SUPPORTING INFORMATION

Synthesis and photophysical properties of novel butterfly-shaped blue emitters based on pyrene

Xing Feng,^a Jian-Yong Hu,^{*a,b} Nobuyuki Seto,^a Hirotsugu Tomiyasu,^a Carl Redshaw,^c Mark R. J. Elsegood^d and Takehiko Yamato^{*a}

^a Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1, Saga 840-8502 Japan,
E-mail: yamatot@cc.saga-u.ac.jp

Emergent Molecular Function Research Group, RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan, E-mail: jian-yong.hu@riken.jp

^c Department of Chemistry, The University of Hull, Cottingham Road, Hull, Yorkshire, HU6 7RX, UK.

^d Chemistry Department, Loughborough University, Loughborough, LE11 3TU, UK.

Figure S1-1. ¹H NMR spectrum of 4a (300 MHz, CDCl₃, 293 K).

Figure S1-2. ¹³C NMR spectrum of 4a (75 MHz, CDCl₃, 293 K).

NMR spectrum

Figure S1-3. ¹H NMR spectrum of 4b (400 MHz, CDCl₃, 293 K).

Figure S1-4. ¹³C NMR spectrum of 4b (100 MHz, CDCl₃, 293 K).

Figure S1-5. ¹H NMR spectrum of 4c (300 MHz, CDCl₃, 293 K).

Figure S1-6. ¹³C NMR spectrum of 4c (75 MHz, CDCl₃, 293 K).

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

Figure S1-7. ¹H NMR spectrum of 4d (300 MHz, CDCl₃, 293 K).

Figure S1-8. ¹³C NMR spectrum of 4d (100 MHz, CDCl₃, 293 K).

Figure S1-9. ¹H NMR spectrum of 4e (300 MHz, CDCl₃, 293 K).

Figure S1-10. ¹³C NMR spectrum of 4e (100 MHz, CDCl₃, 293 K).

Figure S1-11. ¹H NMR spectrum of 4f (300 MHz, CDCl₃, 293 K).

Figure S1-12. ¹³C NMR spectrum of 4f (100 MHz, CDCl₃, 293 K).

Figure S1-13. ¹H NMR spectrum of **5** (400 MHz, CDCl₃, 293 K).

Figure S1-14. ¹³CNMR spectrum of **5** (100 MHz, CDCl₃, 293 K).

Figure S1-15. ¹H NMR spectrum of 6 (400 MHz, CDCl₃, 293 K).

Figure **S1-16**. ¹³CNMR spectrum of **6** (100 MHz, CDCl₃, 293 K).

PhotophyscalAnalysis

Figure S2-1. UV/Vis absorption (left) and fluorescence spectra (right) of the compound 4a recorded in different solvents at $\sim 10^{-5}$ M and 25 °C.

Figure S2-2. UV/Vis absorption (left) and fluorescence spectra (right) of the compound 4b recorded in different solvents at $\sim 10^{-5}$ M and 25 °C.

Figure S2-3. UV/Vis absorption (left) and fluorescence spectra (right) of the compound 4c recorded in different solvents at $\sim 10^{-5}$ M and 25 °C.

Figure S2-4.UV/Vis absorption (left) and fluorescence spectra (right) of the compound 4d recorded in different solvents at $\sim 10^{-5}$ M and 25 °C.

Figure S2-5. UV/Vis absorption (left) and fluorescence spectra (right) of the compound 4e recorded in different solvents at $\sim 10^{-5}$ M and 25 °C.

Figure S2-6. UV/Vis absorption (left) and fluorescence spectra (right) of the compound 4f recorded in different solvents at $\sim 10^{-5}$ M and 25 °C.

Figure S2-7. UV/Vis absorption (left) and fluorescence spectra (right) of the compound 5 recorded in different solvents at $\sim 10^{-5}$ M and 25 °C.

Figure S2-8Effect of concentration on the UV/Vis (left) and fluorescence emission (right) of 4ain

CH₂Cl₂ at 25 °C.

Figure S2-9Effect of concentration on the UV/Vis (left) and fluorescence emission (right) of 4bin

 CH_2Cl_2 at 25 °C.

Figure S2-10Effect of concentration on the UV/Vis (left) and fluorescence emission (right) of 4cin CH_2Cl_2 at 25 °C.

Figure S2-11Effect of concentration on the UV/Vis (left) and fluorescence emission (right) of 4din CH_2Cl_2 at 25 °C.

Figure S2-12Effect of concentration on the UV/Vis (left) and fluorescence emission (right) of 4ein CH_2Cl_2 at 25 °C.

Figure S2-13Effect of concentration on the UV/Vis (left) and fluorescence emission (right) of 4fin CH_2Cl_2 at 25 °C.

Figure S2-14Effect of concentration on the UV/Vis (left) and fluorescence emission (right) of 5in CH₂Cl₂ at 25 °C.

Electrochemistry Analysis

Figure S4-1 Cyclic voltammogramscu for compound5.

Quantum Chemistry Computation

Figure S4-1. Computed molecular orbital plots (B3LYP/6–31G*) of the compound 4a. The left plots represent the HOMOs, and the right plots represent the LUMOs.

Figure S4-2. Computed molecular orbital plots (B3LYP/6–31G*) of the compound 4c. The left plots represent the HOMOs, and the right plots represent the LUMOs.

Figure S4-3. Computed molecular orbital plots (B3LYP/6–31G*) of the compound 4f. The left plots represent the HOMOs, and the right plots represent the LUMOs.

Figure S4-4. Computed molecular orbital plots (B3LYP/6–31G*) of the compound 6. The left plots represent the HOMOs, and the right plots represent the LUMOs.