Electronic Supplementary Information

Synthesis of Homogeneous MUC1 Oligomers via a Bi-Directional Ligation Strategy

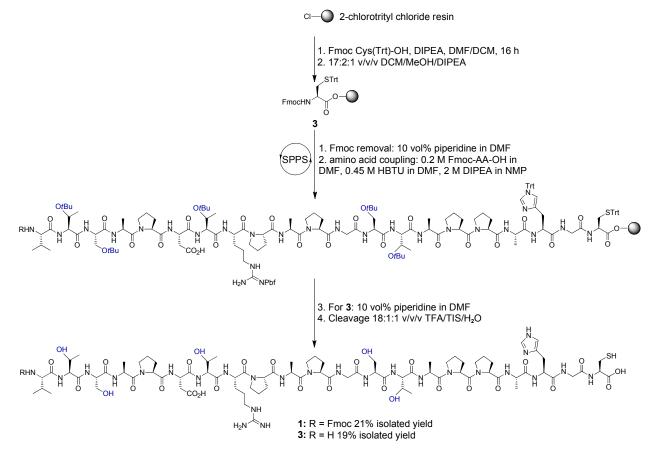
Dima Al Sheikha, Brendan L. Wilkinson, Gajan Santhakumar, Morten Thaysen-Andersen and Richard J. Payne* School of Chemistry, The University of Sydney, NSW 2006, AUSTRALIA *richard.payne@sydney.edu.au

Table of Contents

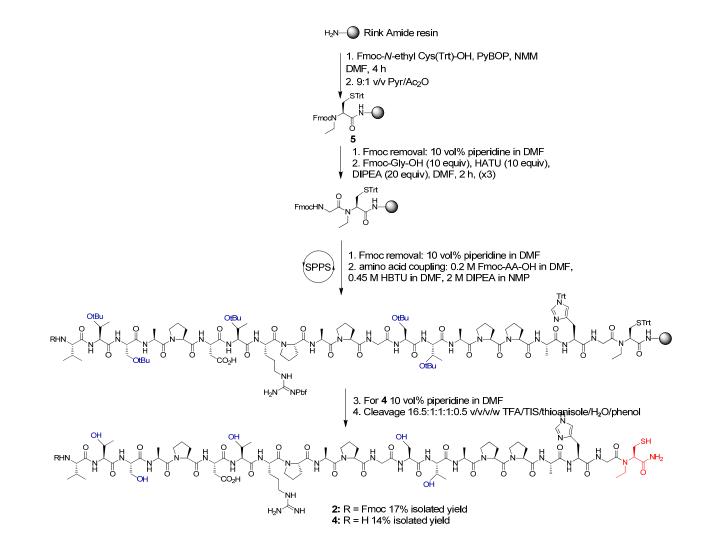
1.0 Preparative HPLC gradients	Error! Bookmark not defined.
2.0 SPPS of peptides 1-4	
3.0 Analytical data	
4.0 N \rightarrow S thioesterification and ligation using <i>N</i> -ethyl cysteine-	lerivatised peptides 25
5.0 References	
5.1 Tabulated mass spectral data	

1.0 Preparative HPLC Gradients

Preparative reversed-phase HPLC was performed using a Waters 600 Multisolvent Delivery System and Waters 500 pump with 2489 photodiode array detector or Waters 486 Programmable wavelength detector operating at 230 and 214 nm. All purifications used a mobile phase of 0.1% TFA in water (Solvent A) and 0.1% TFA in acetonitrile (Solvent B) unless otherwise noted using a variety of gradients and columns as detailed below:

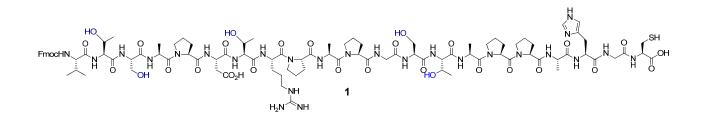

Method A: Purification was performed on a Waters SunfireTM 5 µm (C-18) preparative column operating at a flow rate of 7 mL min⁻¹ using a linear gradient of 0% to 50% B over 40 min. *Method B*: Purification was performed on a Waters SunfireTM 5 µm (C-18) preparative column operating at a flow rate of 7 mL min⁻¹ using a linear gradient of 0% to 40% B over 60 min. *Method C*: Purification was performed on a Grace VydacTM 10 µm (C-18) semi-preparative column operating at a flow rate of 4 mL min⁻¹ using a linear gradient of 0% for 10 min to 45% B over 60 min. *Method D*: Purification was performed on a Waters SunfireTM 5 µm (C-18) preparative column operating at a flow rate of 7 mL min⁻¹ using a linear gradient of 0% to 30% B over 60 min a mobile phase of 0.1% formic acid in water (Solvent A) and 0.1% formic acid in acetonitrile (Solvent B). *Method E*: Purification was performed on a Grace VydacTM 5 µm (C-4) semi-preparative column operating at a flow rate of 4 mL min⁻¹ using a linear gradient of 0% to 30% for 10 min to 45% B over 60 min.

Method F: Purification was performed on a Waters SunfireTM 5 μ m (C-18) semi-preparative column operating at a flow rate of 4 mL min⁻¹ using a linear gradient of 0% for 10 min to 30% B over 60 min. *Method G*: Purification was performed on a Waters SunfireTM 5 μ m (C-18) preparative column operating at a flow rate of 7 mL min⁻¹ using a linear gradient of 0% for 10 min to 50% B over 60 min. *Method H*: Purification was performed on a Grace VydacTM 5 μ m (C-4) semi-preparative column operating at a flow rate of 4 mL min⁻¹ using a linear gradient of 0% to 15% B over 60 min. *Method J*: Purification was performed on a Waters SunfireTM 5 μ m (C-18) preparative column operating at a flow rate of 7 mL min⁻¹ using a linear gradient of 0% to 15% B over 60 min. *Method J*: Purification was performed on a Waters SunfireTM 5 μ m (C-18) preparative column operating at a flow rate of 7 mL min⁻¹ using a linear gradient of 0% to 15% B over 60 min. *Method J*: Purification was performed on a Waters SunfireTM 5 μ m (C-18) preparative column operating at a flow rate of 7 mL min⁻¹ using a linear gradient of 0% to 15% B over 60 min. *Method J*: Purification was performed on a Waters SunfireTM 5 μ m (C-18) preparative column operating at a flow rate of 7 mL min⁻¹ using a linear gradient of 0% for 10 min to 50% over 60 min.


2.0 SPPS of peptides 1-4

Peptides 1-4 were synthesised using microwave assisted Fmoc-SPPS (Scheme 1 and 2).

2.1 Solid-phase peptide synthesis (SPPS) of MUC1 peptides 1 and 3


Scheme S1. Microwave-assisted Fmoc-SPPS of peptides 1 and 3.

Scheme S2. Fmoc-SPPS of peptides 2 and 4 containing a C-terminal N-ethyl cysteine residue.

3.0 Analytical data

Peptide 1: Fmoc-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-Cys-OH (1) Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Peptide 1 was prepared according to Fmoc-strategy SPPS on 100 μ mol of 2-Cl Trt Cl resin as outlined in the general procedure and purified by preparative reversed-phase HPLC (*Method A*) to give a white solid following lyophilisation (45 mg, 21% isolated yield based on the original resin loading).

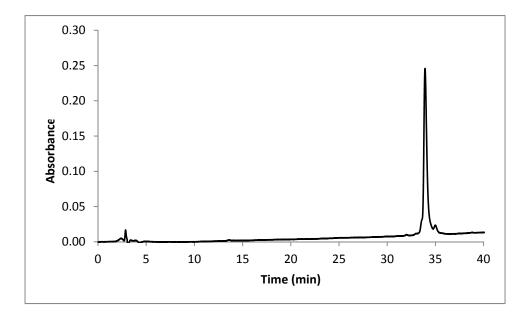


Figure S1. Analytical HPLC of peptide 1: $R_t = 34 \text{ min} (0 \text{ to } 50\% \text{ B over } 40 \text{ min}, \lambda = 230 \text{ nm}).$

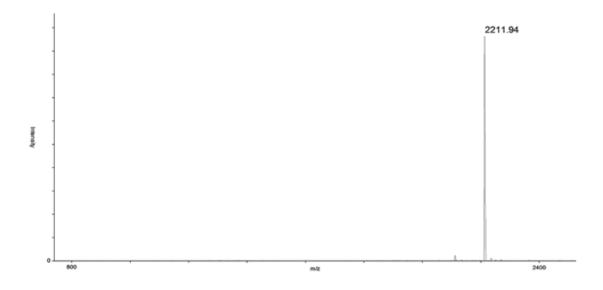
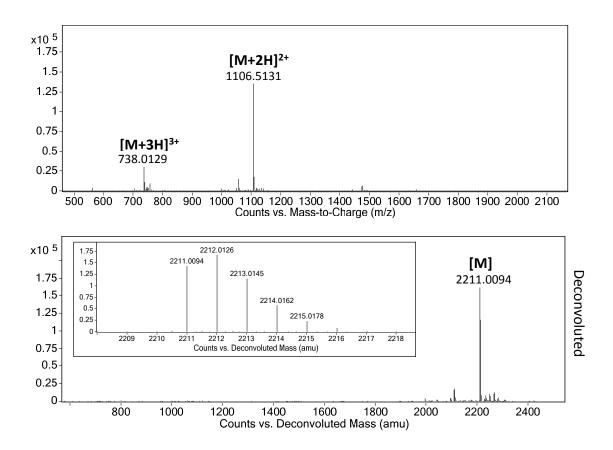
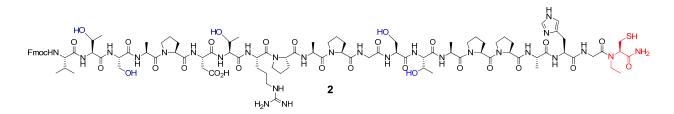




Figure S2. MALDI-Tof mass spectrum of peptide 1.

Figure S3. ESI-Q-Tof mass spectrum (top) and deconvoluted spectrum (bottom) with zoomed region (inset) of peptide 1.

Peptide 2: Fmoc-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-Cys(*N*-ethyl)-NH₂ (2)

Peptide **2** was prepared according to Fmoc-strategy SPPS on 100 μ mol of 2-Cl Trt Cl resin as outlined in the general procedure and purified by preparative reversed-phase-HPLC (*Method A*) to give a white solid following lyophilisation (36 mg, 17% isolated yield based on the original resin loading).

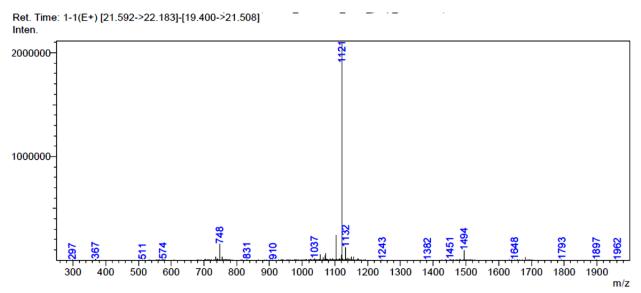
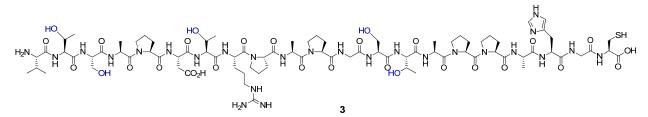
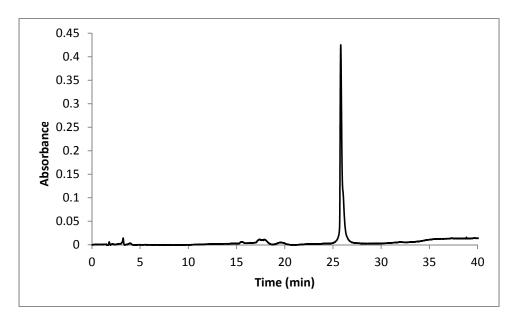




Figure S4. ESI-MS spectrum of peptide 2

Peptide 3: H-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-Cys-OH (3)

Peptide **3** was prepared according to Fmoc-strategy SPPS outlined in the general procedure purified by preparative RP-HPLC (*Method B*) to give a white solid after lyophilisation (36 mg, 19% isolated yield based on the original resin loading).

Figure S5. Analytical HPLC chromatogram of peptide **3**: $R_t = 26$ min gradient (0 to 50% B over 40 min, $\lambda = 230$ nm).

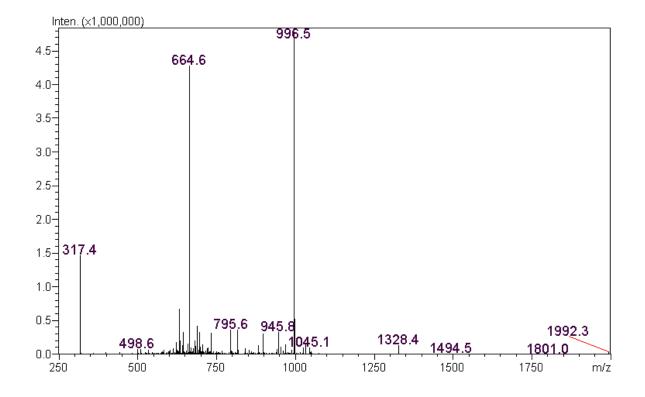
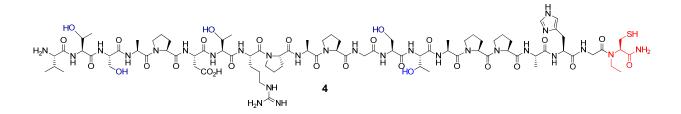
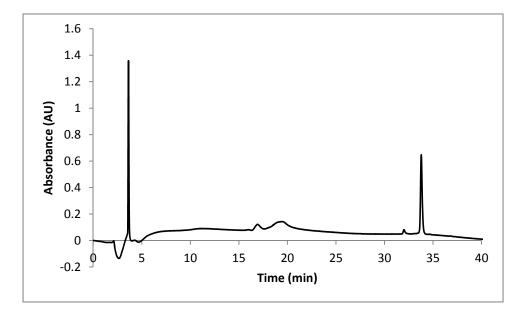
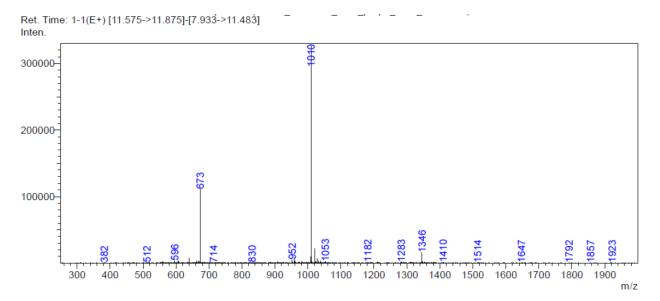
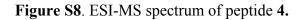
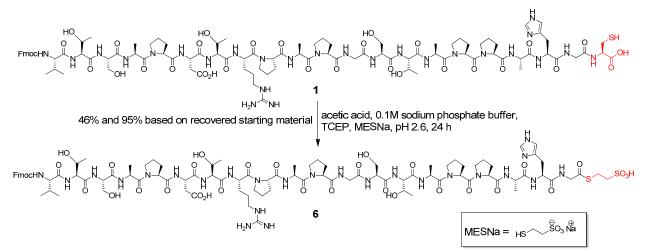




Figure S6. ESI-MS spectrum of peptide 2.


Peptide 4: H-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-Cys(*N*-ethyl)-NH₂ (4)



Peptide **4** was prepared according to Fmoc-strategy SPPS outlined in the general procedure and purified by preparative RP-HPLC (*Method B*) to give a white solid after lyophilisation (26 mg, 14% isolated yield based on the original resin loading).


Figure S7. Analytical HPLC chromatogram of peptide 4: $R_t = 33.7$ min gradient (0 to 50% B over 40 min, $\lambda = 230$ nm).

Peptide thioester 6: Fmoc-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly- S(CH₂)₂SO₃H (6)

Peptide 1 (25 mg, 11.3 μ mol, 1.0 equiv.) was subjected to the N \rightarrow S thioesterification conditions outlined in the general procedure to afford peptide thioester **6** as a white solid following purification by RP-HPLC (*Method B*) and lyophilisation (Scheme 3, 11.6 mg, 46% isolated yield).

Scheme S3. Synthesis of peptide thioester 6 by $N \rightarrow S$ acyl transfer.

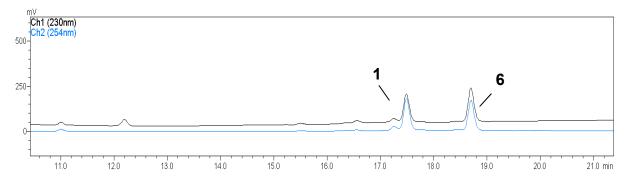
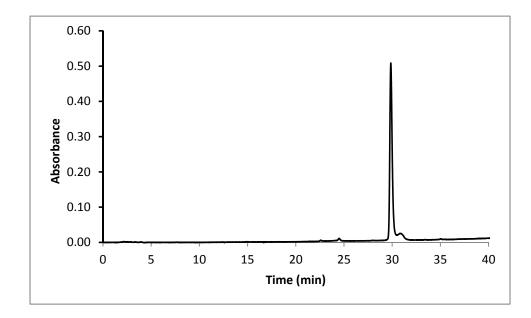
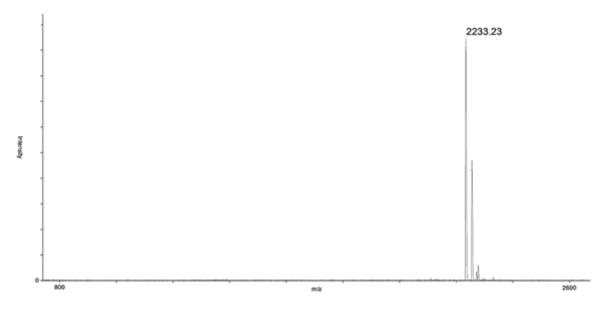



Figure S9. Chromatogram extracted from LC-MS of N \rightarrow S thioesterification reaction after 24 h. (MESNa elutes at $R_t = 2 \text{ min}$).

Figure S10. Analytical HPLC chromatogram of peptide thioester 6: $R_t = 34 \text{ min} (0 \text{ to } 50\% \text{ B} \text{ over } 40 \text{ min}, \lambda = 230 \text{ nm}).$



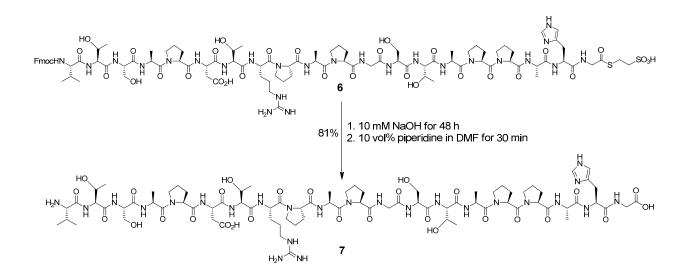

Figure S11. MALDI-Tof mass spectrum of peptide thioester 6.

Figure S12. ESI-MS spectrum of peptide thioester 6.

Peptide 7: H-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-OH (7)

Peptide thioester 6 (4 mg, 1.79 μ mol) was treated with 10 mM NaOH (1 mL) and stirred at rt for 48 h. The reaction mixture was lyophilised and treated with 10 vol% piperidine in DMF for 30 min. Subsequent purification by RP-HPLC (*Method F*) and lyophilisation provided the desired peptide 7 as a white solid (2.8 mg, 81%). R_t = 30 min (0 to 30% B over 60 min).

Scheme S4. Synthesis of peptide 7.

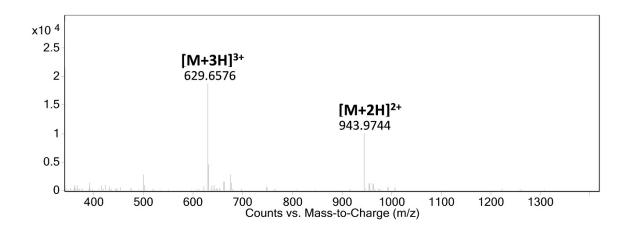
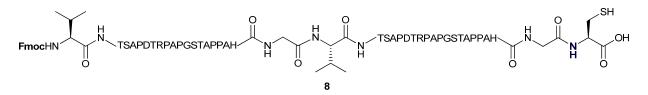



Figure S13. ESI-MS spectrum of peptide 7.

Peptide 8: Fmoc-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-Cys-OH (8)

Peptide **8** was prepared by reacting unprotected peptide **3** (2.2 mg, 1.1 μ mol, 1.0 equiv) and peptide thioester **6** (3 mg, 1.3 μ mol, 1.2 equiv) *via* the general Ag(I)-assisted ligation procedure (20 h) outlined in the general procedure to give a white solid following purification by preparative RP-HPLC (*Method C*) and lyophilisation (3.5 mg, 77%).

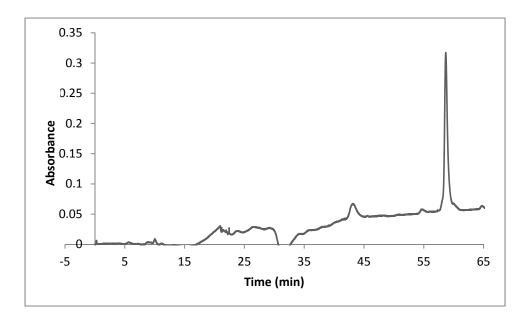


Figure S14. Analytical HPLC chromatogram: $R_t = 58 \text{ min} (0 \text{ to } 45\% \text{ B over } 60 \text{ min}).$

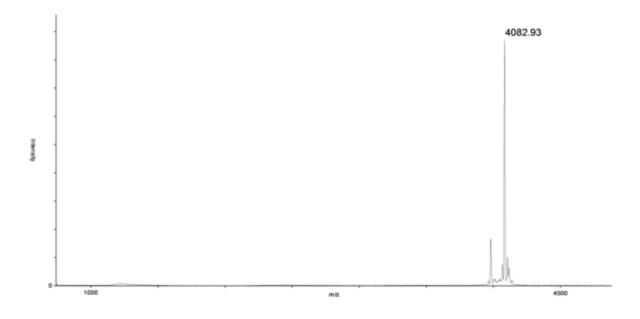


Figure S15. MALDI-Tof mass spectrum of peptide 8.

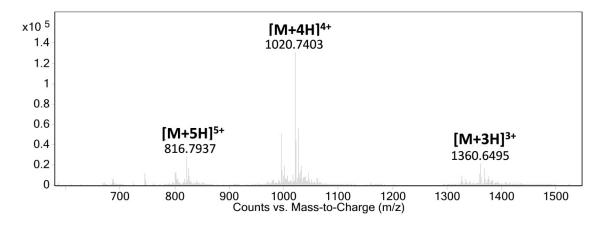
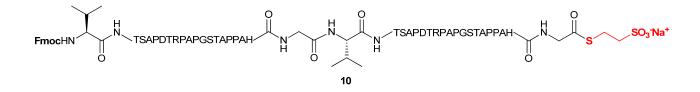
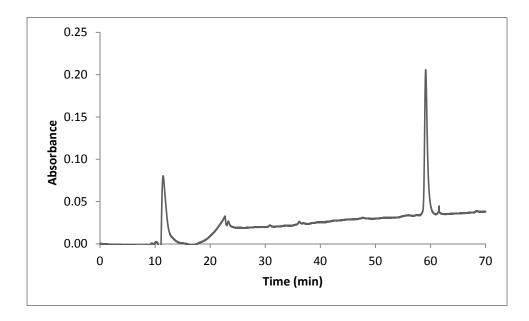




Figure S15. ESI-Q-TOF MS of peptide 8.

Peptide thioester 10: Fmoc-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-S(CH₂)₂SO₃H (10)

Peptide 8 (17.5 mg, 43.3 μ mol, 1.0 equiv.) was subjected to the N \rightarrow S thioesterification conditions outlined in the general procedure to afford peptide thioester 10 as a white solid following purification by RP-HPLC (*Method D*) and lyophilisation (11.6 mg, 34% isolated yield).

Figure S16. Analytical HPLC chromatogram of peptide thioester **10**: $R_t = 60 min (0 to 45\% B over 60 min)$.

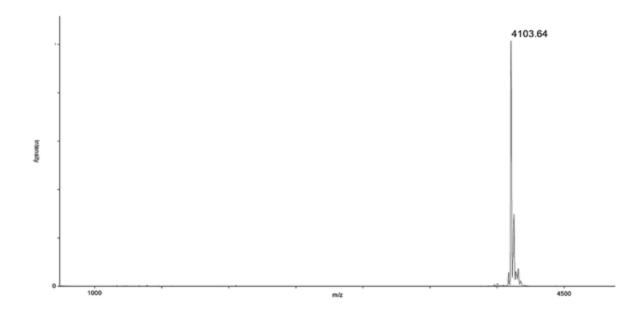
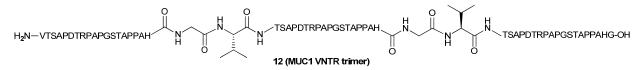



Figure S17. MALDI-Tof mass spectrum of peptide thioester 10.

Peptide 12: H-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-OH (12)

Peptide 12 was prepared by reacting unprotected peptide 7 (1.9 mg, 1.0 μ mol, 1.0 equiv) and peptide thioester 10 (5 mg, 1.2 μ mol, 1.2 equiv) *via* the general Ag(I)-assisted ligation procedure outlined in the general procedure (24 h) to give a peptide 11 following purification by preparative RP-HPLC (*Method E*, 3 mg, 0.5 μ mol, 50%). The lyophilised product was then treated with 10 vol% piperidine in DMF (1 mL) for 30 min and purified by RP-HPLC (*Method H*) to give 12 as a white solid after lyophilisation (2 mg, 36% over two steps).

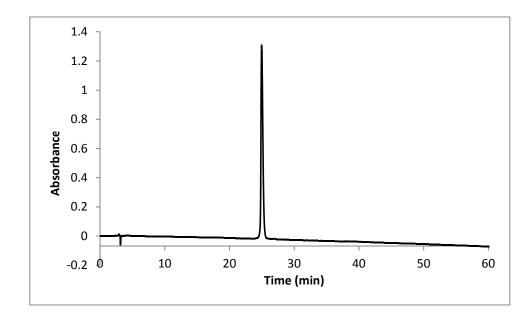


Figure S18. Analytical HPLC trace of peptide 12: $R_t = 25 \text{ min} (0 \text{ to } 45\% \text{ B over } 60 \text{ min}).$

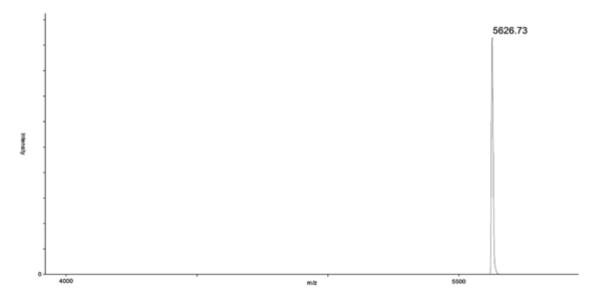


Figure S19. MALDI-Tof mass spectrum of peptide 12.

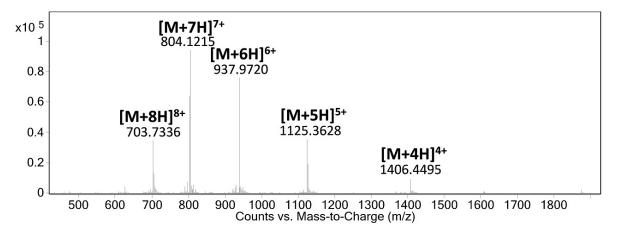


Figure S20. ESI-Q-Tof spectrum of peptide 12.

Peptide 13: H-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-OH (13)

Peptide 13 was prepared by reacting unprotected peptide 12 (3 mg, 0.53 μ mol, 1.0 equiv) and peptide thioester 6 (1.4 mg, 0.64 μ mol, 1.2 equiv) *via* the general Ag(I)-assisted ligation procedure outlined in the general procedure (24 h) and purified by preparative RP-HPLC (*Method E*). The lyophilised product was then treated with 10 vol% piperidine in DMF (1 mL) for 30 min and purified by RP-HPLC (*Method E*) to give 13 white solid after lyophilisation (3 mg, 75% over two steps).

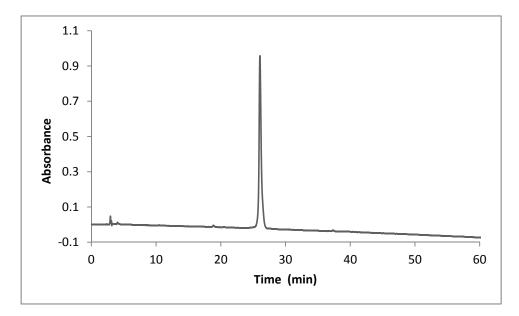


Figure S21. Analytical HPLC trace of peptide 13: Rt= 26 min (0 to 45% B over 60 min).

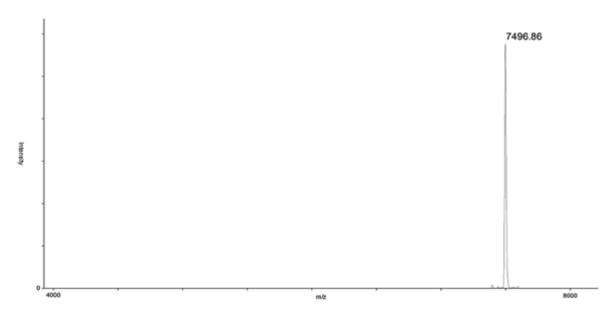


Figure S22. MALDI-Tof mass spectrum of peptide 13.

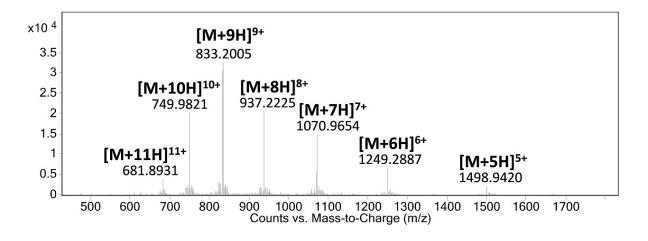


Figure S23. ESI-Q-Tof spectrum of peptide 13.

Peptide 14: H-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-OH (14)

Peptide 14 was prepared by reacting unprotected peptide 13 (2.8 mg, 0.37 μ mol, 1.0 equiv) and peptide thioester 6 (1 mg, 0.45 μ mol, 1.2 equiv) *via* the general Ag(I)-assisted ligation procedure outlined in the general procedure (24 h) and purified by preparative RP-HPLC (*Method E*). The lyophilised product was then treated with 10 vol% piperidine in DMF (1 mL) for 30 min and purified by RP-HPLC (*Method E*) to give 14 white solid after lyophilisation (3.5 mg, 83% over two steps).

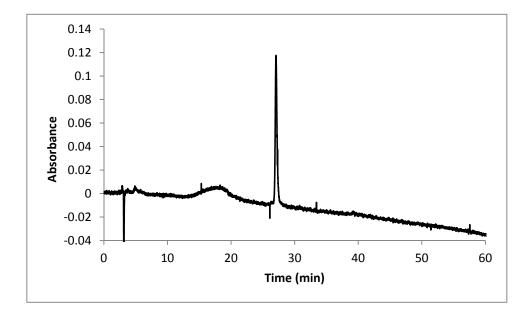


Figure S24. Analytical HPLC trace of peptide 14: Rt= 28 min (0 to 45% B over 60 min).

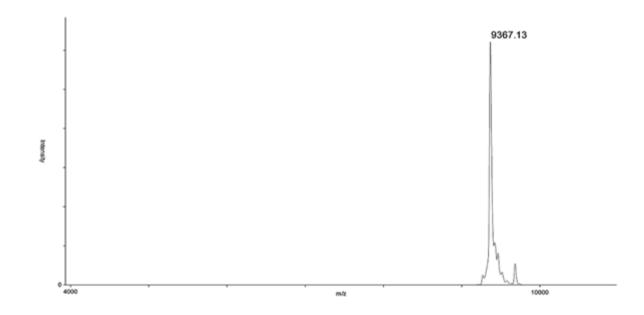


Figure S25. MALDI-Tof mass spectrum of peptide 14.

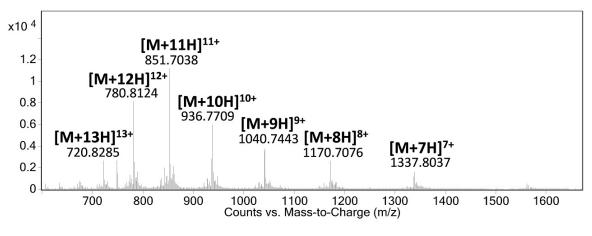
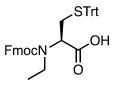
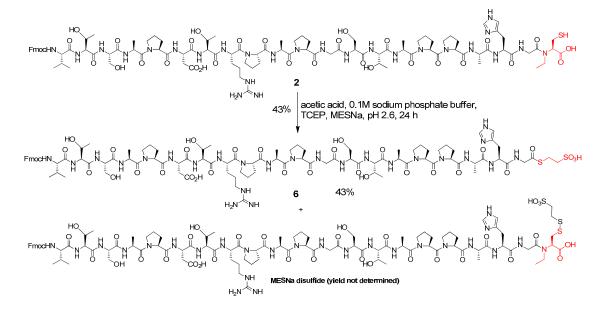
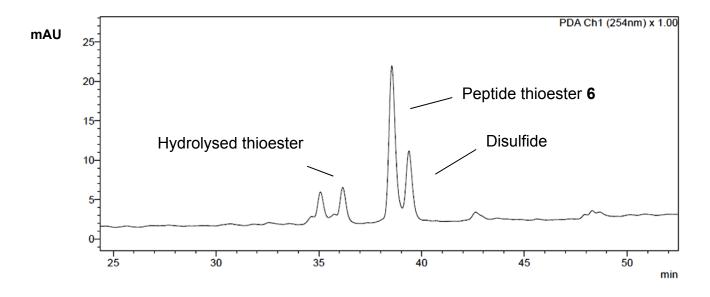


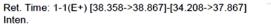
Figure S26. ESI-Q-Tof spectrum of peptide 14.

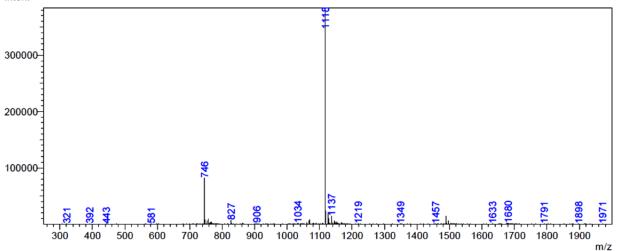

4.0 N \rightarrow S thioesterification and ligation using *N*-ethyl cysteine- derivatised peptides

4.1 N-Ethyl-S-Trityl-L-Cysteine


To a cooled (0 °C) suspension of S-Trityl-L-cysteine (2 g, 3.41 mmol) and NaBH₃CN (0.21 g, 3.41 mmol) in MeOH (6 ml) was added acetaldehyde (289 µl, 5.15 mmol). The resulting solution was allowed to stir at rt for 1 h, after which the RM was concentrated *in vacuo*, and the residue was taken up in 1-butanol. The organic layer was washed with distilled water (2 x 10 ml) and brine (2 x 10 ml). The organic layer was collected, dried and concentrated *in vacuo*. The crude material was purified via flash column chromatography (10% MeOH in CH₂Cl₂) to yield a white solid (1.2g, 80%) $[\alpha]_D = +25.3$ ° (*c* 1.1 in CHCl₃), ¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.29 (5H, m, Trt), 7.24 – 7.16 (10H, m, Trt), 3.05 (1H, m, α -H), 2.77 (2H, m, β -H), 2.52 (2H, m, Et), 1.12 (3H, m, Et). These data are consistent with those previously reported by Hironobu *et al*¹


4.2 Fmoc-N-Ethyl-S-Trityl-L-Cysteine


N-Ethyl-S-Trityl-L-Cysteine (436.3 mg, 1.12mmol) was dissolved in 10% Na(CO₃)_{2(aq)} solution (6 ml) and 1,2-DME (3 ml). Fmoc-OSuc (639 mg, 1.79 mmol) dissolved in 1,2-DME (3 ml) was added to the reaction mixture. This was then allowed to stir for 16 h, after which it was filtered and the filtrate was neutralized with 1 M HCl. This was then extracted with EtOAc (3 x 5 ml), the organic layers were collected, dried and concentrated *in vacuo*. The crude material was purified via flash column chromatography (30vol.% EtOAc in Hexane with 1vol.% AcOH) to afford the title compound as a white solid (480 mg, 70%). [α]_D = -35.7 ° (*c* 1.1 in CHCl₃), ¹H NMR (300 MHz, CDCl₃) δ 7.71 (2H, d, *J*_{HH} = 9 Hz, Fmoc), 7.52 (2H, d, *J*_{HH} = 9 Hz, Fmoc), 7.44 – 7.37 (7H, m, Fmoc + Trt), 7.33 – 7.12 (13H, m, Fmoc + Trt), 4.50 – 4.32 (2H, m, Fmoc-CH₂), 4.20 (0.6H, m, Fmoc-CH), 4.10 (0.4H, m, Fmoc-CH), 3.46 – 3.27 (0.4H, m, Et), 3.25 – 3.22 (0.6H, m, Et), 3.14 (0.6H, m, a-H), 3.08 (0.3H, m, a-H), 2.93 – 2.84 (1.2H, m, b-H), 2.75 – 2.63 (1.4H, m, Et + b-H), 2.45 (0.4H, 1H, b-H), 0.93 – 0.85 (3H, m, Et). These data are consistent with those previously reported by Hironobu *et al.*¹


4.3 Thioesterification by N→S acyl transfer

Scheme S5. Synthesis of peptide thioester 6 by $N \rightarrow S$ acyl transfer.

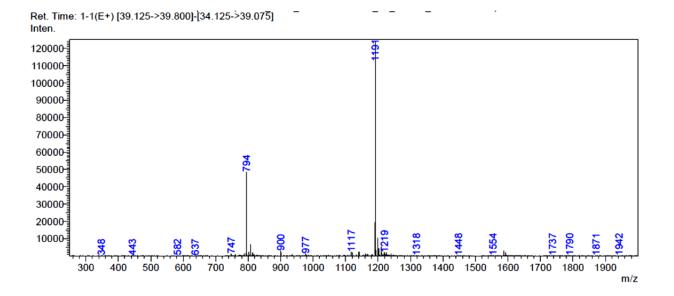


Figure 27. Extracted chromatogram from LC-MS of $N \rightarrow S$ thioesterification reaction after 4 h (0 to 50B over 60 min) (top), ESI-MS spectra of peptide thioester 6 (middle) and disulfide (bottom).

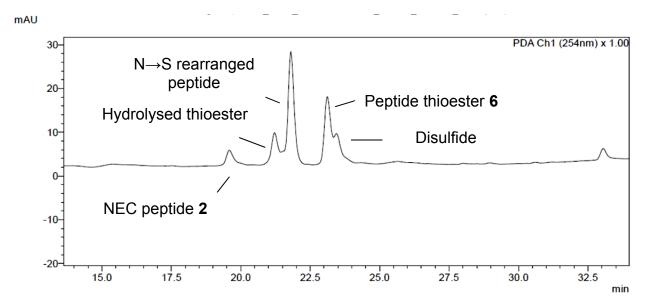
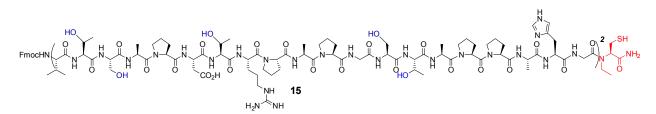



Figure 28. LC-MS of $N \rightarrow S$ thioesterification reaction after 4 h using 500 equiv MESNa.

Peptide 15: Fmoc-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Cys(*N*-ethyl)-NH₂ (15, NB: this experiment is not described in the main text) Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Peptide **15** was prepared by reacting unprotected peptide **4** (2.8 mg, 1.4 μ mol, 1.0 equiv) and peptide thioester **6** (3.1 mg, 1.3 μ mol, 1.2 equiv) *via* the general Ag(I)-assisted ligation procedure outlined in the general procedure to give a white solid following purification by preparative RP-HPLC (*Method C*) and lyophilisation (3.9 mg, 95 μ mol, 86%).

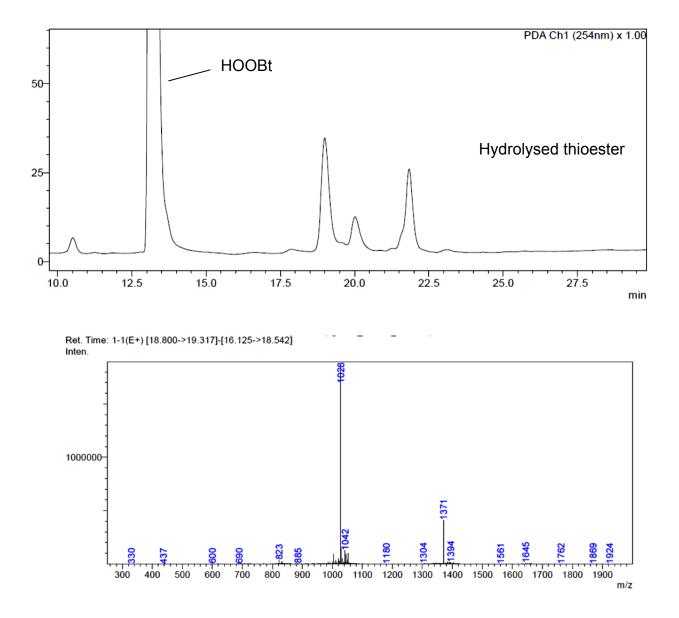
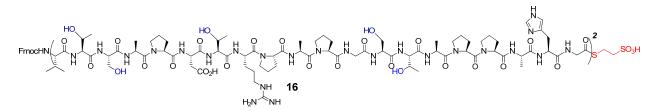
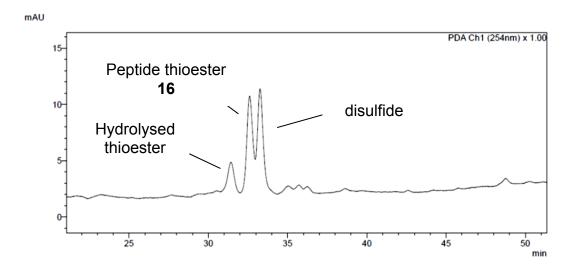




Figure S29. LC-MS of Ag(I)-assisted ligation after 20 h (0 to 50% B over 60 min).

Peptide thioester 16: Fmoc-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala-Pro-Pro-Ala-His-Gly-S(CH₂)₂SO₃H (16, NB: this experiment is not described in the main text)

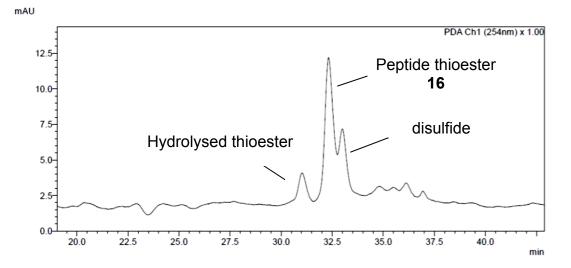


Figure 30. LC-MS of $N \rightarrow S$ thioesterification reaction after 4 h (0to50B over 60 min) (top) and after 16 h (bottom).

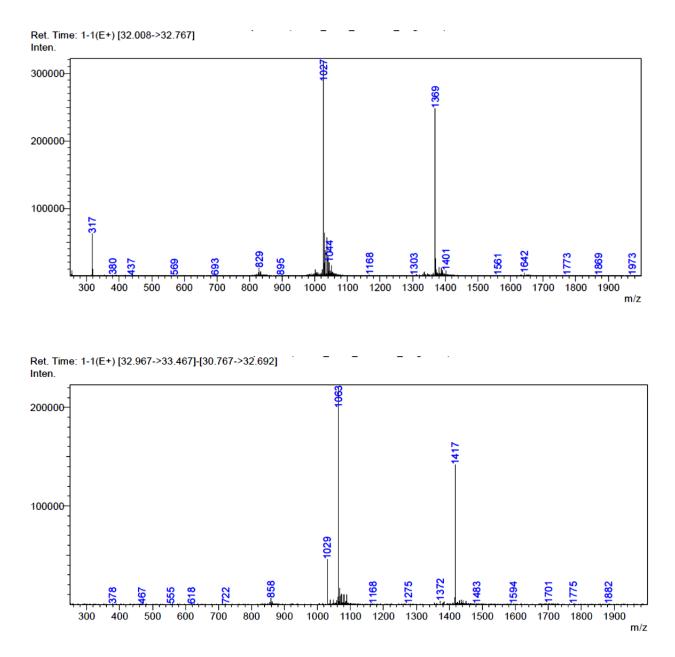


Figure 31. ESI-MS spectra of peptide thioester 16 (top) and disulfide (bottom).

References:

1. H. Hironobu, N. Yoshiaka, WO2008044628 (A1), 2008-4-17

		MALDI-MS		ESI-MS			
		Exact mass from	MALDI-TOF MS	Deviation (ppm)	Exact mass from	ESI-Q-TOF MS	Deviation (ppm)
MUC1 code	Formula	formula [M+H]	$[M+H]^+$		formula [M]	[M]	
MUC1 VNTR (7)	C ₈₀ H ₁₂₇ N ₂₅ O ₂₈	1886.94 ¹	1886.81 ^{1,3}	69	1885.9282 ¹	1885.9378 ^{1,5}	5.0
(1)	$C_{98}H_{142}N_{26}O_{31}S$	2212.01 ¹	2211.94 ^{1,3}	32	2211.0055 ¹	2211.0094 ^{1,5}	1.7
MUC1 VNTR thioester (6)	$C_{97}H_{141}N_{25}O_{32}S_2$	2232.97 ¹	2233.23 ^{1,3}	116	2231.9616 ¹	2231.9646 ^{1,5}	1.3
(8)	$C_{178}H_{267}N_{51}O_{58}S$	4082.46 ²	4082.93 ^{2,3}	115	4078.9232 ¹	4078.9310 ^{1,5}	1.9
(10)	$C_{177}H_{266}N_{50}O_{59}S_2$	4103.50 ²	4103.64 ^{2,3}	34	4099.8793 ¹	4099.8783 ^{1,5}	0.2
MUC1 VNTR trimer (12)	C240H377N75O82	5626.09 ²	5626.73 ^{2,4}	114	5621.7636 ¹	5621.7942 ^{1,5}	5.4
MUC1 VNTR tetramer (13)	$C_{320}H_{502}N_{100}O_{109}$	7495.12 ²	7496.86 ^{2,4}	232	7489.6812 ¹	7489.7274 ^{1,5}	6.1
MUC1 VNTR pentamer	$C_{400}H_{627}N_{125}O_{136}$	9364.14 ²	9367.13 ^{2,4}	320	9357.5989 ¹	9357.6455 ^{1,5}	4.9
(14)							

1) Monoisotopic mass, 2) Average mass, 3) Reflectron mode, 4) Linear mode, 5) Direct infusion