Electronic Supporting Information (ESI)

for

Merging strong and weak coordination motifs in the integrative self-sorting of a 5-component trapezoid and scalene triangle

Manik Lal Saha ${ }^{\ddagger}$ Jan W. Bats, ${ }^{\S}$ and Michael Schmittel ${ }^{*}$,

${ }^{\ddagger}$ Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany. ${ }^{8}$ Institut für Organische Chemie und Chemische Biologie, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, D60438, Frankfurt am Main, Germany.
E-mail: schmittel@chemie.uni-siegen.de; Fax: (+49) 271-740-3270

Table of Contents

1 Synthesis S2
2 Calculation of degree of self-sorting (M) S11
$3{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{CNMR}$ spectra S12
$4{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectra S20
5 DOSY NMR spectra S22
6 ESI-MS spectra S23
7 Binding Constants S26
8 X-ray structure analysis S29
9 Energy minimised structure using MM+ force field S31
10 References S32

Synthesis

General. All commercial reagents were used without further purification. Solvents were dried with appropriate desiccants and distilled prior to use. Silica gel (60-230 mesh) was used for column chromatography. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were measured at 298 K on a Bruker Avance 400 MHz spectrometer equipped with a 5 mm dual probe. Residual solvent signals are used as internal reference. The following abbreviations were utilised to describe peak patterns: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{td}=$ triplet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{ddd}=$ doublet of doublet of doublets, $\mathrm{br}=$ broad and $\mathrm{m}=$ multiplet. The numbering of carbon atoms in the molecular formulae is only used for assignment of NMR signals and thus is not necessarily in accordance with IUPAC nomenclature rules. DOSY NMR data were recorded on a Varian VNMR-S 600 MHz spectrometer equipped with a 3 mm triple resonance inverse probe. All DOSY measurements were carried out without temperature regulation (room temperature was 298 K) using the 'Dbppste' pulse sequence from the Varian library. UV-Vis spectra were recorded on a Varian Cary 100 BioUV/Visible spectrometer. Binding constants were determined using the SPECFIT/32 global analysis system by Spectrum Software Associates (Marlborough,MA). ${ }^{1}$ Electrospray ionisation mass spectra (ESI-MS) were recorded on a Thermo-Quest LCQ Deca. Melting points were measured on a Büchi SMP-20 instrument. Infrared spectra were recorded using a Varian 1000 FT-IR instrument. Elemental analysis measurements were done using the EA 3000 CHNS. Xray single-crystal diffraction data for $\mathbf{C 3}$ were collected on Siemens SMART 1K CCD areadetector diffractometer. The structure was solved using SHELXS-97 and refined by fullmatrix least-squares analysis. ${ }^{2}$ Hydrogen atoms were generated theoretically onto the specific atoms and refined using a riding atom model. Non-hydrogen atoms were refined with anisotropic thermal parameters. An empirical absorption correction resulted in a correction range of 0.531 to 0.602 . Further details are provided in the section of X-ray structure analysis. Energy minimised structures were obtained using the MM^{+}forced field as implemented in Hyperchem ${ }^{\circledR}$ 8.0. Complex C1, compounds $\mathbf{1 1}$ as well as $\mathbf{1 2}$ (precursors for 6), $\mathbf{1 7}$ (precursors for $\mathbf{9}$), ${ }^{3} \mathbf{1 8}$ (precursors for $\mathbf{1 0}$) and $\mathbf{8}^{4}$ were synthesised as described earlier.

Chart 1: Ligands used in the present study.

Synthesis of 2,9-bis(2,6-dimethoxyphenyl)-3-((2,3,5,6-tetramethyl-4-(pyridin-4-ylethy-nyl)phenyl)ethynyl)-1,10-phenanthroline (6).

An oven-dried 100 mL three-neck round-bottom flask was charged with 2,9-bis(2,6-dimetho-xyphenyl)-3-ethynyl-1,10-phenanthroline (11, $50.0 \mathrm{mg}, 104 \mu \mathrm{~mol}$), 4-((4-iodo-2,3,5,6-tetramethylphenyl)ethynyl)pyridine ($\mathbf{1 2}, 45.0 \mathrm{mg}, 125 \mu \mathrm{~mol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(35.0 \mathrm{mg}, 30.3 \mu \mathrm{~mol})$ under nitrogen atmosphere. After addition of dry DMF (20 mL) and triethylamine (20 mL), the solution was degassed thrice by freeze-pump-thaw cycles. Finally, tri-tert-butylphosphine $(100 \mu \mathrm{~L})$ was added to this mixture, which was refluxed at $80^{\circ} \mathrm{C}$ for 24 h under nitrogen atmosphere. The mixture was then cooled down to room temperature and the solvents were removed under reduced pressure. The residue was dissolved in DCM (200 mL) and washed with water (150 mL). After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the organic solvent was evaporated to afford a brown residue. The crude product was purified using column chromatography (SiO_{2}, DCM:EtOAC $=4: 1\left[R_{\mathrm{f}}=0.45\right.$ [EtOAC: $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 1\right]$). Yield $77 \% ; \mathrm{mp}>275{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.60\left(\mathrm{~d},{ }^{3} J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \alpha_{1}-\mathrm{H}\right), 8.46\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime}{ }^{\prime}-\mathrm{H}\right), 8.24\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, 7^{\prime}{ }^{\prime}-\mathrm{H}\right), 7.83\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H},\left[5^{\prime}, / 6{ }^{\prime}\right]\right.$]-H), $7.80\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H},\left[5^{\prime} / 6^{\prime}{ }^{\prime}\right]-\mathrm{H}\right)$, $7.65\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 8^{\prime}{ }^{\prime}-\mathrm{H}\right), 7.38\left(\mathrm{~d},{ }^{3} J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \beta_{1}-\mathrm{H}\right), 7.30\left(\mathrm{t},{ }^{3} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\left[b^{\prime} / b^{\prime}\right]-\mathrm{H}\right), 7.30\left(\mathrm{t},{ }^{3} J=8.4 \mathrm{~Hz}, 1 \mathrm{H},\left[\mathrm{b}^{\prime \prime} / \mathrm{b}{ }^{\prime}\right]-\mathrm{H}\right), 6.65\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H},\left[\mathrm{a}^{\prime} / / \mathrm{a}^{\prime}\right]-\mathrm{H}\right), 6.63$ (d, ${ }^{3} J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, [a'’/a']-H), 3.73 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{OMe}$), 3.68 (s, $6 \mathrm{H}, \mathrm{OMe}$), 2.42 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}$), 2.17 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=158.5,156.7,156.0,150.0,146.3$, $145.2,139.1,136.5,136.5,136.2,132.2,132.1,130.3,130.2,128.3,127.5,127.4,126.1$, 126.1, 125.5, 124.3, 122.6, 121.4, 119.6, 118.9, 104.4, 104.2, 96.5, 95.7, 93.4, 93.2, 56.3, 56.2, 18.5, 18.1; IR (KBr) v 3427, 2933, 2833, 2204, 1591, 1468, 1433, 1249, 1182, 1109, 1027, 908, 847, 818, 783, 735, 650, 563; ESI-MS m/z (\%) 710.9 (100) $[\mathrm{M}+\mathrm{H}]^{+}$; Anal. calcd for $\mathrm{C}_{47} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{4} \cdot 2 / 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, $74.70 ; \mathrm{H}, 5.30 ; \mathrm{N}, 5.48$. Found: C, $74.41 ; \mathrm{H}, 5.20 ; \mathrm{N}, 5.58$.

Synthesis of 2,5-dibutoxyterephthalaldehyde (14).

To a solution of 1,4-dibutoxy-2,5-diiodobenzene ($\mathbf{1 3}, 4.00 \mathrm{~g}, 8.43 \mathrm{mmol}$) in dry diethyl ether $(100 \mathrm{~mL}), 2.5 \mathrm{M}$ solution of $n-\mathrm{BuLi}$ in n-hexane $(8.40 \mathrm{~mL}, 21.0 \mathrm{mmol})$ was added slowly at 0 ${ }^{\circ} \mathrm{C}$ under N_{2} atmosphere over a period of 20 min . After 9 h , dry DMF ($1.60 \mathrm{~mL}, 20.7 \mathrm{mmol}$) was added. The resulting solution was then stirred for further 20 h under nitrogen atmosphere while warming up from $0{ }^{\circ} \mathrm{C}$ to room temperature . The reaction was neutralised with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{DCM}(150 \mathrm{~mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The remaining solution was kept at $-32^{\circ} \mathrm{C}$ for 1 day for crystallisation. Yellow crystals were filtered off and washed with cold n-hexane and dried under vacuum to afford $\mathbf{1 4}$ as a pure product. Yield $50 \% ; \mathrm{mp}=67{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=10.5(\mathrm{~s}, 2 \mathrm{H}, \mathrm{u}-\mathrm{H}), 7.42(\mathrm{~s}, 2 \mathrm{H}, \mathrm{t}-\mathrm{H}), 4.10\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{p}-\mathrm{H}\right), 1.85-1.80$ (m, $4 \mathrm{H}, \mathrm{q}-\mathrm{H}$), 1.56-1.47 (m, $4 \mathrm{H}, \mathrm{r}-\mathrm{H}), 0.98\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{s}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=189.5,155.6,129.7,111.8,69.4,31.5,19.6,13.9$; $\mathrm{IR}(\mathrm{KBr}) v 3351,3052,2951$, 2873, 2759, 1982, 1681, 1486, 1427, 1371, 1282, 1213, 1121, 1065, 1023, 976, 887, 837, $741,688,507,456$; Anal calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}$: C, 69.04; H, 7.97; found: C, $69.07 ; \mathrm{H}, 8.05$.

Synthesis of 2"',5"'-bis-[4'-[(2,2':6',2')terpyridyl]]-1'",4'"-dibutoxybenzene (7).

Solid $\mathrm{NaOH}(1.92 \mathrm{~g}, 48.0 \mathrm{mmol})$ was added to a methanolic solution $(75 \mathrm{~mL})$ of 2,5 -dibutoxyterephthalaldehyde ($\mathbf{1 4}, 672 \mathrm{mg}, 2.41 \mathrm{mmol}$) and 1-(pyridin-2-yl)ethanone $(\mathbf{1 5}, 1.32 \mathrm{~g}$, $10.9 \mathrm{mmol})$. The mixture was stirred for 12 h at room temperature. After removing the solvent, 100 mL of water was added and the product extracted with DCM (150 mL). The organic layer was subsequently dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evapourated to dryness. The solid residue was treated with ammonium acetate ($5.50 \mathrm{~g}, 71.3 \mathrm{mmol}$) in EtOH (100 mL) at $80^{\circ} \mathrm{C}$ for 20 h . The solution was then cooled, reduced in volume, and water (100 ml) was added.

The mixture was extracted with DCM, and the organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The desired product 7 was finally purified by crystallisation; diethyl ether was diffused into a DCM solution of the crude mixture to afford the pure product as pale brown crystals. Yield: $\leq 10 \% ; \mathrm{mp}=198{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.79$ (s, 4 H, e-H), 8.72 (ddd, ${ }^{3} J=4.8 \mathrm{~Hz},{ }^{4} J=2.0 \mathrm{~Hz},{ }^{5} J=1.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{a}-\mathrm{H}$), 8.70 (ddd, ${ }^{3} J=7.6 \mathrm{~Hz},{ }^{4} J$ $\left.=1.0 \mathrm{~Hz},{ }^{5} J=1.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{d}-\mathrm{H}\right), 7.91\left(\mathrm{td},{ }^{3} J=7.6 \mathrm{~Hz},{ }^{4} J=2.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{c}-\mathrm{H}\right), 7.37$ (ddd, ${ }^{3} J=$ $\left.7.6 \mathrm{~Hz},{ }^{3} J=4.8 \mathrm{~Hz},{ }^{4} J=1.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{b}-\mathrm{H}\right), 7.28(\mathrm{~s}, 2 \mathrm{H}, \mathrm{t}-\mathrm{H}), 4.09\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{p}-\mathrm{H}\right)$, 1.76-1.69 (m, $4 \mathrm{H}, \mathrm{q}-\mathrm{H}), 1.52-1.42(\mathrm{~m}, 4 \mathrm{H}, \mathrm{r}-\mathrm{H}), 0.84\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{s}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=156.7,155.6,151.1,149.5,148.2,137.1,130.0,124.1,121.9,121.3$, 115.9, 69.9, 31.8, 19.7, 13.9; IR (KBr) v 3432, 3041, 3014, 2955, 2868, 1582, 1504, 1466, 1386, 1334, 1242, 1208, 1119, 1066, 1024, 962, 886, 792, 736, 677, 617, 514; ESI-MS: m/z (\%) $685.4(100)[\mathrm{M}+\mathrm{H}]^{+}$; Anal calcd for $\mathrm{C}_{44} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{2} \bullet 4 / 5 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{C}, 71.48 ; \mathrm{H}, 5.57 ; \mathrm{N}$, 11.16; found: C, 71.15 ; H, 5.53; N, 10.96.

Synthesis of 4'-(4-pyridin-4-ylethynyl-phenyl)-[2,2';6',2']terpyridine (9).

Under N_{2} atmosphere 4-ethynylpyridine hydrochloride (16, $38.3 \mathrm{mg}, 274 \mu \mathrm{~mol}$), 4'-(4-iodophenyl)-[2,2';6',2"]terpyridine (17, $100 \mathrm{mg}, 229 \mu \mathrm{~mol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(25.0 \mathrm{mg}, 21.6$ $\mu \mathrm{mol}$) were placed in an oven-dry $100-\mathrm{mL}$ three-neck round-bottom flask. After addition of dry benzene (10 mL), dry $\mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{~mL})$ and dry DMF (5 mL), the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 20 h under N_{2} atmosphere. The reaction mixture was then cooled down to room temperature and the solvents were removed under reduced pressure. The residue was dissolved in DCM (100 mL) and washed first with aqueous $\mathrm{KOH}(200 \mathrm{~mL})$, then with water (200 mL). After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the organic solvent was evaporated to afford a brown residue. The crude product was purified using column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{DCM}: E t O A C\right.$ $=1: 1$ to DCM:MeOH= 99:1 $\left[R_{\mathrm{f}}=0.35\right.$ [EtOAC: $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 1\right]$). Yield: $45 \% ; \mathrm{mp}=156{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{2}$): $\delta=8.77$ (s, $2 \mathrm{H}, \mathrm{e}_{1}-\mathrm{H}$), $8.72\left(\mathrm{~d},{ }^{3} J=4.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{a}_{1}-\mathrm{H}\right), 8.68\left(\mathrm{~d},{ }^{3} J\right.$ $\left.=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{d}_{1}-\mathrm{H}\right), 8.61\left(\mathrm{~d},{ }^{3} J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \alpha_{2}-\mathrm{H}\right), 7.93\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}, 2 \mathrm{H},[\mathrm{f} / \mathrm{g}]-\mathrm{H}\right), 7.90$ $\left(\mathrm{td},{ }^{3} J=8.0 \mathrm{~Hz},{ }^{4} J=2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{c}_{1}-\mathrm{H}\right), 7.73\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}, 2 \mathrm{H},[\mathrm{f} / \mathrm{g}]-\mathrm{H}\right), 7.43\left(\mathrm{~d},{ }^{3} J=6.0\right.$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \beta_{2}-\mathrm{H}\right), 7.40-7.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{b}_{1}-\mathrm{H}\right),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=156.1,156.0$,
149.8, 149.1, 139.2, 136.9, 132.4, 131.3, 127.4, 126.0, 125.5, 124.0, 122.7, 121.4, 118.7, 93.6, 87.9; IR (KBr): $v=3422,3035,2360,2218,1664,1587,1468,1388,1263,1217,1079$, 1037, 990, 893, 824, 789, 669, 620, 521; ESI-MS m/z (\%): 411.4 (100) [M + H] ${ }^{+}$; Anal calcd for $\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~N}_{4} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 78.49 ; \mathrm{H}, 4.70 ; \mathrm{N}, 13.08$; found: C, $78.62 ; \mathrm{H}, 4.35 ; \mathrm{N}, 12.79$.

Synthesis of 3,3'-(2,5-dibutoxy-1,4-phenylene)bis(ethyn-2,1-diyl)bis(2-(4-bromo-2,3,5,6-tetramethylphenyl)-9-mesityl-1,10-phenanthroline) (10).

An oven-dry $100-\mathrm{mL}$ three-neck round-bottom flask equipped with reflux condenser was charged with 2-(4-bromo-2,3,5,6-tetramethylphenyl)-3-ethynyl-9-mesityl-[1,10]-phenanthroline ($\mathbf{1 8}, 100 \mathrm{mg}, 187 \mu \mathrm{~mol}$), 1,4-dibutoxy-2,5-diiodobenzene ($\mathbf{1 3}, 44.4 \mathrm{mg}, 93.7 \mu \mathrm{~mol}$) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20.0 \mathrm{mg}, 17.3 \mu \mathrm{~mol})$ under N_{2} atmosphere. After addition of dry $\mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{~mL})$ and dry THF (40 mL), the mixture was refluxed for 12 h under N_{2} atmosphere. Following removal of solvents, the resulting solid was dissolved in DCM and washed with water. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then the solvent was removed. The residue was purified by column chromatography using 5% ethyl acetate in n-hexane as eluent affording $\mathbf{1 0}$ as yellow solid $\left[R_{\mathrm{f}}=0.1\left[n\right.\right.$-pentane $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 1\right]$. Yield $55 \% ; \mathrm{mp}=240{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=8.42\left(\mathrm{~s}, 2 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 8.29\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 7^{\prime}-\mathrm{H}\right), 7.89\left(\mathrm{~d},{ }^{3} J=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\left[5^{\prime} / 6^{\prime}\right]-\mathrm{H}\right), 7.84\left(\mathrm{~d},{ }^{3} J=8.8 \mathrm{~Hz}, 2 \mathrm{H},\left[5^{\prime} / 6^{\prime}\right]-\mathrm{H}\right), 7.57\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 8^{\prime}-\mathrm{H}\right), 6.92(\mathrm{~s}, 4 \mathrm{H}$, $\mathrm{x}^{\prime}-\mathrm{H}$), 6.14 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{t}-\mathrm{H}$), $3.83\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{p}-\mathrm{H}\right.$), 2.43 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{Me}$), $2.30(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me})$, 2.10 (s, $12 \mathrm{H}, \mathrm{Me}$), 2.00 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{Me}$), 1.87-1.80 (m, $4 \mathrm{H}, \mathrm{q}-\mathrm{H}$), 1.66-1.57 (m, $4 \mathrm{H}, \mathrm{r}-\mathrm{H}$), 1.07 $\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{s}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.4,160.6,153.0$, 145.8, $144.6,139.2,138.2,137.8,137.6,136.0,136.0,133.8,133.4,128.9,128.5,127.6,127.1$, 126.9, 125.7, 125.2, 120.3, 116.7, 113.7, 92.3, 92.1, 69.1, 31.3, 29.7, 21.1, 21.0, 20.5, 19.4, 18.5; IR (KBr) v 3429, 2925, 2867, 2359, 2207, 1723, 1611, 1585, 1502, 1457, 1378, 1274, 1210, 1063, 986, 906, 849, 719, 638; ESI-MS: m/z (\%) 1285.8 (100) $[\mathrm{M}+\mathrm{H}]^{+}$; Anal calcd for $\mathrm{C}_{80} \mathrm{H}_{76} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \bullet 1.6 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 68.96 ; H, 5.62; $\mathrm{N}, 3.94$; found: $\mathrm{C}, 68.65 ; \mathrm{H}, 5.27, \mathrm{~N}, 4.34$.

Synthesis of complex C3 $=[\mathbf{C u}(3)(5)]\left(\mathrm{PF}_{6}\right)$.

2,9-Dimesityl-1,10-phenanthroline (3, $6.32 \mathrm{mg}, 15.2 \mu \mathrm{~mol}$), 4-iodopyridine ($\mathbf{5}, 3.11 \mathrm{mg}, 15.2$ $\mu \mathrm{mol})$, and $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{PF}_{6}(5.67 \mathrm{mg}, 15.2 \mu \mathrm{~mol})$ were added to an NMR tube and dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. The resultant mixture was subjected to analytical characterisation without any further purification. Single crystals suitable for X-ray analysis were obtained by the slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into the above mixture. Yield quantitative; mp unknown (decomposition >176 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=8.73\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}\right.$), 8.19 (s, $2 \mathrm{H}, 5-\mathrm{H}$), 7.93 (d, ${ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}$), 7.44 (br, $2 \mathrm{H}, \beta-\mathrm{H}$), 6.97 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{x}-\mathrm{H}$), 6.42 (br, $2 \mathrm{H}, \alpha-\mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 2.03(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=$ $160.8,150.0,144.0,139.9,139.9,137.3,136.2$ (2C), 129.2 (2C), 128.3, 127.6, 127.3, 21.2, 20.5; IR (KBr) v 3435, 2914, 1614, 1579, 1479, 1371, 1298, 1219, 1147, 1112, 1047, 840, 652, 624, 555; ESI-MS: m/z (\%) 684.3 (100) $\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}$; Anal calcd for $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{CuF}_{6} \mathrm{IN}_{3} \mathrm{P} \cdot 1 / 5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 49.91; H, 3.86; N, 4.96; found: C, $50.01 ; \mathrm{H}, 3.53 ; \mathrm{N}, 5.33$.

Synthesis of complex $\mathbf{C 4}=[\operatorname{Zn}(6)(9)](\mathbf{O T f})_{2}$.

In an oven-dried $25-\mathrm{mL}$ single-neck round-bottom flask, a mixture of phenanthrolinepyridine hybrid $6(1.20 \mathrm{mg}, 1.69 \mu \mathrm{~mol})$, terpyridine-pyridine hybrid $9(0.70 \mathrm{mg}, 1.69 \mu \mathrm{~mol})$ and $\mathrm{Zn}(\mathrm{OTf})_{2}(0.62 \mathrm{mg}, 1.69 \mu \mathrm{~mol})$ were refluxed in 15 mL of 1,2 -dichloroethane $/ \mathrm{CH}_{3} \mathrm{CN}$ (1:4) for 2 h . The reaction mixture was then cooled down to room temperature, and solvents were removed under reduced pressure. The resultant mixture was subjected to analytical characterisation without any further purification. Yield quantitative; mp $>250{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=9.03\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime}{ }^{\prime}-\mathrm{H}\right), 8.95\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 7{ }^{\prime}{ }^{\prime}-\mathrm{H}\right), 8.86$ (ddd, ${ }^{3} J=$ $\left.8.4 \mathrm{~Hz},{ }^{4} J=0.8 \mathrm{~Hz},{ }^{5} J=0.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{d}_{1}-\mathrm{H}\right), 8.83\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{e}_{1}-\mathrm{H}\right), 8.64\left(\mathrm{~d},{ }^{3} J=6.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\left[\alpha_{1 /} \alpha_{2}\right]-\mathrm{H}\right), 8.57\left(\mathrm{~d},{ }^{3} J=6.0 \mathrm{~Hz}, 2 \mathrm{H},\left[\alpha_{1 /} \alpha_{2}\right]-\mathrm{H}\right), 8.47\left(\mathrm{~d},{ }^{3} J=9.2 \mathrm{~Hz}, 1 \mathrm{H},\left[5{ }^{\prime} / 6{ }^{\prime}{ }^{\prime}\right]-\mathrm{H}\right), 8.41$ (d, $\left.{ }^{3} J=9.2 \mathrm{~Hz}, 1 \mathrm{H},\left[5^{\prime} / / 6^{\prime}\right]-\mathrm{H}\right), 8.35-8.30\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{c}_{1},[\mathrm{f} / \mathrm{g}]-\mathrm{H}\right), 8.01\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.8^{\prime}{ }^{\prime}-\mathrm{H}\right), 7.93\left(\mathrm{~d},{ }^{3} J=8.8 \mathrm{~Hz}, 2 \mathrm{H},[\mathrm{f} / \mathrm{g}]-\mathrm{H}\right), 7.60\left(\mathrm{ddd},{ }^{3} J=5.2 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz},{ }^{5} J=0.8 \mathrm{~Hz}, 2\right.$ $\left.\mathrm{H}, \mathrm{a}_{1}-\mathrm{H}\right), 7.53\left(\mathrm{~d},{ }^{3} J=6.0 \mathrm{~Hz}, 2 \mathrm{H},\left[\beta_{1 /} \beta_{2}\right]-\mathrm{H}\right), 7.47\left(\mathrm{ddd},{ }^{3} J=8.4 \mathrm{~Hz},{ }^{3} J=5.2 \mathrm{~Hz},{ }^{4} J=0.8\right.$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{b}_{1}-\mathrm{H}\right), 7.41\left(\mathrm{~d},{ }^{3} J=6.0 \mathrm{~Hz}, 2 \mathrm{H},\left[\beta_{1 /} \beta_{2}\right]-\mathrm{H}\right), 6.94\left(\mathrm{t},{ }^{3} J=8.4 \mathrm{~Hz}, 1 \mathrm{H},\left[\mathrm{b}{ }^{\prime} / \mathrm{b}^{\prime}\right]-\mathrm{H}\right)$, $6.92\left(\mathrm{t},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H},\left[\mathrm{b}^{\prime} / \mathrm{b}^{\prime}\right]-\mathrm{H}\right), 6.08\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{a}^{\prime}, \mathrm{a}^{\prime}-\mathrm{H}\right), 2.92(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OMe})$, 2.88 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{OMe}$), $2.37(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 2.01(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}: \mathrm{CD}_{3} \mathrm{CN} / 1: 4\right): \delta=158.3,158.0,157.9,157.4,156.1,150.8,150.5,149.8,148.8,147.3$, $144.1,142.8,142.4,141.9,140.4,137.6,137.5,137.4,133.8,133.5,133.3,132.6,132.5$, $132.1,130.1,130.0,129.7,129.4,128.5,128.1,127.0,126.6,126.5,125.7,125.4,124.0$, $123.7,121.8,115.5,114.9,104.4,104.3,96.5,96.5,94.2,94.1,93.8,89.7,55.8$ (2C), 18.4, 18.0; IR (KBr) v 3436, 2925, 2868, 2358, 2208, 1619, 1499, 1463, 1382, 1272, 1213, 1154, 1113, 1022, 843, 637, 558; ESI-MS: m/z (\%) 592.9 (100) [M-2OTf] ${ }^{2+}$, 1334.2 (30) [M-OTf] ${ }^{+}$. Anal calcd for $\mathrm{C}_{77} \mathrm{H}_{57} \mathrm{~F}_{6} \mathrm{~N}_{7} \mathrm{O}_{10} \mathrm{~S}_{2} \mathrm{Zn} \cdot 9 / 4 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$: C, $57.36 ; \mathrm{H}, 3.90 ; \mathrm{N}, 5.75 ; \mathrm{S}$, 3.76; found: C, 57.37; H, 4.11; N, 5.81; S, 3.34.

Synthesis of isosceles trapezoid TZ $=\left[\mathrm{Cu}_{2} \mathrm{Zn}_{2}(6)_{2}(7)(8)\right]\left(\mathrm{PF}_{6}\right)_{2}(\mathrm{OTf})_{2}$.

In an oven-dried $25-\mathrm{mL}$ single-neck round-bottom flask, a mixture of phenanthrolinepyridine hybrid $6(1.06 \mathrm{mg}, 1.49 \mu \mathrm{~mol})$, bisterpyridine $7(0.51 \mathrm{mg}, 0.75 \mu \mathrm{~mol})$ and $\mathrm{Zn}(\mathrm{OTf})_{2}$
($0.54 \mathrm{mg}, 1.49 \mu \mathrm{~mol}$) was refluxed in 15 mL of $\mathrm{CH}_{3} \mathrm{CN}$ for 2 h . The reaction mixture was then cooled down to room temperature, and solvents were removed at reduced pressure. After addition of solid $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left(\mathrm{PF}_{6}\right)(0.56 \mathrm{mg}, 1.49 \mu \mathrm{~mol})$, bisphenanthroline $8(0.77 \mathrm{mg}$, $0.75 \mu \mathrm{~mol}$) and 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ the resultant mixture was refluxed for 1 h . It was then cooled down to room temperature, then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed at reduced pressure. The residue was subjected to analytical characterisation without any further purification. Yield quantitative; $\mathrm{mp}>250{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=9.12\left(\mathrm{~s}, 2 \mathrm{H}, 4{ }^{\prime}{ }^{-}-\mathrm{H}\right), 9.01\left(\mathrm{~d},{ }^{3} \mathrm{~J}\right.$ $\left.=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 7{ }^{\prime}-\mathrm{H}\right), 8.90(\mathrm{~s}, 4 \mathrm{H}, \mathrm{e}-\mathrm{H}), 8.84(\mathrm{~s}, 2 \mathrm{H}, 4-\mathrm{H}), 8.72\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 7-\mathrm{H}\right)$, 8.70 (d, $\left.{ }^{3} J=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{d}-\mathrm{H}\right), 8.53\left(\mathrm{~d},{ }^{3} J=9.2 \mathrm{~Hz}, 2 \mathrm{H},\left[5^{\prime} / 6^{\prime}{ }^{\prime}\right]-\mathrm{H}\right), 8.49\left(\mathrm{~d},{ }^{3} J=9.2 \mathrm{~Hz}, 2\right.$ $\left.\mathrm{H},\left[5^{\prime} / 6^{\prime}{ }^{\prime}\right]-\mathrm{H}\right), 8.32\left(\mathrm{td},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{c}-\mathrm{H}\right), 8.20\left(\mathrm{~d},{ }^{3} J=9.2 \mathrm{~Hz}, 2 \mathrm{H},[5 / 6]-\right.$ H), $8.16\left(\mathrm{~d},{ }^{3} J=9.2 \mathrm{~Hz}, 2 \mathrm{H},[5 / 6]-\mathrm{H}\right), 8.05\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 8^{\prime}{ }^{\prime}-\mathrm{H}\right), 7.94\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}\right.$, $2 \mathrm{H}, 8-\mathrm{H}), 7.66\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{a}-\mathrm{H}\right), 7.65(\mathrm{~s}, 2 \mathrm{H}, \mathrm{t}-\mathrm{H}), 7.57-7.54(\mathrm{~m}, 8 \mathrm{H},[\mathrm{m} / \mathrm{n}], \mathrm{b}-\mathrm{H})$, 7.22 (d, $\left.{ }^{3} J=8.4 \mathrm{~Hz}, 4 \mathrm{H},[\mathrm{m} / \mathrm{n}]-\mathrm{H}\right), 7.05-6.98\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{x}, \mathrm{y}, \mathrm{b}, \mathrm{b}^{\prime}{ }^{\prime}, \beta_{1}-\mathrm{H}\right), 6.60\left(\mathrm{br}, 4 \mathrm{H}, \alpha_{1}-\right.$ H), $6.13\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{a}{ }^{\prime}-\mathrm{H}\right), 6.11\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{a} \cdot-\mathrm{H}\right), 4.54\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}, 4\right.$ $\mathrm{H}, \mathrm{p}-\mathrm{H}), 2.95$ ($\mathrm{s}, 12 \mathrm{H}, \mathrm{OMe}$), 2.91 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{OMe}$), 2.40 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}$), 2.39 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{Me}$), 2.36 (s, $6 \mathrm{H}, \mathrm{Me}$), 2.07 ($\mathrm{s}, 24 \mathrm{H}, \mathrm{Me}$), 2.06 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{Me}$), 1.98-1.91(m, $4 \mathrm{H}, \mathrm{q}-\mathrm{H}), 1.68-1.61$ (m, $4 \mathrm{H}, \mathrm{r}-\mathrm{H}), 1.03\left(\mathrm{t},{ }^{3} J=7.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{s}-\mathrm{H}\right)$; IR (KBr) v 3442, 3067, 2928, 2871, 2367, 2203, 1601, 1474, 1429, 1259, 1156, 1109, 1027, 842, 788, 730, 689, 636, 557; ESI-MS: m/z (\%) 1992.4 (5) $\left[\mathrm{M}-\mathrm{OTf}, \mathrm{PF}_{6}\right]^{2+}, 1279.6$ (40) $\left[\mathrm{M}-\mathrm{OTf}, 2 \mathrm{PF}_{6}\right]^{3+}, 923.2$ (100) $\left[\mathrm{M}-2 \mathrm{OTf}, 2 \mathrm{PF}_{6}\right]^{4+}$, and 708.4 (10) $\left[\mathrm{M}-3 \mathrm{OTf}, 2 \mathrm{PF}_{6}\right]^{5+}$; Anal calcd for $\mathrm{C}_{218} \mathrm{H}_{180} \mathrm{Cu}_{2} \mathrm{~F}_{24} \mathrm{~N}_{16} \mathrm{O}_{22} \mathrm{P}_{2} \mathrm{~S}_{4} \mathrm{Zn}_{2}$: C, 61.18; H , 4.24; N, 5.24; S, 3.00; found: C, 61.10; H, 4.51; N, 5.12; S, 2.62.

Synthesis of scalene triangle TA $=\left[\mathrm{Cu}_{2} \mathrm{Zn}(6)(9)(10)\right]\left(\mathrm{PF}_{6}\right)_{2}(\mathrm{OTf})_{2}$.

In an oven-dried $25-\mathrm{mL}$ single-neck round-bottom flask, a mixture of phenanthrolinepyridine hybrid $6(1.25 \mathrm{mg}, 1.76 \mu \mathrm{~mol})$, terpyridine-pyridine hybrid $9(0.72 \mathrm{mg}, 1.76 \mu \mathrm{~mol})$ and $\mathrm{Zn}(\mathrm{OTf})_{2}(0.64 \mathrm{mg}, 1.76 \mu \mathrm{~mol})$ was refluxed in 15 mL of $\mathrm{CH}_{3} \mathrm{CN}(1: 4)$ for 2 h . The reaction mixture was then cooled down to room temperature and solvents were removed at reduced pressure. After addition of solid $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left(\mathrm{PF}_{6}\right)(1.31 \mathrm{mg}, 3.52 \mu \mathrm{~mol})$, bisphenanthroline $10(2.26 \mathrm{mg}, 1.76 \mu \mathrm{~mol})$ and 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ the resultant mixture was refluxed for 1 h . It was then cooled down to room temperature. Then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed at reduced pressure. The residue was subjected to analytical characterisation without any further purification. Yield quantitative; $\mathrm{mp}>250{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=9.02\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}$), 8.98 ($\mathrm{s}, 1 \mathrm{H}, 4^{\prime}{ }^{\prime}-\mathrm{H}$), $8.88\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{d}_{1}-\mathrm{H}\right), 8.84\left(\mathrm{~s}, 2 \mathrm{H}, 4^{\prime}\right.$, $\left.4^{\prime \prime}{ }^{\prime}-\mathrm{H}\right), 8.79\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{e}_{1}-\mathrm{H}\right), 8.71\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 7^{\prime}, 7^{\prime}{ }^{\prime}{ }^{\prime}-\mathrm{H}\right), 8.50\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, [5 '"/6'"]-H), $8.42\left(\mathrm{~d},{ }^{3} J=8.8 \mathrm{~Hz}, 1 \mathrm{H},\left[5{ }^{\prime} / 6^{\prime} ’\right]-\mathrm{H}\right), 8.39\left(\mathrm{~d},{ }^{3} J=8.8 \mathrm{~Hz}, 2 \mathrm{H},[\mathrm{f} / \mathrm{g}]-\mathrm{H}\right), 8.30$ $\left(\mathrm{td},{ }^{3} J=8.4 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{c}_{1}-\mathrm{H}\right), 8.20\left(\mathrm{~d},{ }^{3} J=8.8 \mathrm{~Hz}, 2 \mathrm{H},\left[5^{\prime} / 6\right.\right.$ ' or $\left.\left.5^{\prime}{ }^{\prime}{ }^{\prime} / 6^{\prime}{ }^{\prime}{ }^{\prime}\right]-\mathrm{H}\right), 8.15$ (d, ${ }^{3} J=8.8 \mathrm{~Hz}, 2 \mathrm{H},\left[5^{\prime} / 6^{\prime}\right.$ or $\left.5^{\prime}{ }^{\prime} / / 6^{\prime}{ }^{\prime \prime}\right]$]-H), 8.14 (d, $\left.{ }^{3} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 8^{\prime}{ }^{\prime}-\mathrm{H}\right), 7.99$ (d, ${ }^{3} J=8.8$ $\mathrm{Hz}, 2 \mathrm{H},[\mathrm{f} / \mathrm{g}]-\mathrm{H}), 7.94\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 8^{\prime}, 8^{\prime \prime}{ }^{\prime}-\mathrm{H}\right), 7.60\left(\mathrm{~d},{ }^{3} \mathrm{~J}=4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{a}_{1}-\mathrm{H}\right), 7.47$ (dd, $\left.{ }^{3} J=8.4 \mathrm{~Hz},{ }^{3} J=4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{b}_{1}-\mathrm{H}\right), 7.28\left(\mathrm{br}, 2 \mathrm{H}, \beta_{2}-\mathrm{H}\right), 7.12\left(\mathrm{br}, 2 \mathrm{H}, \beta_{1}-\mathrm{H}\right), 7.04\left(\mathrm{t},{ }^{3} J\right.$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{b}^{\prime}{ }^{\prime}-\mathrm{H}$), $6.96\left(\mathrm{br} \mathrm{s}, 8 \mathrm{H}, \alpha_{1}, \alpha_{2}, \mathrm{x}_{1}, \mathrm{y}_{1}-\mathrm{H}\right), 6.85\left(\mathrm{t},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{b} \cdot-\mathrm{H}\right), 6.39$ (s, $2 \mathrm{H}, \mathrm{t}-\mathrm{H}$), $6.17\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{a}{ }^{\prime}-\mathrm{H}\right), 6.08\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{a}{ }^{\prime}-\mathrm{H}\right), 3.79\left(\mathrm{t},{ }^{3} J=\right.$ $6.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{p}-\mathrm{H}$), 3.03 (s, $6 \mathrm{H}, \mathrm{OMe}$), 2.85 (s, $6 \mathrm{H}, \mathrm{OMe}$), 2.36 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}$), 2.35 (s, 12 H , Me), 2.32 (s, $6 \mathrm{H}, \mathrm{Me}$), 2.03 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{Me}$), 1.95 ($\mathrm{s}, 18 \mathrm{H}, \mathrm{Me}$), 1.69-1.61 (m, $4 \mathrm{H}, \mathrm{q}-\mathrm{H}$), 1.511.41 (m, $4 \mathrm{H}, \mathrm{r}-\mathrm{H}$), 0.98 (t, ${ }^{3} J=7.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{s}-\mathrm{H}$); IR (KBr) v 3436, 2960, 2925, 2900, 2204, 1602, 1473, 1426, 1369, 1260, 1155, 1107, 1024, 840, 727, 634, 554; ESI-MS m/z (\%) 1445.3 (25) $\left[\mathrm{M}-\mathrm{PF}_{6}, \mathrm{OTf}\right]^{2+}, 915.3$ (100) $\left[\mathrm{M}-2 \mathrm{PF}_{6}, \mathrm{OTf}\right]^{3+}, 649.4$ (10) $\left[\mathrm{M}-2 \mathrm{PF}_{6}, 2 \mathrm{OTf}\right]^{4+}$. Anal calcd for $\mathrm{C}_{157} \mathrm{H}_{133} \mathrm{Br}_{2} \mathrm{Cu}_{2} \mathrm{~F}_{18} \mathrm{~N}_{11} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{~S}_{2} \mathrm{Zn} \bullet 4 / 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 57.64 ; $\mathrm{H}, 4.14 ; \mathrm{N}, 4.67$; S, 1.94; found: C, 58.01; H, 4.29; N, 4.70; S, 1.54.

Calculation of Degree of self-sorting ($M)^{5}$

$\left[\mathrm{Cu}(\mathbf{1})_{2}\right]^{++}[\mathrm{Cu}(\mathbf{1})(\mathbf{2})]^{+}+[\mathrm{Cu}(\mathbf{2})(\mathbf{5})]^{+}+\left[\mathrm{Zn}(\mathbf{3})_{2}\right]^{2+}+[\mathrm{Zn}(\mathbf{1})(\mathbf{3})]^{2+}+[\mathrm{Zn}(\mathbf{2})(\mathbf{5})]^{2+}+\left[\mathrm{Zn}(\mathbf{3})(\mathbf{5})_{4}\right]^{2+}+[\mathrm{Zn}(\mathbf{1})(\mathbf{2})(\mathbf{5})]^{2+}$
$\left[\mathrm{Cu}(\mathbf{2})_{2}\right]^{+}+[\mathrm{Cu}(\mathbf{1})(\mathbf{3})]^{+}+[\mathrm{Cu}(\mathbf{3})(\mathbf{5})]^{+}+\left[\mathrm{Zn}(\mathbf{5})_{4}\right]^{2+}+\left[\mathrm{Zn}(\mathbf{1})(\mathbf{5})_{3}\right]^{2+}+\left[\mathrm{Zn}(\mathbf{2})(\mathbf{5})_{2}\right]^{2+}+\left[\mathrm{Zn}(\mathbf{1})_{2}(\mathbf{5})\right]^{2+}+[\mathrm{Zn}(\mathbf{1})(\mathbf{3})(\mathbf{5})]^{2+}$
$\left[\mathrm{Cu}(\mathbf{3})_{2}\right]^{+}+[\mathrm{Cu}(\mathbf{1})(\mathbf{5})]^{+}+\left[\mathrm{Cu}(\mathbf{3})(\mathbf{5})_{2}\right]^{+}+\left[\mathrm{Zn}(\mathbf{5})_{5}\right]^{2+}+\left[\mathrm{Zn}(\mathbf{1})(\mathbf{5})_{4}\right]^{2+}+\left[\mathrm{Zn}(\mathbf{2})(\mathbf{5})_{3}\right]^{2+}+\left[\mathrm{Zn}(\mathbf{1})_{2}(\mathbf{5})_{2}\right]^{2+}+\left[\mathrm{Zn}(\mathbf{1})(\mathbf{3})(\mathbf{5})_{2}\right]^{2+}$
$\left[\mathrm{Cu}(\mathbf{5})_{3}\right]^{+}+\left[\mathrm{Cu}(\mathbf{1})(\mathbf{5})_{2}\right]^{+}+\left[\mathrm{Zn}(\mathbf{1})_{2}\right]^{2+}+\left[\mathrm{Zn}(\mathbf{5})_{6}\right]^{2+}+\left[\mathrm{Zn}(\mathbf{1})(\mathbf{5})_{5}\right]^{2+}+\left[\mathrm{Zn}(\mathbf{3})(\mathbf{5})_{2}\right]^{2+}+\left[\mathrm{Zn}(\mathbf{3})_{2}(\mathbf{5})\right]^{2+}+[\mathrm{Zn}(\mathbf{3})(\mathbf{2})(\mathbf{5})]^{2+}$
$\left[\mathrm{Cu}(\mathbf{5})_{4}\right]^{+}+[\mathrm{Cu}(\mathbf{2})(\mathbf{3})]^{+}+\left[\mathrm{Zn}(\mathbf{2})_{2}\right]^{2+}+[\mathrm{Zn}(\mathbf{1})(\mathbf{2})]^{2+}+[\mathrm{Zn}(\mathbf{2})(\mathbf{3})]^{2+}+\left[\mathrm{Zn}(\mathbf{3})(\mathbf{5})_{3}\right]^{2+}+\left[\mathrm{Zn}(\mathbf{3})_{2}(\mathbf{5})_{2}\right]^{2+}$

Dynamic library

Degree of self-sorting $(M)=P d P=39 / 2=19.5$
$P_{0}=$ the number of all possible aggregates
$P=$ number of observed assemblies in the experiment

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathbf{6}$. An expanded aromatic part of the spectrum is shown at the bottom.

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of 6. An expanded aromatic part of the spectrum is shown at the bottom.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of $\mathbf{1 4}$.

Figure S4. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of $\mathbf{1 4}$.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of 7. An expanded aromatic part of the spectrum is shown at the bottom.

Figure S6. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of 7.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of 9 . An expanded aromatic part of the spectrum is shown at the bottom.

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathbf{9}$.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of 10. An expanded aromatic part of the spectrum is shown at the bottom.

Figure S10. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathbf{1 0}$. An expanded aromatic part of the spectrum is shown at the bottom.

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of $\mathbf{C} 3=[\mathrm{Cu}(\mathbf{3})(\mathbf{5})]\left(\mathrm{PF}_{6}\right)$.

Figure S12. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of $\mathbf{C} \mathbf{3}=[\mathrm{Cu}(\mathbf{3})(\mathbf{5})]\left(\mathrm{PF}_{6}\right)$. An expanded aromatic part of the spectrum is shown at the bottom.

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of $\mathbf{C 4}=[\mathrm{Zn}(\mathbf{6})(\mathbf{9})](\mathrm{OTf})_{2}$. An expanded aromatic part of the spectrum is shown at the bottom.

Figure S14. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}: \mathrm{CD}_{3} \mathrm{CN} / 1: 4,298 \mathrm{~K}$) of $\mathbf{C 4}=$ $[\mathrm{Zn}(\mathbf{6})(\mathbf{9})](\mathrm{OTf})_{2}$.

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of $\mathbf{T Z}=$ $\left[\mathrm{Cu}_{2} \mathrm{Zn}_{2}(\mathbf{6})_{2}(7)(\mathbf{8})\right]\left(\mathrm{PF}_{6}\right)_{2}(\mathrm{OTf})_{2}$. An expanded aromatic part of the spectrum is shown at the bottom.

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum ($\left.400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ of $\quad \mathbf{T A}=$ $\left[\mathrm{Cu}_{2} \mathrm{Zn}(\mathbf{6})(\mathbf{9})(\mathbf{1 0})\right]\left(\mathrm{PF}_{6}\right)(\mathrm{OTf})_{2}$. An expanded aromatic part of the spectrum is shown at the bottom.
(e)

Figure S17. Partial ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of (a) $\mathbf{C 4}=$ $[\mathrm{Zn}(\mathbf{6})(\mathbf{9})](\mathrm{OTf})_{2}$; (b) after addition of 0.33 equiv of $\left[\mathrm{Cu}_{2}(\mathbf{1 0})\right]\left(\mathrm{PF}_{6}\right)_{2}$ (related to the initial amount of $\mathbf{C 4}$; (c) after addition of 0.66 equiv of $\left[\mathrm{Cu}_{2}(\mathbf{1 0})\right]\left(\mathrm{PF}_{6}\right)_{2}$ (related to the initial amount of $\mathbf{C 4}$; (d) after addition of 1.00 equiv of $\left[\mathrm{Cu}_{2}(\mathbf{1 0})\right]\left(\mathrm{PF}_{6}\right)_{2}$ (related to the initial amount of $\mathbf{C 4}$, (e) zoom-in view of S14 (d) from 6.80 to 7.30 ppm .

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of (a) $\mathbf{C 1}$; (b) $\mathbf{C 3}$; (c) an equimolar mixture of $\mathbf{1 , 2 , 3}, \mathbf{5}$ in presence of $\mathrm{Zn}(\mathrm{OTf})_{2}$ and $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{PF}_{6}$.

Figure S19. Partial ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of (a) C4; (b) TA; (c) TZ; (d) $\left[\mathrm{Zn}_{2}(\mathbf{6})_{2}(\mathbf{7})\right](\mathrm{OTf})_{4}$

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectra

Figure S20. Partial ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of $\mathbf{C 4}$.

Figure S21. Partial ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of $\mathbf{T Z}$.

Figure S22. Partial ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$) of TA.

DOSY NMR Spectra

Figure S23. DOSY plot of isosceles trapezoid $\mathbf{T Z}=\left[\mathrm{Zn}_{2} \mathrm{Cu}_{2}(\mathbf{8})(\mathbf{6})_{2}(7)\right](\mathrm{OTf})_{4}\left(\mathrm{PF}_{6}\right)_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S24. DOSY plot of scalene triangle TA $=\left[\mathrm{Cu}_{2} \mathrm{Zn}(\mathbf{6})(\mathbf{9})(\mathbf{1 0})\right]\left(\mathrm{PF}_{6}\right)_{2}(\mathrm{OTf})_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

ESI-MS spectra

Figure S25. ESI-MS spectrum of $\mathbf{C 3}=[\mathrm{Cu}(\mathbf{3})(\mathbf{5})]\left(\mathrm{PF}_{6}\right)$ (in DCM) and experimental isotopic distribution (black) along with calculated isotopic distribution (red) for $[\mathrm{Cu}(\mathbf{3})(\mathbf{5})]^{+}$.

Figure S26. ESI-MS spectrum of an equimolar mixture of $\mathbf{1 , 2 , 3 , 5}$ in presence of $\mathrm{Zn}(\mathrm{OTf})_{2}$ and $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{PF}_{6}$.

Figure S27. ESI-MS spectrum of $\mathbf{C 4}=[\mathrm{Zn}(\mathbf{6})(9)](\mathrm{OTf})_{2}\left(\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and experimental isotopic distribution (black) along with calculated isotopic distribution (red) for $\left[\mathrm{Zn}_{2}(\mathbf{6})(\mathbf{9})\right]^{2+}$ and $\left[\mathrm{Zn}_{2}(\mathbf{6})(\mathbf{9})\right](\mathrm{OTf})^{+}$.

Figure S28. ESI-MS spectrum of $\mathbf{T Z}=\left[\mathrm{Cu}_{2} \mathrm{Zn}_{2}(\mathbf{6})_{2}(\mathbf{7})(\mathbf{8})\right]\left(\mathrm{PF}_{6}\right)_{2}(\mathrm{OTf})_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and experimental isotopic distributions (black lines) along with calculated isotopic distributions
(red lines) for peaks associate with $\left[\mathrm{Cu}_{2} \mathrm{Zn}_{2}(\mathbf{6})_{2}(\mathbf{7})(\mathbf{8})\right](\mathrm{OTf})_{2}{ }^{4+},\left[\mathrm{CuZn}_{2}(\mathbf{6})(7)(\mathbf{8})\right](\mathrm{OTf})_{2}{ }^{3+}$, and $\left[\mathrm{Cu}_{2} \mathrm{Zn}_{2}(\mathbf{6})_{2}(\mathbf{7})(\mathbf{8})\right](\mathrm{OTf})_{3}{ }^{3+}$.

Figure S29: ESI-MS spectrum of $\mathbf{T A}=\left[\mathrm{Cu}_{2} \mathrm{Zn}(\mathbf{6})(\mathbf{9})(\mathbf{1 0})\right]\left(\mathrm{PF}_{6}\right)_{2}(\mathrm{OTf})_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and experimental isotopic distributions (black lines) along with calculated isotopic distributions (red lines) for the peaks associated with $\left[\mathrm{Cu}_{2} \mathrm{Zn}(\mathbf{6})(\mathbf{9})(\mathbf{1 0})\right]^{4+},\left[\mathrm{Cu}_{2} \mathrm{Zn}(\mathbf{6})(\mathbf{9})(\mathbf{1 0})\right](\mathrm{OTf})^{3+}$ and $\left[\mathrm{Cu}_{2} \mathrm{Zn}(\mathbf{6})(\mathbf{9})(\mathbf{1 0})\right]\left(\mathrm{PF}_{6}\right)(\mathrm{OTf})^{2+}$.

Binding Constants

Figure S30. UV-Vis absorption of $0.50 \times 10^{-5} \mathrm{M}\left[\mathrm{Cu}_{2}(\mathbf{8})\right]\left(\mathrm{PF}_{6}\right)_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ upon addition of $\left[\mathrm{Zn}_{2}(\mathbf{6})_{2}(\mathbf{7})\right](\mathrm{OTf})_{4}\left(1.26 \times 10^{-4} \mathrm{M}\right)$ at $25{ }^{\circ} \mathrm{C}$. Result: $\log \beta=6.32 \pm 0.26$. The data was analysed in the wavelength region $200-600 \mathrm{~nm}$.

Figure S31. UV-Vis absorption of $0.98 \times 10^{-5} \mathrm{M}\left[\mathrm{Cu}_{2}(\mathbf{1 0})\right]\left(\mathrm{PF}_{6}\right)_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ upon addition of $\mathbf{C 4}=[\mathrm{Zn}(\mathbf{6})(\mathbf{9})](\mathrm{OTf})_{2}\left(0.23 \times 10^{-3} \mathrm{M}\right)$ at $25^{\circ} \mathrm{C}$. Result: $\log \beta=5.43 \pm 0.26$. The data was analysed in the wavelength region 200-600 nm.

Determination of relative binding constant for $[\mathbf{Z n}(1)(2)]^{2+}$-types of motifs

Unfortunately, direct determination of the overall binding constant for $[\mathrm{Zn}(\mathbf{1})(\mathbf{2})]^{2+}$ motifs was impossible, because (i) $[\mathrm{Zn}(\mathbf{1})]^{2+}$ motifs are always in equilibrium with $\left[\mathrm{Zn}(\mathbf{1})_{2}\right]^{2+}$ even at a $1: 1$ ratio of Zn^{2+} and $\mathbf{1}$, and (ii) upon addition of terpyridine $\mathbf{2}$ to a $1: 1$ mixture of Zn^{2+} and $\mathbf{1},\left[\mathrm{Zn}(\mathbf{2})_{2}\right]^{2+}$ complex is produced as a kinetically controlled product that only dissociates with time to the thermodynamically more stable $[\mathrm{Zn}(\mathbf{1})(\mathbf{2})]^{2+}$ complex. The kinetics of these complex pathways is too slow to get reliable spectroscopic data from UV Vis.
As a way out we determined the complexation constant for $[\mathrm{Zn}(\mathbf{1})(2)]^{2+}$ motifs indirectly via a thermochemical cycle, as described in Scheme $1 .{ }^{6}$ The ratio of $(\mathbf{C} 1+\mathbf{C} 2):(\mathbf{C 5}+\mathbf{C 6})$ in full equilibrium was determined to 1:0.06 (Figure S31), as based on ${ }^{1} \mathrm{H}-\mathrm{NMR}$ integration. The overall binding constant $(\log \beta)$ for $\mathbf{C 2}, \mathbf{C 5}$, and $\mathbf{C 6}$ are 9.47, 10.27, and 12.40, respectively. ${ }^{7}$

Scheme S1: Reshuffling of components in a 6-component completive library. ${ }^{6}$

Using the thermochemical cycle, we derived $\log \beta_{\mathrm{C} 1}$ as:

$$
\log \beta_{\mathrm{C} 1}=\log \left(K_{e q}\right)-\log \beta_{\mathrm{C} 2}+\log \beta_{\mathrm{C} 5}+\log \beta_{\mathrm{C} 6}
$$

Implementing the experimental values into the above equation, we determined $\log \beta_{\mathbf{C} 1} \approx 14$

Figure S32. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$) of an equimolar mixture of $\mathbf{C 5}$ and C6 after full equilibration. The spectrum was recorded after 26 min of mixing at 298 K. ${ }^{6}$ Integrals were measured by using MestRe-C software. Peaks at $5.72 \mathrm{ppm}\left(\mathbf{C 5}, \mathrm{a}^{\prime}{ }^{\prime \prime}-\mathrm{H}\right)$, $6.02 \mathrm{ppm}\left(\mathbf{C 1}, \mathrm{a}^{\prime}{ }^{\prime \prime}-\mathrm{H}\right), 5.95 \mathrm{ppm}\left(\mathbf{C 2}, \mathrm{a}^{\prime \prime}{ }^{\prime}-\mathrm{H}\right)$ and $6.17 \mathrm{ppm}\left(\mathbf{C 6}, \mathrm{a}{ }^{\prime}{ }^{\prime \prime}-\mathrm{H}\right)$ were used.

X-ray structure analysis

Compound name	C3 (CCDC 933109)
Empirical formula	$\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{CuIN}_{3} \mathrm{~F}_{6} \mathrm{P}$
Formula weight	830.05
Temperature/ K	171(2)
Wavelength/ Å	0.71073
Crystal system	triclinic
Space group	$P \bar{l}$
a/ \AA	11.8031(6)
b/ A	12.1213(6)
c/ Å	14.0357(7)
$\alpha /$ deg	91.4930(10)
$\beta /$ deg	113.8990(10)
γ / deg	111.5580(10)
Volume/ \AA^{3}	1670.95(14)
Z	2
Density (calculated) (g/cm ${ }^{3}$)	1.650
Absorption coefficient ($\mathrm{mm}^{-1)}$	1.689
$\mathrm{F}(000)$	828
Reflections collected	20122
Independent reflections	$8042[R(\mathrm{int})=0.0260]$
Reflections with I >	6675
$2 \operatorname{sigma}(\mathrm{I})$	
Absorption correction type	Multi-scan
Refinement method	Full-matrix least-squares on F^{2}
Goodness-of-fit on F^{2}	1.027
Final R indices	$\begin{gathered} {[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})] R 1=0.0314,} \\ w R 2=0.0710 \end{gathered}$
R indices (all data)	$R 1=0.0431, w R 2=0.0754$

Table S2. Selected bond lengths (\AA) and angles (deg) for C3

$\mathrm{Cu} 1-\mathrm{N} 1$	$1.9948(18)$	N1-Cu1-N2	$81.25(7)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$2.0997(17)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$150.04(7)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$1.9135(18)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 3$	$128.66(7)$

Figure S33: Solid state structure of (a) $\mathbf{C 3}=[\mathrm{Cu}(\mathbf{3})(\mathbf{5})] \mathrm{PF}_{6}$ (thermal ellipsoids were drawn at the 50% probability level) (b) Ball and stick representation of the packing diagram of C3. Hydrogen atoms are omitted for clarity.

Energy minimised structures using MM+ force field

Figure S34. Energy minimised structure of the heteroleptic complex C4. Counter anions are not included. Hydrogens are omitted for clarity.

Figure S35. Energy minimised structure of the isosceles trapezoid TZ. Counter anions and alkoxy chains are not included. Hydrogens are omitted for clarity.

Figure S36. Energy minimised structure of the scalene triangle TA. Counter anions and alkoxy chains are not included. Hydrogens are omitted for clarity.

References

(1) UV-Vis titrations were analysed by fitting the whole series of spectra at 0.5 nm intervals using the software SPECFIT. The SPECFIT program analyses equilibrium data sets using singular value decomposition and linear regression modeling by the Levenberg-Marquardt method to determine cumulative binding constant. (a) H. Gampp, M. Maeder, C. J. Meyer, A. D. Zuberbühler, Talanta 1986, 33, 943.
(2) (a) G. M. Sheldrick, SHELXS97: Program for Crystal Structure Determination; University of Göttingen: Göttingen, Germany, 1997. (b) G. M. Sheldrick, Program for Crystal Structural Refinement; University of Göttingen: Göttingen, Germany, 1997. (c) G. M. Sheldrick, Acta Cryst., 2008, A64, 112.
(3) (a) K. Mahata and M. Schmittel, J. Am. Chem. Soc., 2009, 131, 16544. (b) K. Mahata, M.
L. Saha and M. Schmittel, J. Am. Chem. Soc., 2010, 132, 15933.
(4) M. Schmittel and K. Mahata, Inorg. Chem., 2009, 48, 822.
(5) M. L. Saha and M. Schmittel, Org. Biomol. Chem., 2012, 10, 4651.
(6) M. L. Saha, S. Pramanik and M. Schmittel, Chem. Commun. 2012, 48, 9459.
(7) (a) M. Schmittel, , R. S. K. Kishore, H. Cölfen and J. W. Bats, J. Am. Chem. Soc., 2005, 127, 11544. (b) V. Kalsani, Dissertation, University of Siegen, 2005.

