The Influence of G-Quadruplex Structure on DNA-Based Asymmetric Catalysis Using G-Quadruplex-Bound Cationic Porphyrine TMPyP4·Cu

Michael Wilking and Ulrich Hennecke*

Dr. U. Hennecke Organisch-Chemisches Institut Westfäliche Wilhelms-Universität Münster Corrensstraße 40, 48149 Münster (Germany)

E-mail: ulrich.hennecke@uni-muenster.de

Supporting Information - Table of contents -

1.	General Informations	3
2.	Materials	4
3.	General Procedure for the Diels- Alder-Reactions	6
4.	Calculation the Conversion of 1	7
5.	Circular Dichroism (CD) Measurements	8
6.	Kinetic Measurements	13
7.	Structual Drawings of G-Quadruplex-Structures	14
8.	¹ H NMR Spektrum of 3	17
9.	Selected HPLC traces	18
10.	Literature	25

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

1. General Informations

¹**H NMR** spectra were recorded on a *Bruker DPX 300* (300 MHz) spectrometer. **CD** measurements were recorded on a J-815 (*Jasco*). **HPLC** measurements were performed on an *Agilent Technologies* 1200 Series HPLC using UV detection (230 nm). Separation was performed on a Chiralcel[®] OD-H (0.46 cm \times 25 cm, *Daicel Chemical Industries, Ltd.*) column. All solvents were HPLC grade, purchased from Fisher Scientific and used as received.

2. Materials

DNA Oligonucleotides

ODN-1:	5'-AG ₃ (TTAGGG) ₃ -3'
ODN-2 :	5'-G ₃ (TTAGGG) ₃ -3'
ODN-3 :	5'-CG ₃ (TTAGGG) ₃ -3'
ODN-4 :	5'-TG ₃ (TTAGGG) ₃ -3'
ODN-5 :	5'-GG ₃ (TTAGGG) ₃ -3'
ODN-6 :	5'-AAG ₃ (TTAGGG) ₃ -3'
ODN-7 :	5'-ATG ₃ (TTAGGG) ₃ -3'
ODN-8 :	5'-AG ₃ (TTAGGG) ₂ TTTGGG-3'
ODN-9 :	5'-AG ₃ (TTAGGG) ₂ TTCGGG-3'
ODN-10 :	5'-AGGGTTAGGGTTTGGGTTAGGG-3'
ODN-11 :	5'-AGGGTTTGGG(TTAGGG)2-3'
ODN-12 :	5'-AG ₃ (TTAGGG) ₃ AA-3'
ODN-13 :	5'-AAAG ₃ (TTAGGG) ₃ AA-3'
ODN-14 :	5'-AAAGGGTTAGGGTTTGGGTTAGGGA-3'
ODN-15 :	5'-AAAGGGTTAGGGTTTGGGTTAGGG-3'
ODN-16 :	5'-TGAGGGTGGTGAGGGTGGGGAAGG-3'
ODN-17 :	5'-TGAGGGTGGTGTGGGGGGGAAGG-3'
ODN-18 :	5'-AGGGTGGTGAGGGTGGGGAAGG-3'
ODN-19 :	5'-GAGGGTGGTGAGGGTGGGGAAGG-3'
ODN-20 :	5'-TAGGGTGGTGAGGGTGGGGAAGG-3'
ODN-21 :	5'-AGGGAGGGCGCTGGGAGGAGGG-3'
ODN-22a:	5'-CGCTATGCTGCATCGC-3'
ODN-22b:	3'-GCGATACGACGTAGCG-5'

were purchased from *Metabion* (Martinsried, Germany).

The water used was purified and deionized using a Elga Maxima water purification system.

4,4'-Dimethyl-2,2'-dipyridyl, Cu(NO₃)₂ × 3 H₂O, 3-(*N*-morpholino)propanesulfonic acid (MOPS) and all other chemicals were obtained from commercial sources (*Sigma-Aldrich, Alfa Aesar, Fisher Scientific*) and used without further purification. 5,10,15,20-Tetrakis(1-methylpyridinium-3-yl)porphyrin was obtained from *Frontier Scientific* and was used without further purification. Cyclopentadiene **2** was freshly cracked before use. Dienophile **1** was prepared according to the literature procedure.^[1]

5,10,15,20-Tetrakis(1-methylpyridinium-4-yl)porphyrinatocopper(II) tetraperchlorate **4**, 5,10,15,20-Tetrakis(1-propylpyridinium-4-yl)porphyrinatocopper(II) tetraperchlorate **5**, 5,10,15,20-Tetrakis(1-methylpyridinium-3-yl)porphyrinatocopper(II) tetraperchlorate **7** and phthalocyanine **8** were synthesized according to literature procedures.^[2]

4

3. General Procedure for the Diels-Alder-Reactions

To an *Eppendorf* Vial (capacity 2 ml) containing MOPS buffer (0.5 mL, final conc. 10 mM, pH 6.5) and KCl (final conc. 50 mM) a solution of the corresponding Oligonucleotide (aq. 0.5 mM, 48 μ L, 24 nmol final conc. 48 μ M) was added. The solution was warmed to 95 °C for 3 minutes and then slowly cooled down over 2 hours to room temperature. After addition of a solution of the Cu-source (final conc. 40 μ M), the reaction mixture was shaken for 30 minutes while cooling down to 5 °C. Then, a solution of aza-chalcone **1** (20 mM in CH₃CN, 10 μ L, 0.2 μ mol) was added and the reaction was initiated by the addition of a solution of freshly distilled cyclopentadiene **2** (0.4 M in CH₃CN, 10 μ L, 4.0 μ mol, 20 equiv.). After shaking for 40 hours at 5 °C in a TMIX 220 (*Analytik Jena*), the reaction was stopped by the addition of Et₂O (1.5 mL). After separation of layers, the aqueous layer was extracted with Et₂O (2 × 1.5 mL) and the combined organic layers were filtered through a short pad of silica. After removal of the solvents, the crude product was dissolved in HPLC grade *n*-hexane/*i*-PrOH (90:10) and directly analyzed by HPLC. The conversion, diastereoselectivity (*endo:exo*) and enantiomeric excess (*ee*) were determined by chiral HPLC according to the literature procedure.^[3]

HPLC conditions:

Product **3**: *Daicel* Chiralcel[®]-ODH, *n*-hexane/*i*-PrOH 98:2, 1 mL/min, 230 nm. Retention times: 6.4, 7.2 minutes (*exo* isomer); 8.2, 10.6 minutes (*endo* isomer).

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

4. Calculation the Conversion of 1

Conversions of **1** were calculated using the following formula^[3]:

Conversion **1** (%) =
$$\frac{PA_3}{PA_3 + PA_1 \times f}$$

Where PA_1 and PA_3 are the HPLC peak areas of **1** and **3**, respectively. And *f* is the correction factor determined to be 2.4807 from a fitting curve (Figure S1).

Figure S1: Determination of the correction factor *f*.

The HPLC ratios of peak areas (PA₃/PA₁) were determined with the standard molar ratios (n_3/n_1) of 1/10, 1/5, 1/2, 1, 2, 4, 5, 6, 8, 10, 20, 50. The correction factor (*f* = 2.4807) was estimated from the fitting curve ($R^2 = 0.9984$).

The HPLC chromatogram of the molar ratio $(n_3/n_1) = 1$ is shown in Chapter 9.

5. Circular Dichroism (CD) Measurements

Circular dichroism (CD) spectra were recorded on a Jasco J-815 CD spectrophotometer with a pathlength of 10 mm (1 ml quartz cell). ODNs (5 μ M) were dissolved in MOPS buffer (10 mM) containing either potassium chloride (50 mM) or sodium chloride (50 mM). CD spectra were measured from 400 to 200 nm at a temperature of 20 °C and accumulated three times. A background spectrum of water was subtracted. CD spectra of ODN/TMPyP4CuCu **4** hybrids were measured under the same conditions except that TMPyP4·Cu **4** was added (final concentration: 4.2 μ M) and the spectrum was measured from 600 nm to 200 nm.

ODN-1 (5 µM ODN, 10 mM MOPS, 50 mM KCl)

ODN-2 (5 µM ODN, 10 mM MOPS, 50 mM KCl)

ODN-2 (5 µM ODN, 10 mM MOPS, 50 mM NaCl)

ODN-5 (5 µM ODN, 10 mM MOPS, 50 mM KCl)

ODN-5 (5 µM ODN, 4.2µM TMPyP4Cu 4, 10 mM MOPS, 50 mM KCl)

ODN-8 (5 µM ODN, 10 mM MOPS, 50 mM KCl)

ODN-8 (5 µM ODN, 4.2µM TMPyP4Cu 4, 10 mM MOPS, 50 mM KCl)

6. Kinetic Measurements

To an *Eppendorf* Vial (capacity 2 ml) containing MOPS buffer (0.5 mL, final conc. 10 mM, pH 6.5) and KCl (final conc. 50 mM) a solution of the corresponding Cu-source (final conc. 40 μ M) was added and the reaction mixture was shaken for 30 minutes while cooling down to 5 °C.

Then, a solution of aza-chalcone **1** (20 mM in CH₃CN, 10 μ L, 0.2 μ mol) was added and the reaction was initiated by the addition of a solution of freshly distilled cyclopentadiene **2** (0.4 M in CH₃CN, 10 μ L, 4.0 μ mol, 20 equiv.). After shaking for a specific time at 5 °C in a TMIX 220 (*Analytik Jena*), the reaction was ended by adding Et₂O (1.5 mL). After separation of the layers, the aqueous layer was extracted with Et₂O (2 × 1.5 mL) and the combined organic layers were filtered through a short pad of silica. After removal of the solvents, the crude product was dissolved in HPLC grade *n*-hexane/*i*-PrOH (90:10) and the conversion was directly analyzed by HPLC as already described above.

entry	Reaction time (h)	Conversion (%) of 1 using TMPyP4Cu-Cu 4 as Catalyst	Conversion (%) of 1 using TPPyP4Cu 5 as Catalyst
1	2	2	5
2	4	5	13
3	6	10	27
4	8	13	32
5	12	18	53
6	24	33	75
7	48	55	88

7. Structual Drawings of G-Quadruplex-Structures

H-Tel- G-Quadruplex Structure:

pdb: 2HY9 - J. Dai, C. Punchihewa, A. Ambrus, D. Chen, R. A. Jones, D. Yang, *Nucleic Acids Res.* **2007**, *35*, 2440.

5'-AAAGGGTTAGGGTTAGGGTTAGGGAA-3' - h-tel- Sequence 5'-AAAGGGTTAGGGTTAGGGTTAGGGAA-3' - Structure

In green: guanines, in red: nucleobases overlooking the 5' or 3'-guanine tetrad. Red nucleobase were deleted or substituted in **ODN-1** to **ODN-15**.

C-Myc- G-Quadruplex Structure:

Pdb 2A5R - A. T. Phan, V. Kuryavyi, H. Y. Gaw, D. J. Patel, Nat. Chem. Biol. 2005, 1, 167.

5'-TGAGGGTGGTGAGGGTGGGGGAAGG-3' - c-myc- Sequence 5'-**TGAGGGTGGIGAGGGTGGGGGAAGG**-3' - Structure

In green: guanines, in red: nucleobases overlooking the 5'-guanine tetrad. Red nucleobase were deleted or substituted in **ODN-16** to **ODN-21**.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

8. ¹H NMR Spektrum of 3

9. Selected HPLC traces

rac-3

1:1 mixture of aza-chalcone 1 and products 3

ODN-1, Porphyrine 4, 50 mM KCl (table 1, entry 1)

OD-H, Hex:iPrOH 98:02, 1 mL/min G-Quadruplex DNA - h-tel - 12 mol%, MOPS 10mM, KCl 50mM, TMePyP-Cu-ClO4 - 10 mol%, 5 °C, 40 h

ODN-2, Cu(NO₃)₂, 50 mM NaCl (table 1, entry 3)

OD-H, Hex:iPrOH 98:02, 1 mL/min G-Quadrupholex DNA - h-tel-mod01 - 12 mol%, MOPS 10 mM, NaCl 50 mM, Cu(NO3)2 * 3H20, 5 °C, 40 h without dna hybridization

ODN-4, Porphyrine 4, 50 mM KCl (table 1, entry 5)

ODN-6, Porphyrine 4, 50 mM KCl (table 1, entry 7)

OD-H, Hex:iPrOH 98:02, 1 mL/min G-Quadruplex DNA - h-tel-mod06 - 12 mol%, MOPS 10mM, KCl 50mM, TMePyP-Cu-ClO4 - 10 mol%, 5 °C, 40 h

ODN-10, Porphyrine 4, 50 mM KCl (table 1, entry 11)

OD-H, Hex:iPrOH 98:02, 1 mL/min G-Quadruplex DNA - h-tel-mod08 - 12 mol%, MOPS 10mM, KCl 50mM, TMePyP4Cu - 10 mol%, 5 °C, 40 h

ODN-12, Porphyrine 4, 50 mM KCl (table 1, entry 13)

OD-H, Hex:iPrOH 98:02, 1 mL/min

G-Quadruplex DNA - h-tel-mod10 - 12 mol%, MOPS 10 mM, Kcl 50 mM, TMePyP4Cu 10 mol%, 5 $^{\circ}\text{C}$, 40 h

ODN-16, Porphyrine 4, 50 mM KCl (table 1, entry 17)

OD-H, Hex:iPrOH 98:02, 1 mL/min G-Quadruplex DNA - c-myc - 12 mol%, MOPS 10mM, KCl 50mM, TMePyP-Cu-ClO4 - 10 mol%, 5 °C, 40 h

ODN-21, Porphyrine 4, 50 mM KCl (table 1, entry 22)

OD-H, Hex:iPrOH 98:02, 1 mL/min G-Quadruplex DNA - c-kit - 12 mol%, MOPS 10mM, KCl 50mM, TMePyP-Cu-ClO4 - 10 mol%, 5 °C, 40 h

ODN-1, Porphyrine 5, 50 mM KCl (table 2, entry 1)

OD-H, Hex:iPrOH 98:02, 1 mL/min G-Quadruplex DNA - h-tel - 12 mol%, MOPS 10mM, KCl 50mM, TPrPyP4Cu - 10 mol%, 5 °C, 40 h

ODN-10, Porphyrine 5, 50 mM KCl (table 2, entry 3)

OD-H, Hex:iPrOH 98:02, 1 mL/min G-Quadruplex DNA - h-tel-mod08 - 12 mol%, MOPS 10mM, KCl 50mM, TPrPyP4Cu - 10 mol%, 5 °C, 40 h

ODN-1, Porphyrine 7, 50 mM KCl (table 2, entry 1)

10. Literature

- [1] S. Otto, F. Bertoncin, J. B. F. N. Engberts, J. Am. Chem. Soc. 1996, 118, 7702-7707.
- [2] a) A. D. Adler, F. R. Longo, J. D. Finarelli, J. Assour, L. Korsakoff, J. Org. Chem. 1967, 32, 476-476; b) S.-Q. Liu, H.-R. Sun, Z.-T. Sun, J.-Q. Xu, D.-M. Li, Synth. Commun. 2000, 30, 2009-2017; c) K. Groves, A. J. Wilson, A. D. Hamilton, J. Am. Chem. Soc. 2004, 126, 12833-12842; d) F.-Di Cong, B. Ning, X.-G. Du, C.-Y. Ma, H.-F. Yu, B. Chen, Dyes and Pigments, 2005, 66, 149-154; e) J. Alzeer, P. J. C. Roth, N. W. Luedtke, Chem. Commun., 2009, 45, 1970.1971; f) C. Romera, L. Sabater, A. Garofalo, I. M. Dixon, G. Pratviel, Inorg. Chem. 2010, 49, 8558-8567.
- [3] N. S. Oltra, G. Roelfes, *Chem. Commun.* **2008**, *44*, 6039-6041.