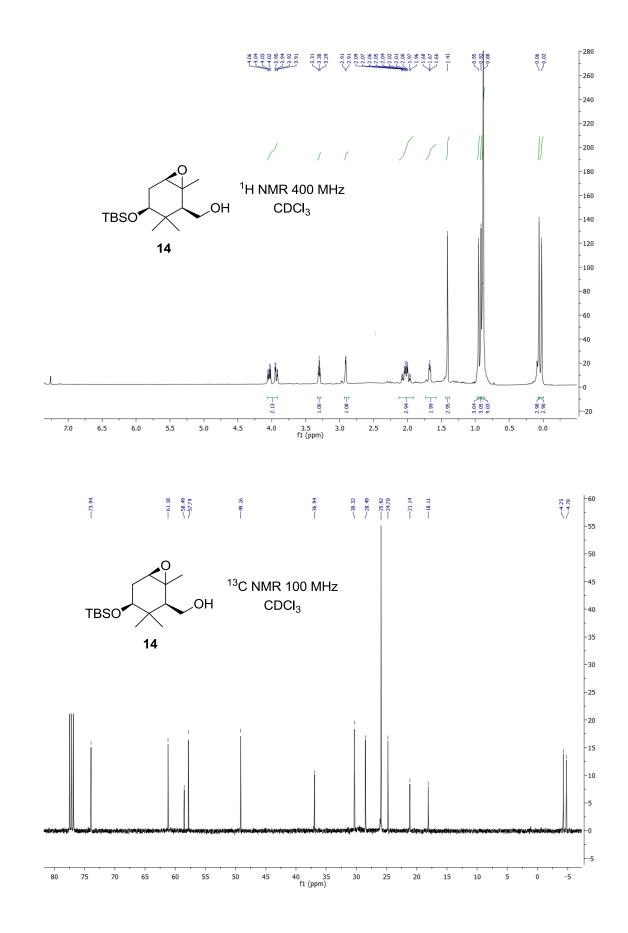


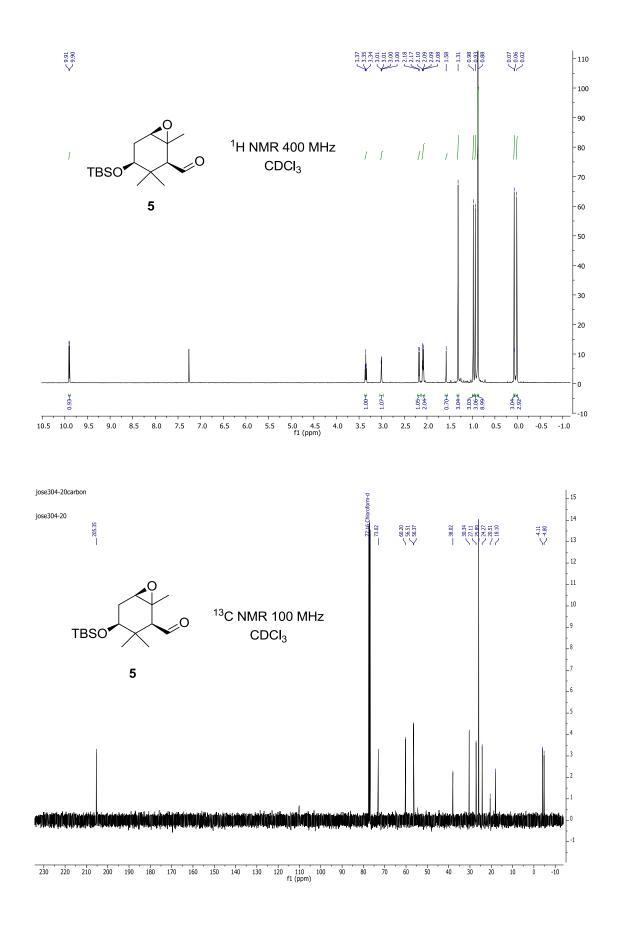

(+)-Apotrientriols A-B (2-3): To a solution of 20 (30 mg, 0.12 mmol) in THF:H₂O (1:1 v/v, 1.0 mL) at rt, was added FSO₃H (0.001 mmol) and the mixture stirred for 3 min at rt, quenched with saturated aq NaHCO3 and extracted with EtOAc. Organic extracts were washed with brine, dried over anhyd Na₂SO₄ and concd under reduced pressure. The resulting crude was purified by column chromatography (hexane/t-BuOMe, 5:95) on silica gel yielding 65% of 2-3 (20 mg, 0.08 mmol) as a colorless syrup. For semi-preparative normal-phase HPLC, aliquots (0.5 mL) of the crude dissolved in t-BuOMe were injected into a column (10 by 250 mm, 5 µm silica particles); with a 15 mm refillable guard pre-column filled with the same material in a Series 1100 liquid chromatograph (Agilent). The column was eluted at room temperature at a flow rate of 2 mL min⁻¹ for 25 min with hexane/t-BuOMe (5:95, v/v). and monitored with a refractometer. Compound 2 was present in the fraction $25.9 < t_R < 27.4$ min (3.9 mg) and compounds 2-3 in the fraction $27.4 < t_R < 29.0$ min (7.8 mg). Compound 2: TLC (EtOAc) R_f . 0.18; $[\alpha]_D^{20} = +5.1$ (c 0.09, CH₂Cl₂); ¹H NMR: δ_H (500 MHz; (CD₃)₂CO; Me₄Si) 6.67 (d, 1H, J = 11.3 Hz), 6.26 (d, 1H, J = 11.3 Hz), 5.48 (br t, 1H), 4.10 (m, 1H), 3.86 (t, 1H, J = 3.6 Hz), 3.51-3.43 (m, 2H), 2.75 (s, 2H), 2.43-2.39 (m, 1H), 1.76 (s, 3H), 1.13 (s, 3H), 1.03 (s, 3H); ¹³C NMR: δ_C (125 MHz; (CD₃)₂CO; Me₄Si) 138.8, 133.2, 127.0, 124.4, 121.0, 78.5, 74.3, 66.4, 42.8, 34.2, 25.6, 25.5, 22.2, 13.1 ppm; HRFABMS: calcd. for C₁₅H₂₄O₃Na [M+Na]⁺ 275.1623, found: 275.1625. Compounds 2-3: TLC (EtOAc) R_{f} : 0.18; $[\alpha]_{D}^{20}$ +4.3 (c 0.42, CH₂Cl₂); ¹H NMR (500 MHz, $(CD_3)_2CO$, Me_4Si): δ 6.84 (d, 1H, J = 11.8 Hz), 6.31 (d, 1H, J = 11.8 Hz), 5.56 (br t, 1H), 4.15 (m, 1H), 3.94 (t, 1H, J = 3.6 Hz), 3.55-3.52 (m, 3H), 2.33-2.29 (m, 1H), 2.03 (s, 3H), 1.86 (s, 3H), 1.35 (s, 3H), 1.21 (s, 3H); ¹³C NMR (125 MHz, (CD₃)₂CO, Me₄Si): δ 144.8, 135.0, 124.5, 124.0 123.8, 122.3, 75.8, 66.5, 41.2, 32.3, 27.1, 22.0, 13.2 ppm;[†] HRFABMS: calcd. for C₁₅H₂₄O₃Na [M+Na]⁺ 275.1623, found: 275.1627.


[‡]Signals corresponding to compound **2**, [†]Signals corresponding to compound **3**




(+)-**Apotrisporin E (1)**: In a similar deprotection to the one described earlier, **18** (90 mg, 0.25 mmol) in anhyd THF (3.4 mL) was reacted with 1.0 M TBAF in THF (0.12 mL, 0.12 mmol) and the mixture stirred for 30 min at rt. Solvent was then removed under reduced pressure and the crude extracted with EtOAc. Organic extracts were washed with brine, dried over anhyd Na₂SO₄ and concd under reduced pressure. The resulting crude was purified by column chromatography (hexane/EtOAc, 10:90) on silica gel yielding 70% of (+)-apotrisporin E (44 mg, 0.18 mmol) as a colorless oil. TLC (*t*-BuOMe) R_f : 0.23; IR: v_{max} /cm⁻¹ 3407, 2958, 2926, 2871, 1735, 1719, 1648, 1012, 736; $[\alpha]_D^{20}$ +7.1 (c 0.80, CH₂Cl₂); ¹H NMR: δ_H (500 MHz; CDCl₃; Me₄Si) 6.22 (s, 2H), 5.76 (t, 1H, *J* = 6.7 Hz), 4.35 (d, 2H, *J* = 6.7 Hz), 3.88 (dd, 1H, *J* = 9.1, 4.2), 2.78 (dd, 1H, *J* = 16.9, 4.2 Hz), 2.60 (dd, 1H, *J* = 16.9, 9.1 Hz), 1.88 (s, 3H), 1.84 (s, 3H), 1.18 (s, 6H); ¹³C NMR: δ_C (125 MHz; CDCl₃; Me₄Si) 197.3, 159.4, 140.5, 135.6, 132.7, 130.5, 124.5, 74.3, 55.6, 42.8, 41.4, 25.7, 21.5, 13.8, 12.6 ppm; TOFESMS: calcd. for C₁₅H₂₃O₃ [M+H]⁺ 251.1647, found: 251.1644.


Fig. 1 NOE experiments to establish the stereochemistry of **6b**.

