### **Supporting Information**

# Observation by NMR of cationic Wheland-like intermediates in the deiodination of protected 1-iodonapthalene-2,4-diamines in acidic media

Elvis A. Twum<sup>a</sup>, Timothy J. Woodman<sup>a</sup>, Wenyi Wang<sup>a,b</sup> and Michael D. Threadgill<sup>a</sup>

<sup>a</sup> Address: Medicinal Chemistry, Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK., <sup>b</sup> Department of Pharmacy, Shandong University, China.

In the Supplementary Information, the numbering of the positions on the naphthalene rings follows strict IUPAC numbering.

#### Reactions monitored by NMR.

In a typical reaction, **11** (14.0 mg, 0.29 mmol) was dissolved in a mixture of CDCl<sub>3</sub> (0.15 mL) and trifluoroacetic acid (CF<sub>3</sub>CO<sub>2</sub>D or CF<sub>3</sub>CO<sub>2</sub>H) (0.45 mL) at 0°C. Following brief agitation of the sample with a vortex mixer to ensure dissolution and homogeneity of the sample, it was transferred to the NMR spectrometer, with the probe pre-cooled to 0°C. Following locking and shimming, data could be collected, typically within 3-4 minutes of mixing the sample. Where samples were monitored for extended times (days / weeks), the samples were stored in a laboratory which was regulated to  $20 \pm 1^{\circ}$ C.

**15**: <sup>1</sup>H NMR (CDCl<sub>3</sub>/CF<sub>3</sub>CO<sub>2</sub>H), 500.13 MHz, 273 K) δ 7.93-8.01 (2 H, m, 6,7-H<sub>2</sub>), 8.05 (1 H, d, *J* 8.0 Hz, 5-H), 8.11 (1 H, s, 3-H), 8.42 (1 H, d, *J* 8.5 Hz, 8-H); <sup>13</sup>C NMR (CDCl<sub>3</sub>/ CF<sub>3</sub>CO<sub>2</sub>H, 125.77 MHz, 293 K) δ 101.44 (1-C), 116.90 (3-C), 120.96 (5-C), 126.61 (4a-C), 127.75 (4-C), 129.38 (2-C), 131.81 (6-C), 132.34 (7-C), 134.72 (8-C), 135.96 (8a-C).



Figure 1. <sup>1</sup>H NMR spectrum of 15 at 0°C, showing small amounts of 11 (\*) formed.

**16**: <sup>1</sup>H NMR (CDCl<sub>3</sub>/CF<sub>3</sub>CO<sub>2</sub>H, 500.13 MHz, 293 K) δ 6.05 (1 H, s, 3-H), 6.51 (1 H, s, 1-H), 7.58 (1 H, t, *J* 7.8 Hz, 6-H), 7.70 (1 H, t, *J* 7.8 Hz, 7-H), 7.75 (1 H, d, *J* 7.8 Hz, 8-H), 7.84 (1 H, d, *J* 8.0 Hz, 5-H); <sup>13</sup>C NMR (CDCl<sub>3</sub>/CF<sub>3</sub>CO<sub>2</sub>H, 125.77 MHz, 293 K) δ 9.79 (1-C), 91.49 (3-C), 121.68



(4a-C), 124.16 (5-C), 129.93 (6-C), 131.48 (8-C), 135.01 (7-C), 141.25 (8a-C), 164.30 (4-C), 173.50 (2-C).



Figure 2. <sup>1</sup>H NMR spectrum of 16 at 20°C, showing small residual amounts of 10 (\*).



Figure 3. HSQC NMR spectrum of 16 at 20°C, showing the peak for CHI at  $\delta$  6.50 (<sup>1</sup>H) and  $\delta$  9.54 (<sup>13</sup>C).



**Figure 4**. <sup>1</sup>H NMR spectrum of **17** with traces of **18** (\*), following reaction of **11** with  $CF_3CO_2D / CDCl_3$  at 0°C.



**Figure 5**. <sup>1</sup>H NMR spectrum of **18** with traces of **17** (\*), following reaction of **11** with  $CF_3CO_2D / CDCl_3$  at 20°C. Note the reduced intensity of the peaks at  $\delta$  6.50 and  $\delta$  6.08 where deuterium has exchanged in the Wheland-type molecule and the peak at  $\delta$  8.14 showing that deuterium is present in **17**.

**20**: <sup>1</sup>H NMR (CDCl<sub>3</sub>/CF<sub>3</sub>CO<sub>2</sub>H, 500.13 MHz, 293 K) δ 7.88-7.99 (2 H, m, 6,7-H<sub>2</sub>), 8.05 (1 H, s, 2-H), 8.10 (1 H, d, *J* 8.2 Hz, 8-H), 8.14 (1 H, d, *J* 7.7 Hz, 5-H), 8.28 (1 H, s, 1-H); <sup>13</sup>C NMR (CDCl<sub>3</sub>/CF<sub>3</sub>CO<sub>2</sub>H, 125.77 <sup>+</sup>NH<sub>3</sub> MHz, 293 K) δ 116.62 (2-C), 120.05 (8-C), 125.19 (3-C), 126.05 (4-C), 126.73 (4a-C), 129.87 (5-C), 130.57 (6-C), 131.27 (7-C), 134.29 (1-C), 134.33 (3-C).



Figure 6. <sup>1</sup>H NMR spectrum of 20 and 21 (\*) shortly after dissolution of 9 in CDCl<sub>3</sub>/CF<sub>3</sub>CO<sub>2</sub>D at 0°C.



Figure 7. Expansion of Figure 6 to show aromatic region in more detail.

8.051 8.035 7.995

899 88 86 854



**Figure 8.** HSQC NMR spectrum of **20** and **21** showing CH<sub>2</sub> of the Wheland-type species at  $\delta$  4.13 (<sup>1</sup>H) and  $\delta$  33.27 (<sup>13</sup>C).

514

-4.133



Figure 9. <sup>1</sup>H NMR spectrum of 22 and 23 (\*) shortly after dissolution of 4 in CDCl<sub>3</sub>/CF<sub>3</sub>CO<sub>2</sub>D at 0°C.



Figure 10. Expansion of Figure 9 to show aromatic region.



Figure 11. <sup>1</sup>H NMR spectrum of 22 and 23 (\*) 48 h after dissolution of 9 in CDCl<sub>3</sub>/CF<sub>3</sub>CO<sub>2</sub>D.



Figure 12. <sup>1</sup>H expansion of Figure 11 to show aromatic region. Note the diminished intensity of the singlets at  $\delta$  8.28 and  $\delta$  8.05 due to exchange of H with D at 1-H and 3-H in 22.

21: <sup>1</sup>H NMR (CDCl<sub>3</sub>/CF<sub>3</sub>CO<sub>2</sub>H, 500.13 MHz, 293 K) δ 4.13 (2 H, s, 4-H<sub>2</sub>), 6.01 (1 H, s, 2-H), 7.55 (1 H, d, J 7.9 Hz, 5-H), 7.61 (1 H, t, J 7.5 Hz, 7-H), 7.74 (1 H, t, J 7.5 Hz, 6-H), 7.87 (1 H, d, J 7.9 Hz, 8-H); <sup>13</sup>C NMR (CDCl<sub>3</sub>/CF<sub>3</sub>CO<sub>2</sub>H, 125.77 MHz, 293 K) & 33.27 (4-C), 93.58 (2-C), 123.02 (8a-C), 123.22 (8-C), 128.85 (7-C), 129.29 (5-C), 134.31 (6-C), 136.52 (4a-C), 165.73

NH<sub>2</sub> ⁺ŇH₃

(1-C), 171.87 (3-C).

27: <sup>1</sup>H (500.13 MHz, CDCl<sub>3</sub>/CF<sub>3</sub>CO<sub>2</sub>H, 273 K) δ 7.84 (1 H, t, J 7.5 Hz, 6-H), 7.88 (1 H, t, J 7.5 Hz, 1H, 7-H), 7.97 (1 H, d, J 8.2 Hz, 5-H), 8.44 (1 H, d, J 8.6 Hz, 8-H), 8.57 (1 H, s, 3-H); <sup>13</sup>C NMR (125.77 MHz, CDCl<sub>3</sub>/CF<sub>3</sub>CO<sub>2</sub>H, 273 K) δ 99.94 (1-C), 116.65 (q, J



108.8 Hz, CF<sub>3</sub>), 116.71 (3-C), 120.59 (5-C), 125.48 (4a-C), 126.84 (4-C), 130.40 (6-C), 131.40 (7-C), 133.71 (2-C), 134.58 (8-C), 135.68 (8a-C), 158.24 (q, J 40.3 Hz, C=O).



Figure 13. <sup>1</sup>H NMR spectrum of 27 in CDCl<sub>3</sub>/CF<sub>3</sub>CO<sub>2</sub>D.



Figure 14. <sup>1</sup>H NMR spectrum of 29 in CDCl<sub>3</sub>/CF<sub>3</sub>CO<sub>2</sub>D.

**29**: <sup>1</sup>H (500.13 MHz, CDCl<sub>3</sub>/CF<sub>3</sub>CO<sub>2</sub>H, 273 K) δ 7.75-7.81 (2 H, m, 6,7-H<sub>2</sub>), 7.95 (1 H, m, 8-H), 8.04 (1 H, m, 5-H), 8.18 (1 H, d, *J* 1.9 Hz, 2-H), 8.29 (1 H, s, 4-H), 9.31 (NH); <sup>13</sup>C NMR (125.77 MHz, <sup>+</sup>NH<sub>3</sub> CDCl<sub>3</sub>/CF<sub>3</sub>CO<sub>2</sub>H, 273 K) δ 116.10 (q, *J* 103.7 Hz, CF<sub>3</sub>), 116.48 (2-C), 119.63 (8-C), 123.08 (4-C), 125.15 (8a-C), 125.91 (1-C), 129.74 (6-C), 129.79 (5-C), 129.80 (7-C), 131.52 (3-C), 134.81 (4a-C), 157.58 (q, *J* 39.1 Hz, C=O).



Figure 15. <sup>1</sup>H NMR spectrum of 29 and 30 (\*) 48 h after dissolution of 26 in CDCl<sub>3</sub>/CF<sub>3</sub>CO<sub>2</sub>D.



## Spectra of synthesised compounds

Figure 16. <sup>1</sup>H NMR spectrum of 7 in (CD<sub>3</sub>)<sub>2</sub>SO.



Figure 18. HSQC NMR spectrum of 7 in (CD<sub>3</sub>)<sub>2</sub>SO.



Figure 19. HMBC NMR spectrum of 7 in (CD<sub>3</sub>)<sub>2</sub>SO.



Figure 20. <sup>1</sup>H-<sup>1</sup>H COSY NMR spectrum of 7 in (CD<sub>3</sub>)<sub>2</sub>SO.



Figure 21. <sup>1</sup>H-<sup>1</sup>H NOESY NMR spectrum of 7 in (CD<sub>3</sub>)<sub>2</sub>SO.



**Figure 22.** <sup>1</sup>H NMR spectrum of **8** in  $(CD_3)_2SO$ .



Figure 23. <sup>13</sup>C NMR spectrum of 8 in (CD<sub>3</sub>)<sub>2</sub>SO.



Figure 24. HSQC NMR spectrum of 8 in (CD<sub>3</sub>)<sub>2</sub>SO.













Figure 29. HMBC NMR spectrum of 10 in CDCl<sub>3</sub>.



Figure 30. <sup>1</sup>H NMR spectrum of 11 in CDCl<sub>3</sub>.



Figure 31. Expansion of part of <sup>1</sup>H NMR spectrum of 11 in CDCl<sub>3</sub>.



Figure 32. Expansion of part of <sup>1</sup>H NMR spectrum of 11 in CDCl<sub>3</sub>.



Figure 33. <sup>13</sup>C NMR spectrum of 11 in CDCl<sub>3</sub>.



Figure 34. HSQC NMR spectrum of 11 in CDCl<sub>3</sub>.



Figure 35. HMBC NMR spectrum of 11 in CDCl<sub>3</sub>.



Figure 36. Expansion of part of HMBC NMR spectrum of 11 in CDCl<sub>3</sub>.



Figure 37. <sup>1</sup>H-<sup>1</sup>H COSY NMR spectrum of 11 in CDCl<sub>3</sub>.



Figure 38. <sup>1</sup>H-<sup>1</sup>H NOESY NMR spectrum of 11 in CDCl<sub>3</sub>.





Figure 40. Expansion of part of <sup>1</sup>H NMR spectrum of 24 in (CD<sub>3</sub>)<sub>2</sub>SO.





Figure 43. HSQC NMR spectrum of 24 in (CD<sub>3</sub>)<sub>2</sub>SO.





Figure 45. Expansion of part of HMBC NMR spectrum of 24 in (CD<sub>3</sub>)<sub>2</sub>SO.



Figure 46. 'H-'H NOESY NMR spectrum of 24 in (CD<sub>3</sub>)<sub>2</sub>SO.







**Figure 48.** <sup>1</sup>H NMR spectrum of **25** in  $(CD_3)_2SO$ .



Figure 49. Expansion of part of <sup>1</sup>H NMR spectrum of 25 in (CD<sub>3</sub>)<sub>2</sub>SO.



Figure 50. Expansion of part of <sup>1</sup>H NMR spectrum of 25 in (CD<sub>3</sub>)<sub>2</sub>SO.



Figure 52. Expansion of part of <sup>13</sup>C NMR spectrum of 25 in (CD<sub>3</sub>)<sub>2</sub>SO.

# Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013



Figure 53. HSQC NMR spectrum of 25 in (CD<sub>3</sub>)<sub>2</sub>SO.



Figure 54. Expansion of part of HSQC NMR spectrum of 25 in (CD<sub>3</sub>)<sub>2</sub>SO.



Figure 55. HMBC NMR spectrum of 25 in (CD<sub>3</sub>)<sub>2</sub>SO.



Figure 56. Expansion of part of HMBC NMR spectrum of 25 in (CD<sub>3</sub>)<sub>2</sub>SO.



Figure 57.  $^{1}H$ - $^{1}H$  NOESY NMR spectrum of 25 in (CD<sub>3</sub>)<sub>2</sub>SO.









Figure 58. Expansion of part of <sup>1</sup>H-<sup>1</sup>H NOESY NMR spectrum of 25 in (CD<sub>3</sub>)<sub>2</sub>SO.



**Figure 59.** <sup>19</sup>F NMR spectrum of **25** in  $(CD_3)_2SO$ .



Figure 60. <sup>1</sup>H NMR spectrum of 26 in (CDCl<sub>3</sub>.



Figure 62. <sup>13</sup>C NMR spectrum of 26 in CDCl<sub>3</sub>.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013



Figure 64. HSQC NMR spectrum of 26 in CDCl<sub>3</sub>.



Figure 65. Expansion of part of HSQC NMR spectrum of 26 in CDCl<sub>3</sub>.



Figure 66. HMBC NMR spectrum of 26 in CDCl<sub>3</sub>.



Figure 67. Expansion of part of HMBC NMR spectrum of 26 in CDCl<sub>3</sub>.



