Electronic Supporting Information (ESI)

for

Merging strong and weak coordination motifs in the integrative self-sorting of a 5-component trapezoid and scalene triangle

Manik Lal Saha[‡], Jan W. Bats,[§] and Michael Schmittel^{*,‡}

[‡]Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany. [§]Institut für Organische Chemie und Chemische Biologie, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, D-60438, Frankfurt am Main, Germany.

E-mail: schmittel@chemie.uni-siegen.de; Fax: (+49) 271-740-3270

Table of Contents

1	Synthesis	S2
2	Calculation of degree of self-sorting (M)	S 11
3	¹ H and ¹³ CNMR spectra	S12
4	¹ H- ¹ H COSY NMR spectra	S20
5	DOSY NMR spectra	S22
6	ESI-MS spectra	S23
7	Binding Constants	S26
8	X-ray structure analysis	S29
9	Energy minimised structure using MM+ force field	S 31
10	References	S32

Synthesis

General. All commercial reagents were used without further purification. Solvents were dried with appropriate desiccants and distilled prior to use. Silica gel (60-230 mesh) was used for column chromatography. ¹H NMR and ¹³C NMR were measured at 298 K on a Bruker Avance 400 MHz spectrometer equipped with a 5 mm dual probe. Residual solvent signals are used as internal reference. The following abbreviations were utilised to describe peak patterns: s = singlet, d = doublet, t = triplet, dd = doublet of doublets, td = triplet of doublets, dt = doublet of triplets, ddd = doublet of doublet of doublets, br = broad and m = multiplet.The numbering of carbon atoms in the molecular formulae is only used for assignment of NMR signals and thus is not necessarily in accordance with IUPAC nomenclature rules. DOSY NMR data were recorded on a Varian VNMR-S 600 MHz spectrometer equipped with a 3 mm triple resonance inverse probe. All DOSY measurements were carried out without temperature regulation (room temperature was 298 K) using the 'Dbppste' pulse sequence from the Varian library. UV-Vis spectra were recorded on a Varian Cary 100 BioUV/Visible spectrometer. Binding constants were determined using the SPECFIT/32 global analysis system by Spectrum Software Associates (Marlborough,MA).¹ Electrospray ionisation mass spectra (ESI-MS) were recorded on a Thermo-Quest LCQ Deca. Melting points were measured on a Büchi SMP-20 instrument. Infrared spectra were recorded using a Varian 1000 FT-IR instrument. Elemental analysis measurements were done using the EA 3000 CHNS. Xray single-crystal diffraction data for C3 were collected on Siemens SMART 1K CCD areadetector diffractometer. The structure was solved using SHELXS-97 and refined by fullmatrix least-squares analysis.² Hydrogen atoms were generated theoretically onto the specific atoms and refined using a riding atom model. Non-hydrogen atoms were refined with anisotropic thermal parameters. An empirical absorption correction resulted in a correction range of 0.531 to 0.602. Further details are provided in the section of X-ray structure analysis. Energy minimised structures were obtained using the MM⁺ forced field as implemented in Hyperchem[®] 8.0. Complex C1, compounds 11 as well as 12 (precursors for 6), 17 (precursors for 9), 3 18 (precursors for 10) and 8⁴ were synthesised as described earlier.

Chart 1: Ligands used in the present study.

Synthesis of 2,9-bis(2,6-dimethoxyphenyl)-3-((2,3,5,6-tetramethyl-4-(pyridin-4-ylethynyl)phenyl)ethynyl)-1,10-phenanthroline (6).

An oven-dried 100 mL three-neck round-bottom flask was charged with 2,9-bis(2,6-dimethoxyphenyl)-3-ethynyl-1,10-phenanthroline (11, 50.0 mg, 104 µmol), 4-((4-iodo-2,3,5,6-tetramethylphenyl)ethynyl)pyridine (12, 45.0 mg, 125 µmol) and Pd(PPh₃)₄ (35.0 mg, 30.3 µmol) under nitrogen atmosphere. After addition of dry DMF (20 mL) and triethylamine (20 mL), the solution was degassed thrice by freeze-pump-thaw cycles. Finally, tri-tert-butylphosphine (100 µL) was added to this mixture, which was refluxed at 80 °C for 24 h under nitrogen atmosphere. The mixture was then cooled down to room temperature and the solvents were removed under reduced pressure. The residue was dissolved in DCM (200 mL) and washed with water (150 mL). After drying over Na₂SO₄, the organic solvent was evaporated to afford a brown residue. The crude product was purified using column chromatography (SiO₂, DCM:EtOAC= 4:1 [R_f =0.45 [EtOAC:CH₂Cl₂, 1:1]). Yield 77%; mp >275 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.60$ (d, ${}^{3}J = 6.0$ Hz, 2 H, α_{1} -H), 8.46 (s, 1 H, 4''-H), 8.24 (d, ${}^{3}J = 8.4$ Hz, 1 H, 7"-H), 7.83 (d, ${}^{3}J = 8.8$ Hz, 1 H, [5"/6"]-H), 7.80 (d, ${}^{3}J = 8.8$ Hz, 1 H, [5"/6"]-H), 7.65 (d, ${}^{3}J = 8.4$ Hz, 1 H, 8''-H), 7.38 (d, ${}^{3}J = 6.0$ Hz, 2 H, β_{1} -H), 7.30 (t, ${}^{3}J = 8.4$ Hz, 1 H, [b''/b']-H), 7.30 (t, ${}^{3}J = 8.4$ Hz, 1 H, [b''/b']-H), 6.65 (d, ${}^{3}J = 8.4$ Hz, 2 H, [a''/a']-H), 6.63 (d, ${}^{3}J = 8.4$ Hz, 2 H, [a''/a']-H), 3.73 (s, 6 H, OMe), 3.68 (s, 6 H, OMe), 2.42 (s, 6 H, Me), 2.17 (s, 6 H, Me); ¹³C NMR (100 MHz, CD₂Cl₂): $\delta = 158.5$, 156.7, 156.0, 150.0, 146.3, 145.2, 139.1, 136.5, 136.5, 136.2, 132.2, 132.1, 130.3, 130.2, 128.3, 127.5, 127.4, 126.1, 126.1, 125.5, 124.3, 122.6, 121.4, 119.6, 118.9, 104.4, 104.2, 96.5, 95.7, 93.4, 93.2, 56.3, 56.2, 18.5, 18.1; IR (KBr) v 3427, 2933, 2833, 2204, 1591, 1468, 1433, 1249, 1182, 1109, 1027, 908, 847, 818, 783, 735, 650, 563; ESI-MS m/z (%) 710.9 (100) $[M + H]^+$; Anal. calcd for C₄₇H₃₉N₃O₄•2/3CH₂Cl₂: C, 74.70; H, 5.30; N, 5.48. Found: C, 74.41; H, 5.20; N, 5.58.

Synthesis of 2,5-dibutoxyterephthalaldehyde (14).

To a solution of 1,4-dibutoxy-2,5-diiodobenzene (**13**, 4.00 g, 8.43 mmol) in dry diethyl ether (100 mL), 2.5 M solution of *n*-BuLi in *n*-hexane (8.40 mL, 21.0 mmol) was added slowly at 0 °C under N₂ atmosphere over a period of 20 min. After 9 h, dry DMF (1.60 mL, 20.7 mmol) was added. The resulting solution was then stirred for further 20 h under nitrogen atmosphere while warming up from 0 °C to room temperature . The reaction was neutralised with saturated NH₄Cl and extracted with DCM (150 mL). The organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The remaining solution was kept at -32 °C for 1 day for crystallisation. Yellow crystals were filtered off and washed with cold *n*-hexane and dried under vacuum to afford **14** as a pure product. Yield 50%; mp = 67 °C; ¹H NMR (400 MHz, CD₂Cl₂): δ = 10.5 (s, 2 H, u-H), 7.42 (s, 2 H, t-H), 4.10 (t, ³J = 6.8 Hz, 4 H, p-H), 1.85-1.80 (m, 4 H, q-H), 1.56-1.47 (m, 4 H, r-H), 0.98 (t, ³J = 7.6 Hz, 6 H, s-H); ¹³C NMR (100 MHz, CD₂Cl₂): δ = 189.5, 155.6, 129.7, 111.8, 69.4, 31.5, 19.6, 13.9; IR (KBr) v 3351, 3052, 2951, 2873, 2759, 1982, 1681, 1486, 1427, 1371, 1282, 1213, 1121, 1065, 1023, 976, 887, 837, 741, 688, 507, 456; Anal calcd for C₁₆H₂₂O₄: C, 69.04; H, 7.97; found: C, 69.07; H, 8.05.

Synthesis of 2''',5'''-bis-[4'-[(2,2':6',2'')terpyridyl]]-1''',4'''-dibutoxybenzene (7).

Solid NaOH (1.92 g, 48.0 mmol) was added to a methanolic solution (75 mL) of 2,5-dibutoxyterephthalaldehyde (14, 672 mg, 2.41 mmol) and 1-(pyridin-2-yl)ethanone (15, 1.32 g, 10.9 mmol). The mixture was stirred for 12 h at room temperature. After removing the solvent, 100 mL of water was added and the product extracted with DCM (150 mL). The organic layer was subsequently dried over Na₂SO₄ and evapourated to dryness. The solid residue was treated with ammonium acetate (5.50 g, 71.3 mmol) in EtOH (100 mL) at 80 °C for 20 h. The solution was then cooled, reduced in volume, and water (100 ml) was added. The mixture was extracted with DCM, and the organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The desired product **7** was finally purified by crystallisation; diethyl ether was diffused into a DCM solution of the crude mixture to afford the pure product as pale brown crystals. Yield: $\leq 10\%$; mp = 198 °C; ¹H NMR (400 MHz, CD₂Cl₂): $\delta = 8.79$ (s, 4 H, e-H), 8.72 (ddd, ³*J* = 4.8 Hz, ⁴*J* = 2.0 Hz, ⁵*J* = 1.0 Hz, 4 H, a-H), 8.70 (ddd, ³*J* = 7.6 Hz, ⁴*J* = 1.0 Hz, ⁵*J* = 1.0 Hz, 4 H, d-H), 7.91 (td, ³*J* = 7.6 Hz, ⁴*J* = 2.0 Hz, 4 H, c-H), 7.37 (ddd, ³*J* = 7.6 Hz, ⁴*J* = 1.0 Hz, ⁴*J* = 1.0 Hz, ⁴*J* = 1.0 Hz, ⁴*J* = 1.0 Hz, 4 H, b-H), 7.28 (s, 2 H, t-H), 4.09 (t, ³*J* = 6.2 Hz, 4 H, p-H), 1.76-1.69 (m, 4 H, q-H), 1.52-1.42 (m, 4 H, r-H), 0.84 (t, ³*J* = 7.2 Hz, 6 H, s-H); ¹³C NMR (100 MHz, CD₂Cl₂): $\delta = 156.7$, 155.6, 151.1, 149.5, 148.2, 137.1, 130.0, 124.1, 121.9, 121.3, 115.9, 69.9, 31.8, 19.7, 13.9; IR (KBr) *v* 3432, 3041, 3014, 2955, 2868, 1582, 1504, 1466, 1386, 1334, 1242, 1208, 1119, 1066, 1024, 962, 886, 792, 736, 677, 617, 514; ESI-MS: *m/z* (%) 685.4 (100) [M + H]⁺; Anal calcd for C₄₄H₄₀N₆O₂•4/5CH₂Cl₂: C, 71.48; H, 5.57; N, 11.16; found: C, 71.15; H, 5.53; N, 10.96.

Synthesis of 4'-(4-pyridin-4-ylethynyl-phenyl)-[2,2';6',2'']terpyridine (9).

Under N₂ atmosphere 4-ethynylpyridine hydrochloride (**16**, 38.3 mg, 274 µmol), 4'-(4iodophenyl)-[2,2';6',2'']terpyridine (**17**, 100 mg, 229 µmol) and Pd(PPh₃)₄ (25.0 mg, 21.6 µmol) were placed in an oven-dry 100-mL three-neck round-bottom flask. After addition of dry benzene (10 mL), dry Et₃N (10 mL) and dry DMF (5 mL), the reaction mixture was stirred at 80 °C for 20 h under N₂ atmosphere. The reaction mixture was then cooled down to room temperature and the solvents were removed under reduced pressure. The residue was dissolved in DCM (100 mL) and washed first with aqueous KOH (200 mL), then with water (200 mL). After drying over Na₂SO₄, the organic solvent was evaporated to afford a brown residue. The crude product was purified using column chromatography (SiO₂, DCM:EtOAC = 1:1 to DCM:MeOH= 99:1 [R_f =0.35 [EtOAC:CH₂Cl₂, 1:1]). Yield: 45%; mp = 156 °C; ¹H NMR (400 MHz, CDCl₂): δ = 8.77 (s, 2 H, e₁-H), 8.72 (d, ³*J* = 4.4 Hz, 2 H, a₁-H), 8.68 (d, ³*J* = 8.0 Hz, 2 H, d₁-H), 8.61 (d, ³*J* = 6.0 Hz, 2 H, α₂-H), 7.93 (d, ³*J* = 8.4 Hz, 2 H, [f/g]-H), 7.43 (d, ³*J* = 6.0 Hz, 2 H, β₂-H), 7.40-7.36 (m, 2 H, b₁-H), ¹³C NMR (100 MHz, CDCl₃): δ = 156.1, 156.0, 149.8, 149.1, 139.2, 136.9, 132.4, 131.3, 127.4, 126.0, 125.5, 124.0, 122.7, 121.4, 118.7, 93.6, 87.9; IR (KBr): v = 3422, 3035, 2360, 2218, 1664, 1587, 1468, 1388, 1263, 1217, 1079, 1037, 990, 893, 824, 789, 669, 620, 521; ESI-MS m/z (%): 411.4 (100) [M + H]⁺; Anal calcd for C₂₈H₁₈N₄•H₂O: C, 78.49; H, 4.70; N, 13.08; found: C, 78.62; H, 4.35; N, 12.79.

Synthesis of 3,3'-(2,5-dibutoxy-1,4-phenylene)bis(ethyn-2,1-diyl)bis(2-(4-bromo-2,3,5,6-tetramethylphenyl)-9-mesityl-1,10-phenanthroline) (10).

An oven-dry 100-mL three-neck round-bottom flask equipped with reflux condenser was charged with 2-(4-bromo-2,3,5,6-tetramethylphenyl)-3-ethynyl-9-mesityl-[1,10]-phenanthroline (18, 100 mg, 187 µmol), 1,4-dibutoxy-2,5-diiodobenzene (13, 44.4 mg, 93.7 µmol) and Pd(PPh₃)₄ (20.0 mg, 17.3 µmol) under N₂ atmosphere. After addition of dry Et₃N (10 mL) and dry THF (40 mL), the mixture was refluxed for 12 h under N₂ atmosphere. Following removal of solvents, the resulting solid was dissolved in DCM and washed with water. The organic layer was dried over Na₂SO₄, then the solvent was removed. The residue was purified by column chromatography using 5% ethyl acetate in *n*-hexane as eluent affording 10 as yellow solid [$R_f = 0.1$ [*n*-pentane/CH₂Cl₂, 1:1]. Yield 55%; mp = 240 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.42$ (s, 2 H, 4'-H), 8.29 (d, ${}^{3}J = 8.4$ Hz, 2 H, 7'-H), 7.89 (d, ${}^{3}J = 8.8$ Hz, 2 H, $[5^{\prime}/6^{\prime}]$ -H), 7.84 (d, ${}^{3}J$ = 8.8 Hz, 2 H, $[5^{\prime}/6^{\prime}]$ -H), 7.57 (d, ${}^{3}J$ = 8.4 Hz, 2 H, 8^{\circ}-H), 6.92 (s, 4 H, x'-H), 6.14 (s, 2 H, t-H), 3.83 (t, ${}^{3}J = 6.2$ Hz, 4 H, p-H), 2.43 (s, 12 H, Me), 2.30 (s, 6 H, Me), 2.10 (s, 12 H, Me), 2.00 (s, 12 H, Me), 1.87-1.80 (m, 4 H, q-H), 1.66-1.57 (m, 4 H, r-H), 1.07 (t, ${}^{3}J = 7.4$ Hz, 6 H, s-H); ${}^{13}C$ NMR (100 MHz, CDCl₃): $\delta = 162.4$, 160.6, 153.0, 145.8, 144.6, 139.2, 138.2, 137.8, 137.6, 136.0, 136.0, 133.8, 133.4, 128.9, 128.5, 127.6, 127.1, 126.9, 125.7, 125.2, 120.3, 116.7, 113.7, 92.3, 92.1, 69.1, 31.3, 29.7, 21.1, 21.0, 20.5, 19.4, 18.5; IR (KBr) v 3429, 2925, 2867, 2359, 2207, 1723, 1611, 1585, 1502, 1457, 1378, 1274, 1210, 1063, 986, 906, 849, 719, 638; ESI-MS: m/z (%) 1285.8 (100) [M + H]⁺; Anal calcd for C₈₀H₇₆Br₂N₄O₂•1.6CH₂Cl₂: C, 68.96; H, 5.62; N, 3.94; found: C, 68. 65; H, 5.27, N, 4.34.

Synthesis of complex $C3 = [Cu(3)(5)](PF_6)$.

2,9-Dimesityl-1,10-phenanthroline (**3**, 6.32 mg, 15.2 μmol), 4-iodopyridine (**5**, 3.11 mg, 15.2 μmol), and [Cu(MeCN)₄]PF₆ (5.67 mg, 15.2 μmol) were added to an NMR tube and dissolved in CD₂Cl₂. The resultant mixture was subjected to analytical characterisation without any further purification. Single crystals suitable for X-ray analysis were obtained by the slow diffusion of Et₂O into the above mixture. Yield quantitative; mp unknown (decomposition >176 °C); ¹H NMR (400 MHz, CD₂Cl₂) δ = 8.73 (d, ³*J* = 8.4 Hz, 2 H, 4-H), 8.19 (s, 2 H, 5-H), 7.93 (d, ³*J* = 8.4 Hz, 2 H, 3-H), 7.44 (br, 2 H, β-H), 6.97 (s, 4 H, x-H), 6.42 (br, 2 H, α-H), 2.36 (s, 6 H, Me), 2.03 (s, 12 H, Me); ¹³C NMR (100 MHz, CD₂Cl₂) δ = 160.8, 150.0, 144.0, 139.9, 139.9, 137.3, 136.2 (2C), 129.2 (2C), 128.3, 127.6, 127.3, 21.2, 20.5; IR (KBr) *v* 3435, 2914, 1614, 1579, 1479, 1371, 1298, 1219, 1147, 1112, 1047, 840, 652, 624, 555; ESI-MS: *m/z* (%) 684.3 (100) [M–PF₆]⁺; Anal calcd for C₃₅H₃₂CuF₆IN₃P•1/5CH₂Cl₂: C, 49.91; H, 3.86; N, 4.96; found: C, 50. 01; H, 3.53; N, 5.33.

Synthesis of complex $C4 = [Zn(6)(9)](OTf)_2$.

In an oven-dried 25-mL single-neck round-bottom flask, a mixture of phenanthrolinepyridine hybrid **6** (1.20 mg, 1.69 μ mol), terpyridine-pyridine hybrid **9** (0.70 mg, 1.69 μ mol) and Zn(OTf)₂ (0.62 mg, 1.69 μ mol) were refluxed in 15 mL of 1,2-dichloroethane/CH₃CN (1:4) for 2 h. The reaction mixture was then cooled down to room temperature, and solvents were removed under reduced pressure. The resultant mixture was subjected to analytical characterisation without any further purification. Yield quantitative; mp > 250 °C; ¹H NMR

 $(400 \text{ MHz}, \text{CD}_2\text{Cl}_2) \delta = 9.03 \text{ (s, 1 H, 4''-H)}, 8.95 \text{ (d, } {}^3J = 8.4 \text{ Hz}, 1 \text{ H}, 7''\text{-H}), 8.86 \text{ (ddd, } {}^3J =$ 8.4 Hz, ${}^{4}J = 0.8$ Hz, ${}^{5}J = 0.8$ Hz, 2 H, d₁-H), 8.83 (s, 2 H, e₁-H), 8.64 (d, ${}^{3}J = 6.0$ Hz, 2 H, $[\alpha_{1/} \alpha_{2}]$ -H), 8.57 (d, ${}^{3}J = 6.0$ Hz, 2 H, $[\alpha_{1/} \alpha_{2}]$ -H), 8.47 (d, ${}^{3}J = 9.2$ Hz, 1 H, [5''/6'']-H), 8.41 (d, ${}^{3}J = 9.2$ Hz, 1 H, [5"/6"]-H), 8.35-8.30 (m, 4 H, c₁ [f/g]-H), 8.01 (d, ${}^{3}J = 8.4$ Hz, 1 H, 8"-H), 7.93 (d, ${}^{3}J$ = 8.8 Hz, 2 H, [f/g]-H), 7.60 (ddd, ${}^{3}J$ = 5.2 Hz, ${}^{4}J$ = 1.6 Hz, ${}^{5}J$ = 0.8 Hz, 2 H, a₁-H), 7.53 (d, ${}^{3}J = 6.0$ Hz, 2 H, [$\beta_{1/}\beta_{2}$]-H), 7.47 (ddd, ${}^{3}J = 8.4$ Hz, ${}^{3}J = 5.2$ Hz, ${}^{4}J = 0.8$ Hz, 2 H, b₁-H), 7.41 (d, ${}^{3}J = 6.0$ Hz, 2 H, [$\beta_{1/}\beta_{2}$]-H), 6.94 (t, ${}^{3}J = 8.4$ Hz, 1 H, [b''/b']-H), 6.92 (t, ${}^{3}J = 8.4$ Hz, 1 H, [b''/b']-H), 6.08 (d, ${}^{3}J = 8.4$ Hz, 4 H, a'', a'-H), 2.92 (s, 6 H, OMe), 2.88 (s, 6 H, OMe), 2.37 (s, 6 H, Me), 2.01 (s, 6 H, Me); ¹³C NMR (100 MHz, CD₂Cl₂:CD₃CN/1:4): *δ* = 158.3, 158.0, 157.9, 157.4, 156.1, 150.8, 150.5, 149.8, 148.8, 147.3, 144.1, 142.8, 142.4, 141.9, 140.4, 137.6, 137.5, 137.4, 133.8, 133.5, 133.3, 132.6, 132.5, 132.1, 130.1, 130.0, 129.7, 129.4, 128.5, 128.1, 127.0, 126.6, 126.5, 125.7, 125.4, 124.0, 123.7, 121.8, 115.5, 114.9, 104.4, 104.3, 96.5, 96.5, 94.2, 94.1, 93.8, 89.7, 55.8 (2C), 18.4, 18.0; IR (KBr) v 3436, 2925, 2868, 2358, 2208, 1619, 1499, 1463, 1382, 1272, 1213, 1154, 1113, 1022, 843, 637, 558; ESI-MS: m/z (%) 592.9 (100) $[M-2OTf]^{2+}$, 1334.2 (30) [M-OTf]⁺. Anal calcd for C₇₇H₅₇F₆N₇O₁₀S₂Zn•9/4C₂H₄Cl₂: C, 57.36; H, 3.90; N, 5.75; S, 3.76; found: C, 57.37; H, 4.11; N, 5.81; S, 3.34.

Synthesis of isosceles trapezoid TZ = $[Cu_2Zn_2(6)_2(7)(8)](PF_6)_2(OTf)_2$.

In an oven-dried 25-mL single-neck round-bottom flask, a mixture of phenanthrolinepyridine hybrid **6** (1.06 mg, 1.49 μ mol), bisterpyridine **7** (0.51 mg, 0.75 μ mol) and Zn(OTf)₂

(0.54 mg, 1.49 µmol) was refluxed in 15 mL of CH₃CN for 2 h. The reaction mixture was then cooled down to room temperature, and solvents were removed at reduced pressure. After addition of solid [Cu(MeCN)₄](PF₆) (0.56 mg, 1.49 µmol), bisphenanthroline 8 (0.77 mg, 0.75 µmol) and 15 mL of CH₂Cl₂ the resultant mixture was refluxed for 1 h. It was then cooled down to room temperature, then CH₂Cl₂ was removed at reduced pressure. The residue was subjected to analytical characterisation without any further purification. Yield quantitative; mp >250 °C; ¹H NMR (400 MHz, CD₂Cl₂): δ = 9.12 (s, 2 H, 4''-H), 9.01 (d, ³J = 8.4 Hz, 2 H, 7"-H), 8.90 (s, 4 H, e-H), 8.84 (s, 2 H, 4-H), 8.72 (d, ${}^{3}J = 8.4$ Hz, 2 H, 7-H), 8.70 (d, ${}^{3}J = 8.0$ Hz, 4 H, d-H), 8.53 (d, ${}^{3}J = 9.2$ Hz, 2 H, [5''/6'']-H), 8.49 (d, ${}^{3}J = 9.2$ Hz, 2 H, [5''/6'']-H), 8.32 (td, ${}^{3}J = 8.0$ Hz, ${}^{4}J = 1.6$ Hz, 4 H, c-H), 8.20 (d, ${}^{3}J = 9.2$ Hz, 2 H, [5/6]-H), 8.16 (d, ${}^{3}J = 9.2$ Hz, 2 H, [5/6]-H), 8.05 (d, ${}^{3}J = 8.4$ Hz, 2 H, 8''-H), 7.94 (d, ${}^{3}J = 8.4$ Hz, 2 H, 8-H), 7.66 (d, ${}^{3}J$ = 5.2 Hz, 4 H, a-H), 7.65 (s, 2 H, t-H), 7.57-7.54 (m, 8 H, [m/n], b-H), 7.22 (d, ${}^{3}J = 8.4$ Hz, 4 H, [m/n]-H), 7.05- 6.98 (m, 16 H, x, y, b', b'', β_1 -H), 6.60 (br, 4 H, α_1 -H), 6.13 (d, ${}^{3}J = 8.4$ Hz, 4 H, a''-H), 6.11 (d, ${}^{3}J = 8.8$ Hz, 4 H, a'-H), 4.54 (t, ${}^{3}J = 6.4$ Hz, 4 H, p-H), 2.95 (s, 12 H, OMe), 2.91 (s, 12 H, OMe), 2.40 (s, 6 H, Me), 2.39 (s, 12 H, Me), 2.36 (s, 6 H, Me), 2.07 (s, 24 H, Me), 2.06 (s, 12 H, Me), 1.98-1.91(m, 4 H, q-H), 1.68-1.61 (m, 4 H, r-H), 1.03 (t, ${}^{3}J = 7.2$ Hz, 6 H, s-H); IR (KBr) v 3442, 3067, 2928, 2871, 2367, 2203, 1601, 1474, 1429, 1259, 1156, 1109, 1027, 842, 788, 730, 689, 636, 557; ESI-MS: m/z (%) 1992.4 (5) $[M-OTf, PF_6]^{2+}$, 1279.6 (40) $[M-OTf, 2PF_6]^{3+}$, 923.2 (100) $[M-2OTf, 2PF_6]^{4+}$, and 708.4 (10) [M-3OTf, 2PF₆]⁵⁺; Anal calcd for C₂₁₈H₁₈₀Cu₂F₂₄N₁₆O₂₂P₂S₄Zn₂: C, 61.18; H, 4.24; N, 5.24; S, 3.00; found: C, 61.10; H, 4.51; N, 5.12; S, 2.62.

Synthesis of scalene triangle TA = $[Cu_2Zn(6)(9)(10)](PF_6)_2(OTf)_2$.

In an oven-dried 25-mL single-neck round-bottom flask, a mixture of phenanthrolinepyridine hybrid 6 (1.25 mg, 1.76 µmol), terpyridine-pyridine hybrid 9 (0.72 mg, 1.76 µmol) and Zn(OTf)₂ (0.64 mg, 1.76 µmol) was refluxed in 15 mL of CH₃CN (1:4) for 2 h. The reaction mixture was then cooled down to room temperature and solvents were removed at reduced pressure. After addition of solid [Cu(MeCN)₄](PF₆) (1.31 mg, 3.52 µmol), bisphenanthroline 10 (2.26 mg, 1.76 µmol) and 15 mL of CH₂Cl₂ the resultant mixture was refluxed for 1 h. It was then cooled down to room temperature. Then CH₂Cl₂ was removed at reduced pressure. The residue was subjected to analytical characterisation without any further purification. Yield quantitative; mp >250 °C; ¹H NMR (400 MHz, CD₂Cl₂): $\delta = 9.02$ (d, ³J = 8.4 Hz, 1 H, 7"-H), 8.98 (s, 1 H, 4"-H), 8.88 (d, ${}^{3}J = 8.4$ Hz, 2 H, d₁-H), 8.84 (s, 2 H, 4', 4'''-H), 8.79 (s, 2 H, e_1 -H), 8.71 (d, ${}^{3}J = 8.4$ Hz, 2 H, 7', 7'''-H), 8.50 (d, ${}^{3}J = 8.8$ Hz, 1 H, [5''/6'']-H), 8.42 (d, ${}^{3}J = 8.8$ Hz, 1 H, [5''/6'']-H), 8.39 (d, ${}^{3}J = 8.8$ Hz, 2 H, [f/g]-H), 8.30 (td, ${}^{3}J = 8.4$ Hz, ${}^{4}J = 1.6$ Hz, 2 H, c₁-H), 8.20 (d, ${}^{3}J = 8.8$ Hz, 2 H, [5'/6' or 5'''/6''']-H), 8.15 (d, ${}^{3}J = 8.8$ Hz, 2 H, [5'/6' or 5'''/6''']-H), 8.14 (d, ${}^{3}J = 8.4$ Hz, 1 H, 8''-H), 7.99 (d, ${}^{3}J = 8.8$ Hz, 2 H, [f/g]-H), 7.94 (d, ${}^{3}J$ = 8.4 Hz, 2 H, 8', 8'''-H), 7.60 (d, ${}^{3}J$ = 4.0 Hz, 2 H, a₁-H), 7.47 (dd, ${}^{3}J = 8.4$ Hz, ${}^{3}J = 4.0$ Hz, 2 H, b₁-H), 7.28 (br, 2 H, β_{2} -H), 7.12 (br, 2 H, β_{1} -H), 7.04 (t, ${}^{3}J$ = 8.4 Hz, 1 H, b''-H), 6.96 (br s, 8 H, α_1 , α_2 , x_1 , y_1 -H), 6.85 (t, ${}^{3}J$ = 8.4 Hz, 1 H, b'-H), 6.39 (s, 2 H, t-H), 6.17 (d, ${}^{3}J = 8.4$ Hz, 2 H, a''-H), 6.08 (d, ${}^{3}J = 8.4$ Hz, 2 H, a'-H), 3.79 (t, ${}^{3}J =$ 6.4 Hz, 4 H, p-H), 3.03 (s, 6 H, OMe), 2.85 (s, 6 H, OMe), 2.36 (s, 6 H, Me), 2.35 (s, 12 H, Me), 2.32 (s, 6 H, Me), 2.03 (s, 12 H, Me), 1.95 (s, 18 H, Me), 1.69-1.61 (m, 4 H, q-H), 1.51-1.41 (m, 4 H, r-H), 0.98 (t, ${}^{3}J = 7.2$ Hz, 6 H, s-H); IR (KBr) v 3436, 2960, 2925, 2900, 2204, 1602, 1473, 1426, 1369, 1260, 1155, 1107, 1024, 840, 727, 634, 554; ESI-MS m/z (%) 1445.3 (25) $[M - PF_6, OTf]^{2+}$, 915.3 (100) $[M - 2PF_6, OTf]^{3+}$, 649.4 (10) $[M - 2PF_6, 2OTf]^{4+}$. Anal calcd for C₁₅₇H₁₃₃Br₂Cu₂F₁₈N₁₁O₁₂P₂S₂Zn•4/3CH₂Cl₂: C, 57.64; H, 4.14; N, 4.67; S, 1.94; found: C, 58.01; H, 4.29; N, 4.70; S, 1.54.

Calculation of Degree of self-sorting $(M)^5$

 $\begin{aligned} & \int_{\mathbb{C}} \int_{\mathbb{C$

 P_0 = the number of all possible aggregates P = number of observed assemblies in the experiment

Figure S1. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of **6**. An expanded aromatic part of the spectrum is shown at the bottom.

of the spectrum is shown at the bottom.

Figure S3. 1 H NMR spectrum (400 MHz, CD₂Cl₂, 298 K) of 14.

Figure S4. ¹³C NMR spectrum (100 MHz, CD₂Cl₂, 298 K) of 14.

Figure S5. ¹H NMR spectrum (400 MHz, CD_2Cl_2 , 298 K) of **7**. An expanded aromatic part of the spectrum is shown at the bottom.

Figure S6. ¹³C NMR spectrum (100 MHz, CD₂Cl₂, 298 K) of **7**.

Figure S7. ¹H NMR spectrum (400 MHz, CD₂Cl₂, 298 K) of **9**. An expanded aromatic part of the spectrum is shown at the bottom.

Figure S9. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of **10**. An expanded aromatic part of the spectrum is shown at the bottom.

Figure S10. ¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of **10**. An expanded aromatic part of the spectrum is shown at the bottom.

Figure S11. ¹H NMR spectrum (400 MHz, CD_2Cl_2 , 298 K) of C3 = [Cu(3)(5)](PF_6).

Figure S12. ¹³C NMR spectrum (100 MHz, CD_2Cl_2 , 298 K) of C3 = [Cu(3)(5)](PF₆). An expanded aromatic part of the spectrum is shown at the bottom.

Figure S13. ¹H NMR spectrum (400 MHz, CD_2Cl_2 , 298 K) of $C4 = [Zn(6)(9)](OTf)_2$. An expanded aromatic part of the spectrum is shown at the bottom.

Figure S16. ¹H NMR spectrum (400 MHz, CD_2Cl_2 , 298 K) of TA = $[Cu_2Zn(6)(9)(10)](PF_6)(OTf)_2$. An expanded aromatic part of the spectrum is shown at the bottom.

Figure S17. Partial ¹H NMR spectrum (400 MHz, CD_2Cl_2 , 298 K) of (a) C4 = $[Zn(6)(9)](OTf)_2$; (b) after addition of 0.33 equiv of $[Cu_2(10)](PF_6)_2$ (related to the initial amount of C4; (c) after addition of 0.66 equiv of $[Cu_2(10)](PF_6)_2$ (related to the initial amount of C4; (d) after addition of 1.00 equiv of $[Cu_2(10)](PF_6)_2$ (related to the initial amount of C4; (e) zoom-in view of S14 (d) from 6.80 to 7.30 ppm.

equimolar mixture of 1, 2, 3, 5 in presence of $Zn(OTf)_2$ and $[Cu(MeCN)_4]PF_6$.

Figure S19. Partial ¹H NMR spectrum (400 MHz, CD₂Cl₂, 298 K) of (a) **C4**; (b) **TA**_.; (c) **TZ**; (d) [Zn₂(**6**)₂(**7**)](OTf)₄

¹H-¹H COSY NMR spectra

Figure S20. Partial ¹H-¹H COSY NMR spectrum (400 MHz, CD₂Cl₂, 298 K) of C4.

Figure S21. Partial ¹H-¹H COSY NMR spectrum (400 MHz, CD₂Cl₂, 298 K) of TZ.

Figure S22. Partial ¹H-¹H COSY NMR spectrum (400 MHz, CD₂Cl₂, 298 K) of TA.

 $CD_2Cl_2.$

Figure S25. ESI-MS spectrum of $C3 = [Cu(3)(5)](PF_6)$ (in DCM) and experimental isotopic distribution (black) along with calculated isotopic distribution (red) for $[Cu(3)(5)]^+$.

Figure S26. ESI-MS spectrum of an equimolar mixture of 1, 2, 3, 5 in presence of $Zn(OTf)_2$ and $[Cu(MeCN)_4]PF_6$.

Figure S27. ESI-MS spectrum of C4 = $[Zn(6)(9)](OTf)_2$ (in CH₂Cl₂) and experimental isotopic distribution (black) along with calculated isotopic distribution (red) for $[Zn_2(6)(9)]^{2+}$ and $[Zn_2(6)(9)](OTf)^+$.

Figure S28. ESI-MS spectrum of $TZ = [Cu_2Zn_2(6)_2(7)(8)](PF_6)_2(OTf)_4$ in CH_2Cl_2 and experimental isotopic distributions (black lines) along with calculated isotopic distributions

(red lines) for peaks associate with $[Cu_2Zn_2(6)_2(7)(8)](OTf)_2^{4+}$, $[CuZn_2(6)(7)(8)](OTf)_2^{3+}$, and $[Cu_2Zn_2(6)_2(7)(8)](OTf)_3^{3+}$.

Figure S29: ESI-MS spectrum of $TA = [Cu_2Zn(6)(9)(10)](PF_6)_2(OTf)_2$ in CH_2Cl_2 and experimental isotopic distributions (black lines) along with calculated isotopic distributions (red lines) for the peaks associated with $[Cu_2Zn(6)(9)(10)]^{4+}$, $[Cu_2Zn(6)(9)(10)](OTf)^{3+}$ and $[Cu_2Zn(6)(9)(10)](PF_6)(OTf)^{2+}$.

Binding Constants

Figure S30. UV-Vis absorption of 0.50 ×10⁻⁵ M [Cu₂(8)](PF₆)₂ in CH₂Cl₂ (2 mL) upon addition of [Zn₂(6)₂(7)](OTf)₄ (1.26 ×10⁻⁴ M) at 25 °C. Result: log β = 6.32 ± 0.26. The data was analysed in the wavelength region 200-600 nm.

Figure S31. UV-Vis absorption of 0.98 ×10⁻⁵ M [Cu₂(10)](PF₆)₂ in CH₂Cl₂ (2 mL) upon addition of C4 = [Zn(6)(9)](OTf)₂ (0.23 ×10⁻³ M) at 25 °C. Result: log β = 5.43 ± 0.26. The data was analysed in the wavelength region 200-600 nm.

Determination of relative binding constant for $[Zn(1)(2)]^{2+}$ -types of motifs

Unfortunately, direct determination of the overall binding constant for $[Zn(1)(2)]^{2+}$ motifs was impossible, because (i) $[Zn(1)]^{2+}$ motifs are always in equilibrium with $[Zn(1)_2]^{2+}$ even at a 1:1 ratio of Zn^{2+} and 1, and (ii) upon addition of terpyridine 2 to a 1:1 mixture of Zn^{2+} and 1, $[Zn(2)_2]^{2+}$ complex is produced as a kinetically controlled product that only dissociates with time to the thermodynamically more stable $[Zn(1)(2)]^{2+}$ complex. The kinetics of these complex pathways is too slow to get reliable spectroscopic data from UV Vis.

As a way out we determined the complexation constant for $[Zn(1)(2)]^{2+}$ motifs indirectly via a thermochemical cycle, as described in Scheme 1.⁶ The ratio of (C1+C2) : (C5+C6) in full equilibrium was determined to 1:0.06 (Figure S31), as based on ¹H-NMR integration. The overall binding constant (log β) for C2, C5, and C6 are 9.47, 10.27, and 12.40, respectively.⁷

Scheme S1: Reshuffling of components in a 6-component *completive* library.⁶

Using the thermochemical cycle, we derived $\log \beta_{C1}$ as:

$$\log \beta_{C1} = \log(K_{eq}) - \log \beta_{C2} + \log \beta_{C5} + \log \beta_{C6}$$

Implementing the experimental values into the above equation, we determined log $\beta_{C1} \approx 14$

Figure S32. Partial ¹H NMR spectra (400 MHz, CD₃CN, 298 K) of an equimolar mixture of **C5** and **C6** after full equilibration. The spectrum was recorded after 26 min of mixing at 298 K.⁶ Integrals were measured by using MestRe-C software. Peaks at 5.72 ppm (**C5**, a'''-H), 6.02 ppm (**C1**, a'''-H), 5.95 ppm (**C2**, a'''-H) and 6.17 ppm (**C6**, a'''-H) were used.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

X-ray structure analysis

Compound name	C3 (CCDC 933109)
Empirical formula	$C_{35}H_{32}CuIN_3F_6P$
Formula weight	830.05
Temperature/ K	171(2)
Wavelength/ Å	0.71073
Crystal system	triclinic
Space group	ΡĪ
<i>a</i> / Å	11.8031(6)
b/ Å	12.1213(6)
<i>c</i> / Å	14.0357(7)
α / deg	91.4930(10)
ß∕ deg	113.8990(10)
γ⁄ deg	111.5580(10)
Volume/ Å ³	1670.95(14)
Z	2
Density (calculated) (g/cm ³)	1.650
Absorption coefficient (mm ⁻¹⁾	1.689
F(000)	828
Reflections collected	20122
Independent reflections	8042 [$R(int) = 0.0260$]
Reflections with I >	6675
2sigma(I)	
Absorption correction type	Multi-scan
Refinement method	Full-matrix least-squares on F ²
Goodness-of-fit on F ²	1.027
Final R indices	[I>2sigma(I)] R1 = 0.0314,
	wR2 = 0.0710
R indices (all data)	R1 = 0.0431, wR2 = 0.0754

Table S1. <u>Crystal data for compound $C3 = [Cu(3)(5)]PF_6$ </u>

Cu1–N1	1.9948(18)	N1–Cu1–N2	81.25(7)		
Cu1–N2	2.0997(17)	N1–Cu1–N3	150.04(7)		
Cu1–N3	1.9135(18)	N2–Cu1–N3	128.66(7)		

Fable S2.	Selected	bond	lengths	(Å)	and angles	(deg)	for C3
						_	

Figure S33: Solid state structure of (a) $C3 = [Cu(3)(5)]PF_6$ (thermal ellipsoids were drawn at the 50% probability level) (b) Ball and stick representation of the packing diagram of C3. Hydrogen atoms are omitted for clarity.

Energy minimised structures using MM+ force field

Figure S34. Energy minimised structure of the heteroleptic complex **C4**. Counter anions are not included. Hydrogens are omitted for clarity.

Figure S35. Energy minimised structure of the isosceles trapezoid **TZ**. Counter anions and alkoxy chains are not included. Hydrogens are omitted for clarity.

Figure S36. Energy minimised structure of the scalene triangle **TA**. Counter anions and alkoxy chains are not included. Hydrogens are omitted for clarity.

References

⁽¹⁾ UV-Vis titrations were analysed by fitting the whole series of spectra at 0.5 nm intervals using the software SPECFIT. The SPECFIT program analyses equilibrium data sets using singular value decomposition and linear regression modeling by the Levenberg-Marquardt method to determine cumulative binding constant. (a) H. Gampp, M. Maeder, C. J. Meyer, A. D. Zuberbühler, *Talanta* 1986, **33**, 943.

^{(2) (}a) G. M. Sheldrick, SHELXS97: *Program for Crystal Structure Determination*; University of Göttingen: Göttingen, Germany, 1997. (b) G. M. Sheldrick, *Program for Crystal Structural Refinement*; University of Göttingen: Göttingen, Germany, 1997. (c) G. M. Sheldrick, *Acta Cryst.*, 2008, **A64**, 112.

^{(3) (}a) K. Mahata and M. Schmittel, *J. Am. Chem. Soc.*, 2009, **131**, 16544. (b) K. Mahata, M. L. Saha and M. Schmittel, *J. Am. Chem. Soc.*, 2010, **132**, 15933.

⁽⁴⁾ M. Sahreittal and K. Mahata, Lung, Cham. 2000, **192**, 1993.

⁽⁴⁾ M. Schmittel and K. Mahata, *Inorg. Chem.*, 2009, **48**, 822.

⁽⁵⁾ M. L. Saha and M. Schmittel, Org. Biomol. Chem., 2012, 10, 4651.

⁽⁶⁾ M. L. Saha, S. Pramanik and M. Schmittel, Chem. Commun. 2012, 48, 9459.

^{(7) (}a) M. Schmittel, , R. S. K. Kishore, H. Cölfen and J. W. Bats, J. Am. Chem. Soc., 2005,

^{127, 11544. (}b) V. Kalsani, Dissertation, University of Siegen, 2005.