Supplementary information

Designing Thiol Specific Fluorescent Probe for a Possible Use as a Reagent for Intracellular Detection and Estimation in Blood Serum: Kinetic Analysis for Probing the Role of Intra Molecular Hydrogen Bonding

Priyadip Das, ^a Amal Kumar Mandal,^a Upendar Reddy G,^{a,b} Mithu Baidya,^c Sudip K. Ghosh^c* and Amitava Das^{a,b}*

 ^aCSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar: 364002, Gujarat, India
^bPresent address: Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune: 411008, Maharashtra, India; Fax: +91(0)2025902629; E-mail: <u>a.das@ncl.res.in</u>

^cDepartment of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal-721302, India, Email address: <u>sudip@hijli.iitkgp.ernet.in</u>

Table of Contents:

¹ H NMR spectra of L_1	S12
¹³ C NMR spectra of L_1	S13
ESI-mass spctra of L_1	S14
FTIR spectra of L ₁	S15
¹ H NMR spectra of L_2	S16
¹³ C NMR spectra of L_2	S17
ESI-mass spctra of L_2	S18
FTIR spectra of L ₂	S19
Fluorescence response of L_1 in presence of different amino acids	S20
Fluorescence response of L_1 in presence of different amino acids	S20
ESI-mass spectra of L ₁ -ME	S21
Fluorescence micrographs of only live HeLa cells	S21
Hydrolytic stability test for L_1 and L_2	S22
Determination of detection limit for L_1 and L_2	S22

¹H NMR spectra of L₁

SI Figure 1: Partial ¹H NMR spectra of L_1 in DMSO- d_6 medium.

SI Figure 2: ¹³C NMR spectra of L_1 in DMSO- d_6 medium.

Mass spectra of L₁

SI Figure 3: ESI- Ms spectrum of L₁.

FTIR spectra of L₁

SI Figure 4: FTIR spectra of L_1 recorded as KBr pellet.

¹H NMR spectra of L₂

SI Figure 5: Partial ¹H NMR spectra of L_2 in DMSO- d_6 medium.

¹³C NMR spectra of L₂

SI Figure 6: ¹³C NMR spectra of L_2 in DMSO- d_6 medium.

Mass spectra of L₂

SI Figure 7: ESI-Ms spectra of L₂.

SI Figure 8: FTIR spectra of L₂ recorded as KBr pellet.

Fluorescence response of L₁ in presence of different amino acids

SI Figure 9: Fluorescence responses of L_1 (20 µM) upon addition of various amino acids (20 mM) in DMSO-aq. HEPES buffer (50mM, 7:3 (v/v); pH 7.4). If GSH was pre-treated with *N*-ethylmaleimide (NEM, a scavenger of GSH), the change in fluorescence intensity of L_1 was insignificant owing to the decrease in the effective concentration of GSH, $\lambda_{Ext} = 296$ nm, $\lambda_{Mon} = 342$ nm.

Fluorescence response of L₂ in presence of different amino acids

SI Figure 10: The change in intensity ratio (I_{375}/I_{350}) of L_2 (20 μ M) upon addition of various amino acids (20 mM) in DMSO-aq. HEPES buffer (50mM, 7:3 (v/v); pH 7.4). If GSH was pre-treated with *N*-ethylmaleimide (NEM, a scavenger of GSH), the change in luminescence intensity ratio (I_{375}/I_{350}) of L_2 is insignificant owing to the decrease in the effective concentration of GSH, $\lambda_{Ext}=291$ nm.

ESI-Ms spectrum of L₁-ME

SI Figure 11: ESI-Ms spectra of L₁-ME.

Fluorescence Micorographs of only Live HeLa Cells

SI Figure. 12. (A) Differential interference contrast, and (B) fluorescence micrographs of HeLa cells in absence of L_1 and (C) Overlay of the dark field image with a fluorescence phase contrast image. These images reveal that intracellular biothiols in HeLa cells are nonluminescent.

Hydrolytic stability test of L1 and L2

SI Figure. 13. (A) A plot of emission intensity of L_1 at 342 nm with time in in DMSO-aq. HEPES buffer (50mM, 7:3 (v/v); pH 7.4) at 25°C, $\lambda_{Ext} = 296$ nm. (B) A plot emission intensity ratio (I_{375}/I_{350}) of L_2 in DMSO-aq. HEPES buffer (50mM, 7:3 (v/v); pH 7.4) at 25°C, $\lambda_{Ext} = 291$ nm.

Determination of detection limit of L1 and L2

SI Figure. 14. (A) Plot of emission intensity of L_1 at 342 nm as a function of various concentrations of GSH in DMSO-aq. HEPES buffer (50mM, 7:3 (v/v); pH 7.4) at 25°C, $\lambda_{Ext} = 296$ nm. An assay time of 35 min was chosen for each reaction. (B) Plot of emission intensity of L_2 at 375 nm as a function of various concentrations of GSH in DMSO-aq. HEPES buffer (50mM, 7:3 (v/v); pH 7.4) at 25°C, $\lambda_{Ext} = 291$ nm. An assay time of 90 min was chosen for each reaction.