Supporting Information

Synthesis and structural characterization of the individual diastereoisomers of a cross-stapled alkene-bridged nisin DE-ring mimic

Jack C. Slootweg^a, Johan Kemmink^a, Rob M. J. Liskamp^{a,b} and Dirk T. S. Rijkers^{a*}

^aMedicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands

^bChemical Biology and Medicinal Chemistry, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, Scotland, United Kingdom

*Corresponding author. Tel.: +31 (0)6 2026 0572 / +31 (0)30 253 7307; fax: +31 (0)30 253 6655. E-mail address: D.T.S.Rijkers@uu.nl (D.T.S. Rijkers).

Contents

1.	HPLC chromatograms of RCM reaction mixtures	page 2
2.	LC-MS data of hydrogenation reaction mixtures of DE-ring 2	pages 3-4
3.	Copies of ¹ H, TOCSY, ROESY and HSQC NMR spectra of bicyclic	pages 5-19
	peptide 2a, 2b, 2c and 2d	
4.	Copies of ¹ H, ¹ H-COSY and ¹³ C NMR spectra of compounds 7, 9-11	pages 20-31
5.	Copies of ESI-MS spectra and HPLC chromatograms of peptides 1, 2a-	
	d, 3-5, 13	pages 32-40
6.	Vesicle leakage experiments	page 41
7.	Growth inhibition assay	page 42

1. HPLC chromatograms of RCM reaction mixtures.

Figure SI 1: HPLC chromatograms of the RCM reactions mixtures of bicyclo[1-4/3-6]-Boc-D-Alg¹-Ala²-D-Alg³-Alg⁴-Asn(Trt)⁵-Alg⁶-OMe (**2**) using Grubbs 2^{nd} generation and Hoveyda-Grubbs 2^{nd} generation catalyst.

2. LC-MS data hydrogenation DE-Ring 2.

Figure SI 2: A zoom-in of the LC-MS data of the hydrogenation reaction mixture starting with bicyclo[1-4/3-6]-Boc-D-Alg¹-Ala²-D-Alg³-Alg⁴-Asn(Trt)⁵-Alg⁶-OMe (2) shows five peaks, I, II, III, IV and V respectively. The chemical structures represent the expected product and reaction intermediates.

Figure SI 3: MS spectra derived from the observed five peaks (I, II, III, IV and V) from the LC-MS data of the hydrogenation reaction mixture starting with bicyclo[1-4/3-6]-Boc-D-Alg¹-Ala²-D-Alg³-Alg⁴-Asn(Trt)⁵-Alg⁶-OMe (**2**).

Figure SI 4: ¹H NMR spectrum of bicyclo[$Z^{1.4}/Z^{3.6}$]-Boc-D-Alg¹-Ala²-D-Alg³-Alg⁴-Asn(Trt)⁵-Alg⁶-OMe (**2a**) (500 MHz, CDCl₃/CD₃OH 95:5 v/v, T = 298 K).

Figure SI 5: ¹H-TOCSY NMR spectrum of bicyclo[$Z^{1.4}/Z^{3.6}$]-Boc-D-Alg¹-Ala²-D-Alg³-Alg⁴-Asn(Trt)⁵-Alg⁶-OMe (**2a**) (500 MHz, CDCl₃/CD₃OH 95:5 v/v, T = 298 K).

Figure SI 6: ¹H-ROESY NMR spectrum of bicyclo[Z^{1-4}/Z^{3-6}]-Boc-D-Alg¹-Ala²-D-Alg³-Alg⁴-Asn(Trt)⁵-Alg⁶-OMe (**2a**) (500 MHz, CDCl₃/CD₃OH 95:5 v/v, T = 298 K).

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

Figure SI 7: ${}^{1}\text{H}/{}^{13}\text{C}\text{-HSQC}$ NMR spectrum of bicyclo[Z^{1-4}/Z^{3-6}]-Boc-D-Alg¹-Ala²-D-Alg³-Alg⁴-Asn(Trt)⁵-Alg⁶-OMe (**2a**) (500 MHz, CDCl₃/CD₃OH 95:5 v/v, T = 298 K).

Figure SI 8: ¹H NMR spectrum of bicyclo[$Z^{1.4}/E^{3.6}$]-Boc-D-Alg¹-Ala²-D-Alg³-Alg⁴-Asn(Trt)⁵-Alg⁶-OMe (**2b**) (500 MHz, CDCl₃/CD₃OH 95:5 v/v, T = 298 K).

Figure SI 9: ¹H-TOCSY NMR spectrum of bicyclo[Z^{1-4}/E^{3-6}]-Boc-D-Alg¹-Ala²-D-Alg³-Alg⁴-Asn(Trt)⁵-Alg⁶-OMe (**2b**) (500 MHz, CDCl₃/CD₃OH 95:5 v/v, T = 298 K).

Figure SI 10: ¹H-ROESY NMR spectrum of bicyclo[Z^{1-4}/E^{3-6}]-Boc-D-Alg¹-Ala²-D-Alg³-Alg⁴-Asn(Trt)⁵-Alg⁶-OMe (**2b**) (500 MHz, CDCl₃/CD₃OH 95:5 v/v, T = 298 K).

Figure SI 11: ¹H NMR spectrum of bicyclo[E^{1-4}/Z^{3-6}]-Boc-D-Alg¹-Ala²-D-Alg³-Alg⁴-Asn(Trt)⁵-Alg⁶-OMe (**2c**) (500 MHz, CDCl₃/CD₃OH 95:5 v/v, T = 298 K).

Figure SI 12: ¹H-TOCSY HSQC NMR spectrum of bicyclo[E^{1-4}/Z^{3-6}]-Boc-D-Alg¹-Ala²-D-Alg³-Alg⁴-Asn(Trt)⁵-Alg⁶-OMe (**2c**) (500 MHz, CDCl₃/CD₃OH 95:5 v/v, T = 298 K).

Figure SI 13: ¹H-ROESY HSQC NMR spectrum of bicyclo[E^{1-4}/Z^{3-6}]-Boc-D-Alg¹-Ala²-D-Alg³-Alg⁴-Asn(Trt)⁵-Alg⁶-OMe (**2c**) (500 MHz, CDCl₃/CD₃OH 95:5 v/v, T = 298 K).

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

Figure SI 14: ${}^{1}\text{H}/{}^{13}\text{C}$ -HSQC NMR spectrum of bicyclo[E^{1-4}/Z^{3-6}]-Boc-D-Alg¹-Ala²-D-Alg³-Alg⁴-Asn(Trt)⁵-Alg⁶-OMe (**2c**) (500 MHz, CDCl₃/CD₃OH 95:5 v/v, T = 298 K).

Figure SI 15: ¹H NMR spectrum of bicyclo[E^{1-4}/E^{3-6}]-Boc-D-Alg¹-Ala²-D-Alg³-Alg⁴-Asn(Trt)⁵-Alg⁶-OMe (**2d**) (500 MHz, CDCl₃/CD₃OH 95:5 v/v, T = 298 K).

Figure SI 16: ¹H-TOCSY NMR spectrum of bicyclo[$E^{1.4}/E^{3.6}$]-Boc-D-Alg¹-Ala²-D-Alg³-Alg⁴-Asn(Trt)⁵-Alg⁶-OMe (**2d**) (500 MHz, CDCl₃/CD₃OH 95:5 v/v, T = 298 K).

Figure SI 17: ¹H-ROESY NMR spectrum of bicyclo[$E^{1.4}/E^{3.6}$]-Boc-D-Alg¹-Ala²-D-Alg³-Alg⁴-Asn(Trt)⁵-Alg⁶-OMe (**2d**) (500 MHz, CDCl₃/CD₃OH 95:5 v/v, T = 298 K).

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

Figure SI 18: ${}^{1}\text{H}/{}^{13}\text{C}$ -HSQC NMR spectrum of bicyclo[$E^{1.4}/E^{3.6}$]-Boc-D-Alg¹-Ala²-D-Alg³-Alg⁴-Asn(Trt)⁵-Alg⁶-OMe (**2d**) (500 MHz, CDCl₃/CD₃OH 95:5 v/v, T = 298 K).

Figure SI 19: ¹H NMR spectrum of N₃-Lys(Boc)-OH (7) (300 MHz, DMSO-d₆, T = 298 K).

Figure SI 20: ¹H-COSY NMR spectrum of N₃-Lys(Boc)-OH (7) (300 MHz, DMSO-d₆, T = 298 K).

Figure SI 21: ¹³C (APT) NMR spectrum of N₃-Lys(Boc)-OH (7) (75.5 MHz, DMSO-d₆, T = 298 K).

Figure SI 22: ¹H NMR spectrum of Cbz-Lys(Fmoc)-OH (9) (300 MHz, CDCl₃, T = 298 K).

Figure SI 23: ¹H-COSY NMR spectrum of Cbz-Lys(Fmoc)-OH (9) (300 MHz, CDCl₃, T = 298 K).

Figure SI 24: ¹³C (APT) NMR spectrum of Cbz-Lys(Fmoc)-OH (9) (75.5 MHz, CDCl₃, T = 298 K).

Figure SI 25: ¹H NMR spectrum of Cbz-Lys(Fmoc)-NHMe (10) (300 MHz, DMSO-d₆, T = 298 K).

Figure SI 26: ¹H-COSY NMR spectrum of Cbz-Lys(Fmoc)-NHMe (10) (300 MHz, DMSO-d₆, T = 298 K).

Figure SI 27: ¹³C (APT) NMR spectrum of Cbz-Lys(Fmoc)-NHMe (10) (75.5 MHz, DMSO-d₆, T = 298 K).

Figure SI 28: ¹H NMR spectrum of HCl·H-Lys(Fmoc)-NHMe (11) (300 MHz, DMSO-d₆, T = 298 K).

Figure SI 29: ¹H-COSY NMR spectrum of HCl·H-Lys(Fmoc)-NHMe (11) (300 MHz, DMSO-d₆, T = 298 K).

Figure SI 30: ¹³C (APT) NMR spectrum of HCl·H-Lys(Fmoc)-NHMe (11) (75.5 MHz, DMSO-d₆, T = 298 K).

5. Copies of ESI-MS spectra and HPLC chromatograms of peptides 1, 2a-d, 3-5, 13.

Figure SI 30: ESI-MS spectrum and HPLC chromatogram of Boc-D-Alg¹-Ala²-D-Alg³-Alg⁴-Asn(Trt)⁵-Alg⁶-OMe (1).

Figure SI 31: ESI-MS spectrum and HPLC chromatogram of $bicyclo[Z^{1-4}/Z^{3-6}]$ -Boc-D-Alg¹-Ala²-D-Alg³-Alg⁴-Asn(Trt)⁵-Alg⁶-OMe (**2a**).

Figure SI 32: ESI-MS spectrum and HPLC chromatogram of $bicyclo[Z^{1-4}/E^{3-6}]$ -Boc-D-Alg¹-Ala²-D-Alg³-Alg⁴-Asn(Trt)⁵-Alg⁶-OMe (**2b**).

Figure SI 33: ESI-MS spectrum and HPLC chromatogram of $bicyclo[E^{1-4}/Z^{3-6}]$ -Boc-D-Alg¹-Ala²-D-Alg³-Alg⁴-Asn(Trt)⁵-Alg⁶-OMe (**2c**).

Figure SI 34: ESI-MS spectrum and HPLC chromatogram of $bicyclo[E^{1-4}/Z^{3-6}]$ -Boc-D-Alg¹-Ala²-D-Alg³-Alg⁴-Asn(Trt)⁵-Alg⁶-OMe (**2d**).

Figure SI 35: ESI-MS spectrum (after TFA deprotection step) and HPLC chromatogram of bicyclo[1-4/3-6]-N₃-Lys(Boc)-D-Alg¹-Ala²-D-Alg³-Alg⁴-Asn⁵-Alg⁶-OMe (**3**).

Figure SI 36: ESI-MS spectrum and HPLC chromatogram of bicyclo[1-4/3-6]-H-D-Alg¹-Ala²-D-Alg³-Alg⁴-Asn⁵-Alg⁶-Lys(Fmoc)-NHMe·TFA (4).

Figure SI 37: ESI-MS spectrum and HPLC chromatogram of $bicyclo[1-4/3-6]-N_3-Lys-D-Alg^1-Ala^2-D-Alg^3-Alg^4-Asn^5-Alg^6-Lys-NHMe.2TFA (5).$

6. Vesicle leakage experiments

Carboxyfluorescein (CF) loaded large unilamellar vesicles (LUVs) were prepared and used in a model membrane leakage experiment according to a literature procedure (Biochemistry 1997, 36, 6968-6976). The LUVs consisted of an equimolar amount of the zwitterionic lipid 1,2-dioleoyl-snglycero-3-phosphocholine (DOPC) and the anionic lipid 1,2-dioleoyl-*sn*-glycero-3-phosphoglycerol (DOPG). The peptide-induced leakage of CF from the vesicles was monitored by measuring the increase in fluorescence intensity at 515 nm (excitation at 492 nm) on a SPF 500 C spectrophotometer (SLM instruments Inc., USA) at 20 °C. A solution (1.0 mL) of CF-loaded vesicles (20 μ M final concentration) in buffer (10 mM Tris/HCl pH = 7.0, 100 mM NaCl) was added to a quartz cuvette and fluorescence was measured (A_0). After 20 s, a buffer solution (25 μ L) containing the peptide of interest (stock: 1 mM; final: 25 µM) was added and peptide-induced membrane leakage was followed during 60 s (A_{60}), after which a buffer solution (10 μ L) of Triton-X (stock: 20%; final: 0.2%) was added to induce total leakage of the vesicles (A_{Total}). The % of peptide-induced membrane leakage was calculated by: $((A_{60} - A_0)/(A_{Total} - A_0)) \times 100\%$. All measurements were performed in duplo. In case of anoplin (H-Gly-Leu-Leu-Lys-Arg-Ile-Lys-Thr-Leu-Leu-NH₂), the final concentration was 43 µM (50 µg/mL) and in case of nisin, the final concentration was 1 nM.

7. Growth inhibition assay

Bacillus subtilis was used for determination of antimicrobial activity The minimal inhibitory concentration (MIC) of each peptide was determined using a broth microtitre dilution assay adapted from a literature procedure as previously described by Hancock.¹ Peptide stock solutions were prepared at a concentration of 100 to 1000 μ M peptide in 0.2% bovine serum albumin (BSA) and 0.01% acetic acid. Serial three-fold solutions of peptide were made in 0.2% BSA and 0.01% acetic acid. To each well was added, 50 μ L of the test bacterium in tryptic soya broth to a final concentration of 2 × 10⁶ CFU/mL and 50 μ L of the peptide with different concentrations. After incubation for 24 h at 37 °C at 120 rpm in a Certomat incubator, the OD at 630 nm was measured. The MIC (expressed in μ M) of each peptide was read as the lowest concentration of peptide that was able to inhibit visible bacterial growth. All measurements were performed in duplicate.

¹The MIC determination assay was performed according to the protocol of R. E. W. Hancock. For further information see: 'Hancock Laboratory Methods', Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada. http://www.cmdr.ubc.ca/bobh/methods.htm [07-08-2013, date last accessed].

Data:

[Plate: M 630]											DE fragments
	Nisin			DE dicarbo 5				DE native(22-31)			
A	0.055	0.049	0.048	0.595	0.519	0.041	0.622	0.471	0.042	50	500
В	0.041	0.042	0.041	0.561	0.603	0.041	0.653	0.666	0.043	16.7	167
С	0.041	0.042	0.039	0.495	0.512	0.041	0.448	0.437	0.04	5.56	56
D	0.051	0.04	0.039	0.554	0.527	0.048	0.444	0.596	0.039	1.85	19
E	0.043	0.042	0.042	0.446	0.503	0.04	0.497	0.473	0.04	0.62	6.2
F	0.041	0.04	0.04	0.504	0.547	0.041	0.484	0.436	0.041	0.21	2.1
G	0.263	0.154	0.042	0.633	0.529	0.041	0.403	0.485	0.04	0.07	0.7
Н	0.511	0.457	0.04	0.498	0.57	0.04	0.567	0.526	0.047	0.0	0.0

MIC in Bacillus subtilis