ORGANIC & BIOMOLECULAR CHEMISTRY ELECTRONIC SUPPLEMENTARY INFORMATION FOR

Push-pull systems bearing a quinoid/aromatic thieno[3,2-b]thiophene moiety: synthesis, ground state polarization and second-order nonlinear properties

A. Belén Marco, ^a Raquel Andreu, ^a. * Santiago Franco, ^a Javier Garín, ^a Jesús Orduna, ^a Belén Villacampa, ^b Beatriz E. Diosdado, ^c Juan T. López Navarrete ^d and Juan Casado^d

^a Departamento de Química Orgánica, ICMA, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain.

^b Departamento de Física de la Materia Condensada, ICMA, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain.

^c Servicio de Difracción de Rayos X y Análisis por Fluorescencia, ICMA, Universidad de Zaragoza-CSIC. 50009 Zaragoza, Spain.

^d Departamento de Química Física, Universidad de Málaga, 29071 Málaga, Spain.

* Corresponding author: randreu@unizar.es

TABLE OF CONTENTS

1. General experimental methods	page S3-S4
2. NMR spectra for new compounds	
Figures S-1 to S-4 (NMR spectra of compound 1)	pages S5-S8
Figures S-5 to S-6 (NMR spectra of compound 2)	pages S9-S10
Figures S-7 to S-9 (NMR spectra of compound 3)	pages S11-S13
Figures S-10 to S-12 (NMR spectra of compound 4)	pages S14-S16
Figures S-13 to S-16 (NMR spectra of compound 8)	pages S17-S20
Figures S-17 to S-20 (NMR spectra of compound 9)	pages S21-S24

Figures S-21 to S-24 (NMR spectra of compound 14)	pages S25-S28
Figures S-25 to S-26 (NMR spectra of compound 15)	pages S29-S30
3. Normalized UV-Vis spectra	
Figures S-27 to S-33	pages S31-S34
4. X-Ray Diffraction	pages S35-S41
Compound 8	pages S35-S38
Compound 14	pages S39-S41
5. NLO measurements	page S42
6. Computational methods	pages S43-S49

1. General Experimental Methods

Infrared measurements were carried out in KBr using a Perkin-Elmer Fourier Transform Infrared 1600 spectrometer. Melting points were obtained on a Gallenkamp apparatus in open capillaries and are uncorrected. ¹H- and ¹³C-NMR spectra were recorded on a Bruker ARX300 or a Bruker AV400 at 300 or 400 MHz and 75 or 100 MHz respectively; δ values are given in ppm (relative to TMS) and J values in Hz. The apparent resonance multiplicity is described as a s (singlet), br s (broad singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). ¹H-¹H COSY and ¹H-¹³C-HSQC experiments were recorded on a Bruker ARX300 or a Bruker AV400 at 300 or 400 MHz in order to establish peaks assignment and spatial relationships. Electrospray mass spectra were recorded on a Bruker Q-ToF spectrometer; accurate mass measurements were achieved using sodium formate as external reference. UV-Visible spectra were recorded with an UV-Vis UNICAM UV4 spectrophotometer. Cyclic voltammetry measurements were performed with a µ-Autolab ECO-Chemie potentiostat using a glassy carbon working electrode, Pt counter electrode, and Ag/AgCl reference electrode. The experiments were carried out under argon in CH₂Cl₂, with Bu₄NPF₆ as supporting electrolyte (0.1 mol L⁻¹). Scan rate was 100 mV s⁻¹. Elemental analyses were carried out with a Perkin-Elmer CHN2400 microanalyzer. 1064 nm FT-Raman spectra were obtained in an FT-Raman accessory kit (FRA/106-S) of a Bruker Equinox 55 FT-IR interferometer. A continuous-wave Nd-YAG laser working at 1064 nm was employed for excitation. A germanium detector operating at liquid nitrogen temperature was used. Raman scattering radiation was collected in a back-scattering configuration with a standard spectral resolution of 4 cm⁻¹. 2000 scans were averaged for each spectrum.

X-Ray data collection were carried out on a diffractometer equipped with a graphite monochromator utilizing Mo K α radiation ($\lambda = 0.71073$ Å). The diffraction frames were integrated and corrected for absorption using the CrysAlis RED package.¹ The structures were solved by direct methods.² All refinements were carried out using SHELXL-97³ against the F² data using full-matrix least squares methods. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed at idealized positions

⁽¹⁾ CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.35.15 (release 03-08-2011 CrysAlis171. NET) (compiled Aug 3 2011, 13:03:54).

⁽²⁾ A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, J. Appl. Crystallogr., 1993, 26, 343-350.

⁽³⁾ G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112-122.

and refined as riders with isotropic displacement parameters assigned as 1.2 times the U_{eq} value of the corresponding bonding partner (1.5 times for methyl hydrogen atoms).

Figure S-1: ¹H-NMR spectrum of compound 1 (300 MHz, CD₂Cl₂).

Figure S-2: ¹³C-NMR (APT) spectrum of compound 1 (75 MHz, CD₂Cl₂).

Figure S-3: ¹H-¹³C-HSQC spectrum of compound **1** (300 MHz, CD₂Cl₂).

Figure S-4: ¹H-¹H-COSY spectrum of compound **1** (300 MHz, CDCl₃).

Figure S-5: ¹H-NMR spectrum of compound 2 (300 MHz, CDCl₃).

Figure S-6: ¹³C-NMR (APT) spectrum of compound 2 (75 MHz, CD₂Cl₂).

Figure S-7: ¹H-NMR spectrum of compound **3** (300 MHz, CD₂Cl₂).

Figure S-8: ¹³C-NMR (APT) spectrum of compound 3 (75 MHz, CD₂Cl₂).

Figure S-9: ¹H-¹³C-HSQC spectrum of compound **3** (400 MHz, CD₂Cl₂).

Figure S-10: ¹H-NMR spectrum of compound 4 (300 MHz, CD₂Cl₂).

Figure S-11: ¹³C-NMR (APT) spectrum of compound 4 (75 MHz, CD₂Cl₂).

Figure S-12: ¹H-¹³C-HSQC spectrum of compound 4 (400 MHz, CD₂Cl₂).

Figure S-13: ¹H-NMR spectrum of compound 8 (400 MHz, CDCl₃).

Figure S-14: ¹³C-NMR (APT) spectrum of compound 8 (100 MHz, CDCl₃).

Figure S-15: ¹H-¹³C-HSQC spectrum of compound 8 (400 MHz, CDCl₃).

Figure S-16: ¹H-¹H-COSY spectrum of compound **8** (400 MHz, CDCl₃).

Figure S-17: ¹H-NMR spectrum of compound 9 (300 MHz, CDCl₃).

Figure S-18: ¹³C-NMR (APT) spectrum of compound 9 (75 MHz, CDCl₃).

Figure S-19: ¹H-¹³C-HSQC spectrum of compound 9 (300 MHz, CDCl₃).

Figure S-20: ¹H-¹H-COSY spectrum of compound **9** (300 MHz, CDCl₃).

Figure S-21: ¹H-NMR spectrum of compound 14 (300 MHz, CD₂Cl₂).

Figure S-22: ¹³C-NMR (APT) spectrum of compound 14 (75 MHz, CD₂Cl₂).

Figure S-23: ¹H-¹³C-HSQC spectrum of compound 14 (300 MHz, CD₂Cl₂).

Figure S-24: ¹H-¹H-COSY spectrum of compound **14** (300 MHz, CD₂Cl₂).

Figure S-25: ¹H-NMR spectrum of compound 15 (400 MHz, CD₂Cl₂).

Figure S-26: ¹³C-NMR (APT) spectrum of compound 15 (75 MHz, CD₂Cl₂).

3. Normalized UV-Vis spectra

Figure S-27: Normalized UV-vis absorption spectra of compound 1 (10^{-5} M).

Figure S-28: Normalized UV-vis absorption spectra of compound 2 (10^{-5} M).

Figure S-29: Normalized UV-vis absorption spectra of compound 3 (10^{-5} M).

Figure S-30: Normalized UV-vis absorption spectra of compound 4 (10^{-5} M).

Figure S-31: Normalized UV-vis absorption spectra of compound 8 (10^{-5} M).

Figure S-32: Normalized UV-vis absorption spectra of compound 14 (10^{-5} M).

Figure S-33: Normalized UV-vis absorption spectra of compound **15** (10^{-5} M) .

4. X-Ray Diffraction

Compound 8

Single crystals were obtained by slow evaporation of a concentrated solution of the chromophore in CH₂Cl₂ at room: C₂₄H₂₄N₂OS₂, M_r = 420.57, crystal dimensions 0.44 × 0.11 × 0.05 mm, monoclinic space group P21/m, $\rho_{calcd} = 1.179$ g cm⁻³, Z = 2, a = 11.0980(5) Å, b = 6.7887(4) Å, c = 15.8764(10) Å, $\alpha = 90$ deg, $\beta = 98.064(5)$ deg, $\gamma = 90$ deg, V = 1184.32(12) Å³ at 296(1) K. Number of measured and unique reflections 7220 and 2275, respectively (R_{int}=0.0414). Final R(*F*)=0.0552, wR(*F*²)=0.1259 for 169 parameters and 1556 reflections with I> 4 σ (I) (corresponding R-values based on all 2275 reflections 0.0892 and 0.1458).

Crystal data and structure refinement for 8.

	Identification code	8				
	Empirical formula	C24 H24 N2 O S2				
	Formula weight	420.57				
	Temperature	296(1) K				
	Wavelength	0.71073 A				
	Crystal system, space group	Monoclinic, P21/m				
J	Unit cell dimensions	a = 11.0980(5) A alpha = 90 deg. b = 6.7887(4) A beta = 98.064(5)				
aeg.		c = 15.8764(10) A gamma = 90 deg.				
	Volume	1184.32(12) A^3				
	Z, Calculated density	2, 1.179 Mg/m^3				
	Absorption coefficient	0.241 mm ⁻¹				
	F(000)	444				
	Crystal size	0.44 x 0.11 x 0.05 mm				
	Theta range for data collection	2.97 to 25.00 deg.				
	Limiting indices	-13<=h<=13, -8<=k<=8, -15<=l<=18				
	Reflections collected / unique	7220 / 2275 [R(int) = 0.0414]				
	Completeness to theta = 25.00	99.8 %				

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9881 and 0.9014
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	2275 / 0 / 169
Goodness-of-fit on F^2	1.011
Final R indices [I>2sigma(I)]	R1 = 0.0552, wR2 = 0.1259
R indices (all data)	R1 = 0.0892, wR2 = 0.1458
Largest diff. peak and hole	0.292 and -0.207 e.A^-3

Figure S-34: ORTEP view of 8

Figure S-35: Nonclassical C18-H18…N1 interaction in 8

Figure S-36: Crystal packing of 8 viewed along the [100] direction.

Figure S-37: Crystal packing of 8 viewed along the [010] direction.

Compound 14

Single crystals were obtained by slow diffusion of hexane into a solution of the chromophore in CH₂Cl₂ at room temperature: C₂₀H₁₇N₃S₂, M_r = 363.49, crystal dimensions $0.47 \times 0.14 \times 0.03$ mm, monoclinic space group P21/c, $\rho_{calcd} = 1.334$ g cm⁻³, Z = 8, a = 8.3982(4) Å, b = 25.3341(19) Å, c = 17.1667(11) Å, $\alpha = 90$ deg, $\beta = 97.599(5)$ deg, $\gamma = 90$ deg, V = 3620.3(4) Å³ at 150(1) K. Number of measured and unique reflections 24610 and 6357, respectively (R_{int}=0.0972). Final R(*F*)=0.0654, wR(*F*²)=0.1214 for 451 parameters and 3793 reflections with I> 4 σ (I) (corresponding R-values based on all 6357 reflections: 0.1243 and 0.1487).

Crystal data and structure refinement for 14.

Identif	ication code	14	
E	Empirical formula		C20 H17 N3 S2
F	Formula weight		363.49
Т	Temperature		150(1) K
Ŵ	lavelength		0.71073 A
C	Crystal system, space group		Monoclinic, P21/c
Unit cell dimensions 97.599(5) deg.		a = 8.3982(4) A alpha = 90 deg. b = 25.3341(19) A beta =	
		c = 17.1667(11) A gamma = 90 deg.	
V	Jolume		3620.3(4) A^3
Z	Z, Calculated density		8, 1.334 Mg/m^3
A	Absorption coefficient		0.301 mm^-1
F	ד (000)		1520
C	Crystal size		0.47 x 0.14 x 0.03 mm
Г	Theta range for data collect		2.88 to 25.00 deg.
I	limiting indices		-9<=h<=9, -30<=k<=29, -19<=l<=20
R	Reflections collected / unic	que	24610 / 6357 [R(int) = 0.0972]
C	Completeness to theta = 25.0	00	99.9 %

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9910 and 0.8714
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	6357 / 0 / 451
Goodness-of-fit on F^2	1.014
Final R indices [I>2sigma(I)]	R1 = 0.0654, wR2 = 0.1214
R indices (all data)	R1 = 0.1243, wR2 = 0.1487
Largest diff. peak and hole	0.327 and -0.273 e.A^-3

Figure S-38: ORTEP view of 14

Figure S-39: Crystal packing of 14 viewed along the [100] direction.

5. NLO measurements

Electric field induced second harmonic generation (EFISH) measurements have been performed using as the fundamental radiation the 1.9 μ m output of a H2 Raman shifter pumped by a Q-switched Nd:YAG laser. This laser operates at 1064 nm, with a repetition rate of 10 Hz and pulse width of 8 ns. A computer controlled NLO spectrometer completes the SHG experimental set-up. The 1.9 μ m incident light is split in two beams. The less intense one is directed to a *N*-(4-nitrophenyl)-(L)-prolinol (NPP) powder sample whose SH signal is used as a reference in order to reduce the effects of laser fluctuations. The other beam is passed through a linear polarizer and focused into the EFISH wedge shaped liquid cell.

Voltage pulses of 5 kV and 3µs are applied across the cell (2 mm gap between the electrodes) synchronously with the laser pulses. The harmonic signals from both the EFISH cell and the NPP reference are measured with two photomultipliers. Interference filters are used to remove the residual excitation light beyond the sample and the reference.

The molecular $\mu\beta$ values have been determined in dichloromethane for all compounds. Besides, **1** and **14** were measured in DMF and dioxane as well. For measurements in dioxane, experimental uncertainty is less than ±15%; concerning DMF, is not a common solvent in our EFISH experiments, so the $\mu\beta$ values in this solvent are affected by a somewhat higher uncertainty. The effect of absorption at harmonic wavelength (953 nm) of compound **3** has been corrected following reference 4. Static -zero frequency- $\mu\beta_0$ values were extrapolated using a two-level dispersion model.⁵

As a general rule, three solutions of concentration in the range $(2 \times 10^{-3} \text{M} - 4 \times 10^{-4} \text{M})$ were measured. Under the same experimental conditions, $\mu\beta_0$ deduced for the benchmark NLO chromophore DR1 in CH₂Cl₂ was 500×10^{-48} esu, quite close to the values reported in the literature.⁶ On the other hand the $\mu\beta_0$ values obtained for DR1 in DMF and dioxane have been $\approx 450 \times 10^{-48}$ esu and $\approx 590 \times 10^{-48}$ esu, respectively.

⁽⁴⁾ J. L. Oudar, J. Chem. Phys., 1977, 67, 446-457.

⁽⁵⁾ J. L. Oudar and D. S. Chemla, J. Chem. Phys., 1977, 66, 2664-2668.

^{(6) (}a) C. W. Dirk, H. E. Katz, M. L. Schilling and L. A. King, *Chem. Mater.*, 1990, **2**, 700–705; (b) J.-M. Raimundo, P. Blanchard, N. Gallego-Planas, N. Mercier, I. Ledoux-Rak, R. Hierle and J. Roncali *J. Org. Chem.*, 2002, **67**, 205–218.

6.- Computational Methods

Quantum-Chemistry calculations were performed using the Gaussian 09^7 package. Molecular geometries were optimized using the M06-2x⁸ functional, the 6-31G*⁹ basis set and the Polarizable Continuum Model (PCM).¹⁰ Electronic spectra were calculated using the Time-Dependent Density Functional Theory (TD-DFT)¹¹ approach, the PCM solvent model, the M06-2x functional and the 6-311+G(2d,p) basis set. Hyperpolarizabilities were calculated using the Coupled Perturbed Hartree-Fock (CPHF) method. The Default Gaussian 09 parameters were used in every case.

Optimized geometries and calculated energies (PCM(CH₂Cl₂)-M06-2x/6-31G*)

Standard orientation:						
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)	
Number	Number	Туре	Х	Y	Z	
1	6	0	-6.001632	0.068547	0.000107	
2	б	0	-5.253037	-1.125605	0.000327	
3	6	0	-3.892163	-0.871062	0.000163	
4	6	0	-3.541245	0.510713	-0.000198	
5	6	0	-1.423560	-0.430093	-0.000186	
6	6	0	-2.192079	0.760339	-0.000408	
7	1	0	-5.718192	-2.103058	0.000606	
8	1	0	-1.743772	1.747101	-0.000688	
9	16	0	-4.978964	1.505955	-0.000269	
10	16	0	-2.477000	-1.860185	0.000289	
11	6	0	-7.397866	0.195619	0.000175	
12	6	0	-8.212560	-0.964501	0.000335	
13	7	0	-8.857757	-1.931462	0.000461	
14	6	0	-8.018417	1.468411	-0.000003	
15	7	0	-8.492257	2.530573	-0.000150	
16	6	0	-0.043719	-0.576785	-0.000293	
17	6	0	0.888769	0.462505	-0.000603	
18	1	0	0.530388	1.488159	-0.000688	
19	1	0	0.327330	-1.599900	0.000038	
20	6	0	2.272681	0.283215	-0.000681	
21	б	0	3.141870	1.427869	-0.000602	

⁽⁷⁾ Gaussian 09, Revision A.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
(8) Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.* 2008, **120**, 215–241.

⁽⁹⁾ P. C. Hariharan and J. A. Pople, *Theor. Chim. Acta* 1973, **28**, 213–222.

⁽¹⁰⁾ J. Tomasi, B. Mennucci and R. Cammi, *Chem. Rev.* 2005, **105**, 2999–3093.

^{(11) (}a) M. E. Casida, C. Jamorsky and K. C. Casida, J. Chem. Phys. 1998, **108**, 4439–4449; (b) R. E. Stratmann, G. E. Scuseria and N. J. Frisch, J. Chem. Phys. 1998, **109**, 8218–8224.

22	6	0	2 942154	-0 984594	-0 000700
22	6	0	A A97502	1 200019	-0.000101
23	7	0	2 711170	2 421510	-0.000101
24	4	0	2.711170	-1 060124	-0.000800
25	0	0	4.290113	-1.000134	-0.000307
20	1	0	2.304512	-1.912940	-0.001284
27	8	0	5.052130	0.056300	0.000239
28	0	0	5.53/23/	2.3/4950	0.000336
29	0	0	6.410406	2.2108/4	-1.256024
30	0	0	4.888984	3.759937	-0.000880
31	6	0	6.408175	2.211906	1.258351
32	1	0	6.905215	1.235569	-1.268324
33	1	0	5.810018	2.310850	-2.165942
34	1	0	7.180837	2.988148	-1.264424
35	1	0	4.270002	3.914696	0.888762
36	1	0	5.675126	4.520562	-0.000706
37	1	0	4.271314	3.913628	-0.891612
38	1	0	7.178816	2.988967	1.267329
39	1	0	5.806221	2.312913	2.167117
40	1	0	6.902694	1.236472	1.272455
41	6	0	5.102131	-2.347679	-0.000054
42	6	0	4.740905	-3.157124	1.257562
43	6	0	4.740530	-3.157992	-1.256986
44	6	0	6.606962	-2.056965	-0.000396
45	1	0	4.978182	-2.595754	2.166414
46	1	0	3.678184	-3.416033	1.278486
47	1	0	5.317264	-4.087626	1.266174
48	1	0	4.977771	-2.597364	-2.166305
49	1	0	5.316699	-4.088616	-1.264983
50	1	0	3.677770	-3.416750	-1.277581
51	1	0	7.147479	-3.007906	-0.000364
52	1	0	6.906860	-1.491819	-0.887623
53	1	0	6.907215	-1.491562	0.886547
	1000 51440062				
L(RMUOZA) =	-1909.01440963	А.	υ.		

Standard orientation:

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Type	Х	Y	Z
1	 6	0	3.614374	1.123757	0.000131
2	6	0	2.361833	0.623073	0.000149
3	6	0	2,119708	-0.806268	-0.000025
4	6	0	3,333143	-1.603748	-0.000105
5	6	0	4.556035	-1.041651	-0.000094
6	1	0	1.547425	1.330506	0.000365
7	1	0	3,247659	-2.683652	-0.000204
8	8	0	4.706398	0.315407	-0.000014
9	6	0	0.903221	-1.436202	-0.000098
10	1	0	0,926079	-2.523846	-0.000147
11	6	0	-0.430250	-0.910602	-0.000084
12	6	0	-1.566039	-1.709210	0.000148
13	6	0	-2.545698	0.433138	-0.000305
14	6	0	-2.750699	-0.950886	0.000021
15	1	0	-1.514761	-2.790828	0.000385
16	6	0	-3.725551	1.180556	-0.000424
17	6	0	-4.857346	0.369976	-0.000157
18	1	0	-3.786038	2.263013	-0.000659
19	16	0	-0.848622	0.803123	-0.000429
20	16	0	-4.433809	-1.343988	0.000191
21	6	0	-6.171636	0.898183	-0.000198
22	1	0	-6.216920	1.985278	-0.000452
23	6	0	-7.381146	0.253372	0.000019
24	6	0	-8.592723	1.014377	-0.000097
25	7	0	-9.570493	1.636432	-0.000198
26	6	0	-7.522729	-1.168810	0.000383
27	7	0	-7.640117	-2.322166	0.000681
28	6	0	4.014084	2.582231	0.000253

S44

29	6	0		4.856633	2.859404	-1.256937
30	6	0		2.784141	3.491802	0.000389
31	6	0		4.856819	2.859219	1.257335
32	1	0		5.755499	2.237108	-1.274639
33	1	0		4.278107	2.661589	-2.165141
34	1	0		5.164441	3.909905	-1.266046
35	1	0		2.166695	3.331254	0.890361
36	1	0		3.111146	4.535684	0.000319
37	1	0		2.166471	3.331193	-0.889415
38	1	0		5.164534	3.909747	1.266604
39	1	0		4.278486	2.661164	2.165609
40	1	0		5.755751	2.237004	1.274750
41	6	0		5.897780	-1.737184	-0.000106
42	6	0		6.674779	-1.308392	-1.256685
43	6	0		6.674556	-1.308699	1.256728
44	6	0		5.725386	-3.256571	-0.000307
45	1	0		6.137494	-1.599965	-2.164906
46	1	0		6.828567	-0.225862	-1.275486
47	1	0		7.655218	-1.795436	-1.264273
48	1	0		6.137099	-1.600498	2.164774
49	1	0		7.654998	-1.795736	1.264381
50	1	0		6.828328	-0.226171	1.275813
51	1	0		6.711622	-3.730317	-0.000365
52	1	0		5.186010	-3.597922	0.889163
53	1	0		5.186007	-3.597688	-0.889864
E(RM062X) =	-1909.52523265		A.U.			

		Standard	orientation:		
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	3.590426	-1.297246	0.000549
2	6	0	3.001296	-0.082154	0.000700
3	6	0	3.785189	1.133456	0.000202
4	6	0	5.216803	0.910144	-0.000159
5	6	0	5.743845	-0.329691	-0.000271
6	1	0	1.922959	-0.056917	0.001321
7	1	0	5.880312	1.766114	-0.000390
8	8	0	4.940332	-1.432302	-0.000005
9	6	0	3.301420	2.419835	0.000054
10	1	0	4.044157	3.214730	-0.000221
11	6	0	-2.816589	2.270833	0.000035
12	6	0	-4.239704	2.421671	0.000178
13	6	0	-4.039359	0.078991	-0.000307
14	6	0	-4.895677	1.228140	0.000033
15	1	0	-4.703758	3.401558	0.000451
16	6	0	-4.689438	-1.130372	-0.000480
17	6	0	-6.099918	-0.960217	-0.000252
18	1	0	-4.224483	-2.108038	-0.000760
19	16	0	-2.368741	0.546805	-0.000415
20	16	0	-6.575969	0.737627	0.000151
21	6	0	-7.058913	-1.968887	-0.000301
22	6	0	-6.657887	-3.332005	-0.000552
23	7	0	-6.306356	-4.438736	-0.000736
24	6	0	-8.445563	-1.664421	-0.000092
25	7	0	-9.570835	-1.376220	0.000063
26	6	0	-1.938038	3.324385	0.000225
27	6	0	-0.525591	3.348895	0.000189
28	6	0	0.251601	4.505864	0.000131
29	6	0	1.623878	4.265004	0.000119
30	1	0	-0.194663	5.494678	0.000119
31	6	0	1.961602	2.908126	0.000134
32	1	0	2.381874	5.039727	0.000090
33	1	0	-2.401926	4.310226	0.000448
34	16	0	0.511763	1.939998	0.000183
35	6	0	7.204004	-0.718679	-0.000682

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	6	0	7.488266	-1.558887	-1.257855
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	б	0	8.100891	0.520215	-0.001079
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	6	0	7.489059	-1.558615	1.256490
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	1	0	6.873238	-2.462813	-1.275909
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	1	0	7.286029	-0.981881	-2.166015
42107.9332151.1357900.88 43 109.1481220.204107-0.00 44 107.9328121.135519-0.89 45 108.541850-1.8585201.26 46 107.287754-0.9812762.16 47 106.873798-2.4623671.27 48 602.900965-2.6426360.00 49 603.335756-3.4158341.257 50 601.379601-2.4798480.00 51 603.334846-3.415842-1.256 52 104.418977-3.5645591.27 53 103.042639-2.8796232.166 54 102.853084-4.3982401.266 55 101.032907-1.943636-0.88 56 100.913394-3.4695100.00 57 101.033535-1.9432760.89 58 102.851960-4.398144-1.266 59 103.041259-2.879498-2.166 60 104.418028-3.564769-1.27C	41	1	0	8.541135	-1.858487	-1.266642
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	1	0	7.933215	1.135790	0.888553
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43	1	0	9.148122	0.204107	-0.001251
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44	1	0	7.932812	1.135519	-0.890824
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45	1	0	8.541850	-1.858520	1.264510
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46	1	0	7.287754	-0.981276	2.164651
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47	1	0	6.873798	-2.462367	1.275345
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48	6	0	2.900965	-2.642636	0.000870
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	49	б	0	3.335756	-3.415834	1.257891
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50	6	0	1.379601	-2.479848	0.001392
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51	б	0	3.334846	-3.415842	-1.256494
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	52	1	0	4.418977	-3.564559	1.274795
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	53	1	0	3.042639	-2.879623	2.166185
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54	1	0	2.853084	-4.398240	1.266262
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	55	1	0	1.032907	-1.943636	-0.888443
$57 \qquad 1 \qquad 0 \qquad 1.033535 -1.943276 \qquad 0.89.$ $58 \qquad 1 \qquad 0 \qquad 2.851960 -4.398144 -1.26.$ $59 \qquad 1 \qquad 0 \qquad 3.041259 -2.879498 -2.16.$ $60 \qquad 1 \qquad 0 \qquad 4.418028 -3.564769 -1.27.$ $E(RM062X) = -2461 23627659 \qquad A. II.$	56	1	0	0.913394	-3.469510	0.001759
$58 \qquad 1 \qquad 0 \qquad 2.851960 -4.398144 -1.26559 \qquad 1 \qquad 0 \qquad 3.041259 -2.879498 -2.165560 \qquad 1 \qquad 0 \qquad 4.418028 -3.564769 -1.275560 \qquad -1.2755600 \qquad -1.2755600 \qquad -1.2755600 \qquad -1.2755600 \qquad -1.2755600 \qquad -1.2755600 \qquad -1.275560$	57	1	0	1.033535	-1.943276	0.891249
$59 \qquad 1 \qquad 0 \qquad 3.041259 -2.879498 -2.16$ $60 \qquad 1 \qquad 0 \qquad 4.418028 -3.564769 -1.27$ $E(RM062X) = -2461 23627659 \qquad A. II.$	58	1	0	2.851960	-4.398144	-1.264613
$60 \qquad 1 \qquad 0 \qquad 4.418028 -3.564769 -1.27$	59	1	0	3.041259	-2.879498	-2.164555
E(RM062X) = -2461, 23627659 A.U.	60	1	0	4.418028	-3.564769	-1.274075
	E(RM062X) =	-2461.23627659	 I	A.U.		

		Standard	orientation:		
Center	nter Atomic Atomic Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z
1	б	0	5.417386	-0.945160	0.000029
2	6	0	4.114445	-0.598425	-0.000280
3	6	0	3.702850	0.792724	-0.000345
4	6	0	4.813855	1.729418	-0.000344
5	6	0	6.094155	1.318266	-0.000006
6	1	0	3.390273	-1.398667	-0.000550
7	1	0	4.601079	2.791622	-0.000616
8	8	0	6.406679	-0.012298	0.000329
9	6	0	2.421723	1.273284	-0.000394
10	1	0	2.316185	2.356221	-0.000470
11	6	0	1.156193	0.596280	-0.000267
12	6	0	-0.061808	1.258459	-0.000018
13	6	0	-0.794265	-0.981431	-0.000195
14	6	0	-1.152024	0.368034	0.000007
15	1	0	-0.135966	2.338843	0.000148
16	6	0	-1.883702	-1.862726	-0.000155
17	6	0	-3.098366	-1.189616	0.000039
18	1	0	-1.818045	-2.944731	-0.000285
19	16	0	0.934234	-1.154053	-0.000448
20	16	0	-2.870844	0.558767	0.000234
21	6	0	-4.362549	-1.840698	0.000076
22	1	0	-4.304128	-2.928328	0.000072
23	6	0	-5.627348	-1.329702	0.000061
24	6	0	-6.818455	-2.130052	0.000049
25	6	0	-7 . 979679	-1.426084	0.000063
26	1	0	-6.758600	-3.213242	0.000034
27	6	0	-7.772493	-0.005800	0.000061
28	1	0	-8.974488	-1.854751	0.000068
29	16	0	-6.071797	0.385796	0.000050
30	6	0	-8.754402	0.967076	0.000054
31	6	0	-10.129826	0.596803	0.000056
32	7	0	-11.244525	0.275368	0.000035
33	6	0	-8.422612	2.350922	0.000043
34	7	0	-8.115116	3.469816	0.000025
35	6	0	5.990064	-2.344634	0.000149

36	6	0	6.859911	-2.518820	1.256844
37	6	0	4.878608	-3.395188	-0.000200
38	6	0	6.860542	-2.518702	-1.256178
39	1	0	7.675732	-1.790785	1.276267
40	1	0	6.261565	-2.395585	2.165503
41	1	0	7.294357	-3.523674	1.264111
42	1	0	4.246054	-3.310507	-0.890086
43	1	0	5.328316	-4.392641	-0.000007
44	1	0	4.245475	-3.310481	0.889281
45	1	0	7.294624	-3.523711	-1.263540
46	1	0	6.262697	-2.394958	-2.165096
47	1	0	7.676616	-1.790939	-1.274894
48	6	0	7.344952	2.166524	0.000105
49	6	0	8.166709	1.830631	-1.256381
50	6	0	6.998622	3.656290	-0.000230
51	б	0	8.166173	1.831072	1.257057
52	1	0	8.442806	0.772659	-1.275607
53	1	0	7.599863	2.059480	-2.164596
54	1	0	9.084785	2.426854	-1.263520
55	1	0	6.423717	3.934439	0.888962
56	1	0	7.924173	4.239556	-0.000145
57	1	0	6.424078	3.934138	-0.889749
58	1	0	9.084229	2.427324	1.264385
59	1	0	7.598934	2.060210	2.164951
60	1	0	8.442294	0.773114	1.276751

E(RM062X) = -2461.23932817 A.U.

		Standard c	rientation:			
Center	Atomic	Atomic	Coord	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	6	0	-3.563064	0.871333	-0.000082	
2	6	0	-2.583794	-0.183300	-0.000022	
3	6	0	-3.251953	-1.468309	0.000080	
4	6	0	-4.622196	-1.412685	0.000071	
5	6	0	-4.355497	-3.689007	0.000310	
6	6	0	-5.271038	-2.678517	0.000208	
7	1	0	-6.342838	-2.830880	0.000226	
8	16	0	-5.204518	0.239615	-0.000082	
9	16	0	-2.718238	-3.114650	0.000255	
10	6	0	-3.408174	2.266195	-0.000133	
11	6	0	-2.158193	2.934434	-0.000174	
12	7	0	-1.130359	3.479601	-0.000203	
13	6	0	-4.559121	3.099758	-0.000210	
14	7	0	-5.518130	3.755859	-0.000267	
15	6	0	-1.209875	0.051472	-0.000096	
16	6	0	-0.180134	-0.882046	-0.000165	
17	1	0	-0.391840	-1.946694	-0.000255	
18	1	0	-0.909826	1.089413	-0.000110	
19	6	0	1.171532	-0.508222	-0.000136	
20	6	0	2.195633	-1.510140	-0.000246	
21	6	0	1.636604	0.849105	0.000026	
22	6	0	3.508013	-1.171573	-0.000204	
23	1	0	1.915756	-2.556275	-0.000357	
24	6	0	2.963408	1.124293	0.000056	
25	1	0	0.946644	1.683687	0.000142	
26	8	0	3.878912	0.128767	-0.000090	
27	6	0	4.704863	-2.091813	-0.000192	
28	6	0	5.541651	-1.801938	1.258468	
29	6	0	4.267204	-3.557368	-0.000765	
30	6	0	5.542360	-1.801192	-1.258210	
31	1	0	5.882234	-0.762983	1.276329	
32	1	0	4.962304	-1.996012	2.166665	
33	1	0	6.421459	-2.452600	1.265245	
34	1	0	3.678624	-3.801170	-0.890942	
35	1	0	5.156597	-4.193819	-0.000917	

36	1	0	3.6784	93 -3.801818	0.889146
37	1	0	6.4223	03 -2.451673	-1.264732
38	1	0	4.9636	08 -1.994989	-2.166843
39	1	0	5.8827	52 -0.762167	-1.275398
40	6	0	3.6190	54 2.484473	0.000268
41	6	0	4.4978	21 2.602092	-1.257479
42	6	0	2.5679	92 3.595860	0.000508
43	6	0	4.4979	04 2.601559	1.258001
44	1	0	5.2711	35 1.828809	-1.273969
45	1	0	3.8943	09 2.513960	-2.166451
46	1	0	4.9887	11 3.580171	-1.263699
47	1	0	1.9284	91 3.549400	0.887588
48	1	0	3.0766	34 4.564366	0.000615
49	1	0	1.9283	80 3.549650	-0.886501
50	1	0	4.9882	<i>3.579886</i>	1.264981
51	1	0	3.8945	58 2.512382	2.166989
52	1	0	5.2716	08 1.828652	1.273775
53	1	0	-4.5421	60 -4.753872	0.000427
E(RM062X)	= -1909.52449160		A.U.		

Standard orientation: -----Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 15 0 16 1 -0.674689 -2.708157 0.199793 6 0 17 -1.997607 -1.048334 0.018593 18 6 0 -3.097903 -1.929819 0.002700 19 6 0 -2.297101 0.329844 -0.041473 20 6 0 -4.400608 -1.489662 -0.089405 21 1 0 -2.913305 -2.999314 0.066561 22 6 0 -3.592372 0.789066 -0.131515 23 1 0 -1.509266 1.073798 0.002369 24 6 0 -0.104429 -4.698116 -0.181742 25 0 -5.192896 -2.225707 1 -0.086736 1 7 0 1.859380 26 -3.749498 -0.153145 0 27 -5.983165 0.341038 -0.316865 6 28 0 -7.071631 -0.635589 -0.182410 29 6 0 -8.468968 -0.074595 -0.400865 30 1 0 -7.019231 -1.108694 0.809064 31 1 0 -6.906723 -1.426685 -0.921627 32 1 0 -9.180724 -0.899606 -0.316861 0.675827 0.346145 33 1 0 -8.741115 34 1 0 -8.578213 0.362221 -1.397118 35 0 -6.276853 1.767240 -0.206781 6 0 -6.287525 36 6 2.265419 1.237128 0 37 1 -7.242881 1.951805 -0.675653 0 -0.807723 38 -5.551186 2.320051 1 0 1.270698 39 1 -6.505269 3.336673 0 40 1 -7.052751 1.740624 1.817911 41 1 0 -5.320379 2.093650 1.719238

42	1	0	3.841676	2.145089	-0.229313
E(RM062X) =	-1732.48629544	1 A.1			

Standard orientation:						
Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	-3.273996	-0.522653	-0.015435	
2	6	0	-1.869910	-0.114846	-0.025955	
3	6	0	-1.802422	1.343486	0.007085	
4	6	0	-3.020172	1.968166	-0.088298	
5	6	0	-1.672344	3.801080	-0.311256	
6	6	0	-2.967032	3.377018	-0.265299	
7	1	0	-3.827779	4.028226	-0.348163	
8	16	0	-4.367900	0.845051	-0.105102	
9	16	0	-0.529987	2.511438	-0.145054	
10	6	0	-3.809872	-1.792862	0.124411	
11	6	0	-3.054743	-2.968378	0.399173	
12	7	0	-2.473396	-3.944368	0.636480	
13	6	0	-5.224514	-1.966216	0.062611	
14	7	0	-6.378679	-2.071293	0.009761	
15	6	0	-0.862930	-1.025403	-0.235626	
16	1	0	-1.164060	-2.011604	-0.577952	
17	1	0	-1.309900	4.814950	-0.412547	
18	6	0	0.554757	-0.844420	-0.108249	
19	6	0	1.428026	-1.664626	-0.851717	
20	6	0	1.146243	0.061896	0.795725	
21	6	0	2.797253	-1.542506	-0.763596	
22	1	0	1.008857	-2.397967	-1.535802	
23	6	0	2.512277	0.183306	0.914602	
24	1	0	0.514609	0.646430	1.457764	
25	6	0	3.394421	-0.609713	0.128674	
26	1	0	3.411315	-2.179367	-1.385237	
27	1	0	2.901184	0.891960	1.633756	
28	7	0	4.751188	-0.506452	0.241885	
29	6	0	5.585472	-1.255244	-0.707832	
30	6	0	7.085706	-1.111997	-0.500396	
31	1	0	5.330207	-0.952535	-1.733535	
32	1	0	5,330700	-2.316712	-0.616509	
33	1	0	7,588505	-1.737200	-1.242511	
34	1	0	7.432077	-0.084800	-0.642263	
35	1	0	7,393283	-1.456163	0.490597	
36	6	0	5.335584	0.585001	1.017355	
37	6	0	5,290586	1.924571	0.285314	
38	1	0	6 364918	0 319766	1 254836	
39	1	0	4.821025	0.645732	1,979276	
40	1	0	5 726770	2 713761	0 904190	
41	1	0	5 855401	1 868687	-0 650627	
42	1	0	4 260850	2 203842	0 042620	
74	<u>٭</u>	v	±.200050	2.203043	0.042020	

E(RM062X) = -1732.48292693 A.U.