Electronic Supplementary Information

Orthogonal Aerobic Conversion of N-Benzyl Amidoximes

to 1,2,4-Oxadiazoles or Quinazolinones

Feng-Lian Zhang, Yi-Feng Wang, and Shunsuke Chiba*

Division of Chemistry and Biological Chemistry, School of Physical and

Mathematical Sciences, Nanyang Technological University, Singapore 637371,

Singapore.

E-mail: shunsuke@ntu.edu.sg

Table of Contents

1.	General	S2
2.	Preparation of amidoximes 1	S2
3.	Synthesis of oxodiazoles 3	S12
4.	Synthesis of quinazolinones 5	S19
5.	References	S23

Appendix: ¹H and ¹³C NMR spectra for new compounds S25

1. General

¹H NMR (400 MHz) spectra were recorded on a Bruker Avance 400 spectrometer in CDCl₃ [using CDCl₃ (for ¹H, δ = 7.26) or DMSO-d₆ (for ¹H, δ = 2.50) as the internal standard]. ¹³C NMR (100 MHz) spectra on a Bruker Avance 400 spectrometer in CDCl₃ [using CDCl₃ (for ¹³C, δ = 77.0) or DMSO-d₆ (for ¹³C, δ = 39.5) as internal standard]. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublet, ddd = doublet of doublet of doublet, dt = doublet of triplet, sep = septet, m = multiplet, s br = single broad. IR spectra were recorded on a Shimazu IR Prestige-21 FT-IR Spectrometer. High-resolution mass spectra were obtained with a Q-Tof Premier LC HR mass spectrometer. X-ray crystallography analysis was performed on Bruker X8 APEX X-ray diffractionmeter. Melting points were uncorrected and were recorded on a Buchi B-54 melting point apparatus. IR spectra were recorded on a Shimadzu IR Prestige-21 FT-IR Spectrometer. Flash column chromatography was performed using Merck silica gel 60 with distilled solvents. DMSO (anhydrous), DMF (anhydrous), K₃PO₄, K₂CO₃ and Cs₂CO₃ were purchased from Sigma-Aldrich Co., Inc.

2. Preparation of amidoximes 1

A typical procedure for synthesis of amidoxime **1a**:¹

$$\begin{array}{c} \begin{array}{c} N \\ Ph \end{array} \overset{OH}{H} \\ \end{array} \begin{array}{c} NCS (1 \ equiv) \\ \hline DMF, rt, 4 \ h \\ under \ N_2 (1 \ atm) \end{array} \end{array} \begin{array}{c} N \\ Ph \end{array} \overset{OH}{H} \\ \end{array} \begin{array}{c} N \\ Ph \end{array} \begin{array}{c} OH \\ \hline DMF, 0 \ \circ C \ rt, 6 \ h \\ under \ N_2 (1 \ atm) \end{array} \end{array} \begin{array}{c} N \\ Ph \\ \hline OH \\ \hline DMF, 0 \ \circ C \ rt, 6 \ h \\ under \ N_2 (1 \ atm) \end{array} \begin{array}{c} N \\ Ph \\ \hline OH \\ \hline OH \\ H \end{array} \begin{array}{c} N \\ Ph \\ \hline OH \\ H \end{array} \begin{array}{c} N \\ Ph \\ \hline OH \\ H \end{array} \begin{array}{c} N \\ Ph \\ H \end{array} \begin{array}{c} OH \\ Ph \\ H \end{array}$$

To the solution of oxime (2.043 g, 16.88 mmol) in *N*,*N*-dimethylformamide (55.0 mL) at room temperature was added *N*-chlorosuccinimide (2.254 g, 16.88 mmol) in five portions. During each addition, the reaction mixture became yellow and then gradually returned to near colorless. After the addition was complete, the reaction mixture was stirred at room temperature for 4 h. The chlorooxime generated was used in situ. Benzylamine (2.21 mL, 20.26 mmol) and triethylamine (4.71 mL, 33.76 mmol) was added dropwise at 0 °C to the reaction mixture. The reaction mixture was stirred at 0 °C for 2 h and room temperature for 4 h.

mixture was diluted with H_2O , and the aqueous layer was extracted three times with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄ and concentrated. The crude material was purified by flash column chromatography (silica gel; hexane: ethyl acetate = 75 : 25) to afford benzylamidoxime (3.015 g, 13.32 mmol, 79% yield) as a white solid.

(Z)-N-benzyl-N'-hydroxybenzimidamide (1a):

79% yield as a white solid from benzaldehyde oxime² and benzylamine.

mp: 117-118 °C; IR (NaCl) 3392, 3053, 2986, 1628, 1576, 1497, 1477, 1146 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.24 (2H, s), 5.70 (1H, s), 7.19-7.25 (3H, m), 7.30 (2H, dd, J = 7.2, 7.6 Hz), 7.33-7.42 (3H, m), 7.46-7.48 (2H, m), 8.68 (1H, s br); ¹³C NMR (100 MHz, CDCl₃) δ 47.4, 126.8, 127.2, 128.4, 128.5, 128.6, 129.6, 131.2, 139.5, 156.5; ESIHRMS: Found: *m/z* 227.1183. Calcd for C₁₄H₁₅N₂O: (M+H)⁺ 227.1184.

(Z)-N-benzyl-N'-hydroxy-4-methoxybenzimidamide (1c):

98% yield as a white solid from 4-methoxybenzaldehyde oxime³ and benzylamine.

mp: 139-140 °C; IR (NaCl) 3395, 3053, 2986, 1624, 1609, 1521, 1421, 1175 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.79 (3H, s), 4.24 (2H, s), 5.71 (1H, s), 6.86-6.88 (2H, m), 7.19-7.24 (3H, m), 7.27-7.31 (2H, m), 7.39 (2H, d, *J* = 8.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 47.4, 55.2, 113.8, 123.5, 126.7, 127.1, 128.5, 129.8, 139.7, 156.3, 160.6; ESIHRMS: Found: *m/z* 257.1285. Calcd for C₁₅H₁₇N₂O₂: (M+H)⁺ 257.1290.

(Z)-N-benzyl-4-bromo-N'-hydroxybenzimidamide (1d):

85% yield as a white solid from 4-bromobenzaldehyde oxime⁴ and benzylamine.

mp: 138-140 °C; IR (NaCl) 3394, 3053, 2986, 1631, 1494, 1421, 1150, 1070 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.21 (2H, d, J = 5.2 Hz), 5.70 (1H, s), 7.18 (2H, d, J = 6.8 Hz), 7.23-7.26 (1H, m), 7.29-7.34 (4H, m), 7.49 (2H, d, J = 8.4 Hz), 8.75 (1H, s br); ¹³C NMR (100 MHz, CDCl₃) δ 47.4, 124.0, 126.7, 127.3, 128.7, 130.1 (overlapped), 131.7, 139.2, 155.7; ESIHRMS: Found: *m/z* 305.0293. Calcd for C₁₄H₁₄N₂O⁷⁹Br: (M+H)⁺ 305.0289.

(Z)-N-benzyl-2-bromo-N'-hydroxybenzimidamide (1e):

82% yield as a white solid from 2-bromobenzaldehyde oxime, which was prepared by condensation of 2-bromobenzaldehyde and hydroxylamine hydrochloride in the presence of sodium acetate in ethanol.⁵ The crude oxime was used directly without further purification.

mp: 124-126 °C; IR (NaCl) 3404, 3053, 2985, 1636, 1483, 1451, 1208, 1153 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.06 (2H, s), 5.72 (1H, s), 7.16-7.33 (8H, m), 7.59 (1H, dd, J = 2.0, 7.2 Hz), 8.66 (1H, s br); ¹³C NMR (100 MHz, CDCl₃) δ 46.9, 123.5, 127.2 (overlapped), 127.3, 128.5, 130.9, 131.7, 132.4, 132.9, 138.9, 154.3; ESIHRMS: Found: *m/z* 305.0286. Calcd for C₁₄H₁₄N₂O⁷⁹Br: (M+H)⁺ 305.0289.

(Z)-N-benzyl-N'-hydroxy-3-(trifluoromethyl)benzimidamide (1f):

48% yield as a pale yellow solid from 3-(trifluoromethyl)benzaldehyde oxime, which was prepared by condensation of 3-(trifluoromethyl)benzaldehyde and hydroxylamine hydrochloride in the presence of sodium acetate in ethanol.⁵ The crude oxime was used directly without further purification.

mp: 107-109 °C; IR (NaCl) 3394, 3053, 2985, 1634, 1591, 1494, 1452, 1130 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.19 (2H, d, J = 5.6 Hz), 5.76 (1H, s), 7.15 (2H, d, J = 7.2 Hz), 7.22-7.31 (3H, m), 7.47 (1H, dd, J = 7.6, 8.0 Hz), 7.64 (2H, t, J = 9.2 Hz), 7.72 (1H, s), 9.23 (1H, s br); ¹³C NMR (100 MHz, CDCl₃) δ 47.5, 123.7 (q, J = 270.7), 125.6 (q, J = 3.6 Hz), 126.3 (q, J = 3.4 Hz), 126.7, 127.4, 128.7, 128.9, 130.9 (q, J = 32.5 Hz), 131.82, 132.0, 139.1, 155.4; ESIHRMS: Found: m/z 295.1059. Calcd for C₁₅H₁₄N₂OF₃: (M+H)⁺ 295.1058.

(Z)-N-benzyl-N'-hydroxy-2-naphthimidamide (1g):

64% yield as a pale yellow solid from 2-naphthaldehyde oxime⁶ and benzylamine.

mp: 105-107 °C; IR (NaCl) 3394, 3053, 2986, 1635, 1475, 1420, 1146 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.27 (2H, d, J = 3.2 Hz), 5.77 (1H, s), 7.19-7.31 (5H, m), 7.47-7.56 (3H, m), 7.81-7.85 (3H, m), 7.98 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ 47.6, 125.6, 126.4, 126.77, 126.84, 127.2, 127.7, 128.1, 128.4, 128.59, 128.61, 132.9, 133.8, 139.5,156.7; ESIHRMS: Found: *m/z* 277.1338. Calcd for C₁₈H₁₇N₂O: (M+H)⁺ 277.1341.

(Z)-N-benzyl-N'-hydroxy-1-methyl-1H-indole-3-carboximidamide (1h):

42% yield as a pale yellow solid from 1-methyl-1H-indole-3-carbaldehyde oxime⁷ and benzylamine.

mp: decompose temperature: 195-198 °C; IR (NaCl) 3402, 3053, 2986, 1630, 1560, 1479, 1422, 1157 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 3.78 (3H, s), 4.27 (2H, d, *J* = 6.8 Hz), 6.11 (1H, t, *J* = 6.8 Hz), 7.08 (1H, dd, *J* = 7.2, 8.0 Hz), 7.16-7.20 (4H, m), 7.26 (2H, dd, *J* = 7.2, 8.0 Hz), 7.44-7.45 (2H, m), 7.68 (1H, d, *J* = 8.0 Hz), 9.58 (1H, s); ¹³C NMR (100 MHz, DMSO-d₆) δ 32.5, 46.7, 106.1, 109.9, 119.7, 120.1, 121.5, 126.2, 126.5 (overlapped), 128.1, 129.7, 136.4, 141.2, 150.5; ESIHRMS: Found: *m/z* 280.1452. Calcd for C₁₇H₁₈N₃O: (M+H)⁺ 280.1450.

(Z)-N-benzyl-N'-hydroxycinnamimidamide (1j):

81% yield as a pale yellow solid from cinnamaldehyde oxime⁸ and benzylamine.

IR (NaCl) 3385, 3053, 2986, 1653, 1494, 1450, 1419 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.43 (2H, s), 5.63 (1H, s), 6.49 (1H, d, *J* = 16.0 Hz), 7.18 (1H, d, *J* = 16.0 Hz), 7.24-7.38 (10H, m); ¹³C NMR (100 MHz, CDCl₃) δ 46.7, 116.7, 126.7, 127.0, 127.2, 128.5 (overlapped), 128.6, 135.7, 135.9, 139.4, 153.8; ESIHRMS: Found: *m/z* 253.1345. Calcd for C₁₆H₁₇N₂O: (M+H)⁺ 253.1341.

(Z)-N-benzyl-N'-hydroxy-3-phenylpropanimidamide (1k):

67% yield as a yellow solid from 3-phenylpropanal oxime⁹ and benzylamine.

mp: 81-83 °C; IR (NaCl) 3211, 3053, 2986, 2868, 2831, 1643, 1497, 1452, 1421, 1153 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.49-2.53 (2H, m), 2.86-2.90 (2H, m), 4.34 (2H, d, *J* = 6.0 Hz), 5.59 (1H, s), 7.15-7.21 (3H, m), 7.25-7.29 (5H, m), 7.33-7.36 (2H, m), 7.33-7.38 (2H, m), 7.33-7.38 (2H, m), 7.38 (2H, m), 7.38 (

m); ¹³C NMR (100 MHz, CDCl₃) δ 30.6, 32.8, 46.0, 126.2, 126.8, 127.4, 128.3, 128.5, 128.7, 139.1, 141.0, 154.8; ESIHRMS: Found: *m/z* 255.1496. Calcd for C₁₆H₁₉N₂O: (M+H)⁺ 255.1497.

(Z)-N-benzyl-N'-hydroxycyclohexanecarboximidamide (11):

67% yield as a white solid from cyclohexanecarbaldehyde oxime¹⁰ and benzylamine.

mp: 124-126 °C; IR (NaCl) 3315, 3053, 2983, 1636, 1494, 1450, 1420, 1340, 1140 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.16-1.26 (3H, m), 1.39 (2H, q, *J* = 12.0 Hz), 1.65-1.66 (1H, m), 1.75-1.76 (2H, m), 1.87 (2H, d, *J* = 13.2 Hz), 2.22-2.30 (1H, m), 4.34 (2H, d, *J* = 5.6 Hz), 5.50 (1H, s), 7.25-7.36 (5H, m); ¹³C NMR (100 MHz, CDCl₃) δ 26.0, 26.3, 30.6, 37.4, 45.8, 126.9, 127.3, 128.6, 139.4, 158.2; ESIHRMS: Found: *m/z* 233.1653. Calcd for C₁₄H₂₁N₂O: (M+H)⁺ 233.1654.

(Z)-N'-hydroxy-N-(2-methylbenzyl)benzimidamide (1m):

81% yield as a white solid from benzaldehyde oxime and o-tolylmethanamine.

mp: 145-148 °C; IR (NaCl) 3053, 2985, 1629, 1575, 1419, 1344, 1153 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.16 (3H, s), 4.18 (2H, s), 5.58 (1H, s), 7.09-7.11 (1H, m), 7.13-7.18 (2H, m), 7.24-7.27 (1H, m), 7.34-7.41 (3H, m), 7.46-7.48 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 18.8, 45.6, 126.2, 127.2, 127.3, 128.38, 128.44, 129.6, 130.2, 131.3, 135.5, 137.2, 156.5; ESIHRMS: Found: *m/z* 241.1337. Calcd for C₁₅H₁₇N₂O: (M+H)⁺ 241.1341.

(Z)-N'-hydroxy-N-(4-methoxybenzyl)benzimidamide (1n):

88% yield as a pale yellow solid from benzaldehyde oxime and (4-methoxyphenyl)methanamine.

mp: 75-77 °C; IR (NaCl) 3393, 3053, 2956, 1628, 1576, 1512, 1463, 1445, 1175 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.78 (3H, s), 4.15 (2H, s), 5.63 (1H, s), 6.81-6.84 (2H, m), 7.10 (2H, d, J = 8.4 Hz), 7.34-7.40 (3H, m), 7.45-7.48 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 46.9, 55.2, 113.9, 128.1, 128.4, 128.5, 129.5, 131.3, 131.6, 156.4, 158.7; ESIHRMS: Found: *m/z* 257.1283. Calcd for C₁₅H₁₇N₂O₂: (M+H)⁺ 257.1290.

(Z)-N-(3-bromobenzyl)-N'-hydroxybenzimidamide (10):

84% yield as a pale yellow solid from benzaldehyde oxime and (3-bromophenyl)methanamine.

mp: 106-108 °C; IR (NaCl) 3396, 3053, 2985, 1631, 1572, 1473, 1445, 1422, 1150 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.20 (2H, s), 5.72 (1H, s), 7.10-7.18 (2H, m), 7.32-7.44 (7H, m); ¹³C NMR (100 MHz, CDCl₃) δ 46.7, 122.7, 125.3, 128.4, 128.5, 129.7, 129.8, 130.1, 130.3, 130.8, 141.9, 156.2; ESIHRMS: Found: *m/z* 305.0289. Calcd for C₁₄H₁₄N₂O⁷⁹Br: (M+H)⁺ 305.0289.

(Z)-N'-hydroxy-N-((1-methyl-1H-indol-5-yl)methyl)benzimidamide (1p):

72% yield as a yellow solid from benzaldehyde oxime and (1-methyl-1H-indol-5-yl)methanamine, which was prepared by reduction of

1-methylindole-5-carbonitrile¹¹ with lithium aluminum hydride in tetrahydrofuran.¹² The crude amine was used directly without further purification.

mp: 172-175 °C; IR (NaCl) 3383, 3053, 2986, 1636, 1422, 1153 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 3.74 (3H, s), 4.22 (2H, d, *J* = 6.8 Hz), 6.12 (1H, t, *J* = 6.8 Hz), 6.34 (1H, d, *J* = 2.8 Hz), 6.92 (1H, dd, *J* = 1.2, 8.4 Hz), 7.26-7.32 (3H, m), 7.37-7.41 (5H, m), 9.82 (1H, s); ¹³C NMR (100 MHz, DMSO-d₆) δ 32.4, 40.1, 47.0, 100.1, 109.4, 118.3, 120.4, 127.9, 128.10, 128.13, 128.9, 129.7, 131.2, 132.6, 135.5, 155.0; ESIHRMS: Found: *m/z* 280.1449. Calcd for C₁₇H₁₈N₃O: (M+H)⁺ 280.1450.

(Z)-N'-hydroxy-N-(pyridin-4-ylmethyl)benzimidamide (1q):

74% as a white solid from benzaldehyde oxime and pyridin-2-ylmethanamine.

mp: 166-168 °C; IR (NaCl) 3420, 3053, 2986, 1628, 1568, 1512, 1437, 1422, 1130 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 4.24 (2H, d, *J* = 6.4 Hz), 6.53 (1H, t, *J* = 6.4 Hz), 7.22 (1H, dd, *J* = 5.6, 7.2 Hz), 7.29 (1H, d, *J* = 8.0 Hz), 7.34-7.41 (5H, m), 7.75 (1H, dt, *J* = 2.0, 7.6 Hz), 8.44 (1H, d, *J* = 4.8 Hz), 9.88 (1H, s); ¹³C NMR (100 MHz, DMSO-d₆) δ 48.1, 120.7, 121.9, 128.0, 128.2, 128.9, 132.4, 136.6, 148.7, 154.6, 159.3; ESIHRMS: Found: *m/z* 228.1137. Calcd for C₁₃H₁₄N₃O: (M+H)⁺ 228.1137.

(Z)-N,N-dibenzyl-N'-hydroxybenzimidamide (1r):

The preparation of **1r** was slightly modified from the general procedure. In this reaction, 2 equiv of oxime and 2 equiv of *N*-chlorosuccinimide were used in the first step while 1 equiv of dibenzylamine and 2.5 equiv of triethylamine were employed in the second step.

80% yield as a white solid from benzaldehyde oxime and dibenzylamine.

mp: 144-146 °C; IR (NaCl) 3394, 3053, 2986, 2864, 1630, 1495, 1452, 1420, 1141 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.20 (4H, s), 6.29 (1H, s br), 7.19 (4H, d, J = 7.2 Hz), 7.23-7.27 (2H, m), 7.31 (4H, dd, J = 7.2, 7.6 Hz), 7.39-7.47 (3H, m), 7.51 (2H, d, J = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 50.6, 127.1, 127.9, 128.4, 128.5, 128.9, 129.4, 131.1, 137.8, 160.9; ESIHRMS: Found: *m/z* 317.1655. Calcd for C₂₁H₂₁N₂O: (M+H)⁺ 317.1654.

(Z)-N-benzhydryl-N'-hydroxybenzimidamide (1s):

58% yield as a white solid from benzaldehyde oxime and diphenylmethanamine.

mp: 161-163 °C; IR (NaCl) 3392, 3055, 2986, 1632, 1492, 1452, 1379, 1134 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.49 (1H, d, *J* = 9.6 Hz), 5.97 (1H, d, *J* = 9.6 Hz), 7.15 (4H, d, *J* = 7.6 Hz), 7.22-7.38 (11H, m), 7.84 (1H, s br); ¹³C NMR (100 MHz, CDCl₃) δ 60.9, 127.2, 127.3, 128.3, 128.4, 128.5, 129.6, 131.4, 142.5, 156.1; ESIHRMS: Found: *m/z* 303.1498. Calcd for C₂₀H₁₉N₂O: (M+H)⁺ 303.1497.

(Z)-N'-hydroxy-N-phenethylbenzimidamide (1t):

72% yield as a colourless oil from benzaldehyde oxime and 2-phenethylamine.

IR (NaCl) 3385, 3061, 2941, 1627, 1494, 1454, 1392, 1145 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.69 (2H, d, *J* = 7.2 Hz), 3.25 (2H, d, *J* = 6.8 Hz), 5.39 (1H, s br), 7.05-7.07 (2H, m), 7.17-7.26 (3H, m), 7.34-7.42 (5H, m), 8.74 (1H, s br); ¹³C NMR (100 MHz, CDCl₃) δ 37.9, 45.1, 126.4, 128.3, 128.5, 128.8, 129.4, 131.5, 138.5, 156.3; ESIHRMS: Found: *m/z* 241.1336. Calcd for C₂₀H₁₉N₂O: (M+H)⁺ 241.1341.

(Z)-N-benzyl-N'-methoxybenzimidamide (1u):

Procedure for synthesis of 1u:

To a suspension of NaH 60 % dispersion in mineral oil (148.7 mg, 3.719 mmol) in DMF (5.0 mL) was added the solution of (*Z*)-*N*-benzyl-*N'*-hydroxybenzimidamide (701.1 mg, 3.099 mmol) in DMF (6 mL) dropwise at room temperature. After the addition was complete, the reaction mixture was stirred at room temperature for 15 min. Then dimethyl sulfate (381 μ L, 4.028 mmol) was added dropwise to the reaction mixture. The reaction mixture was stirred at room temperature for 4 h. After that, the reaction mixture was diluted with H₂O, and the aqueous layer was extracted three times with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄ and concentrated. The crude material was purified by flash column chromatography (silica gel; hexane: ethyl acetate = 7 : 3) to afford (*Z*)-*N*-benzyl-*N'*-methoxybenzimidamide (1u) (564.6 mg, 2.350 mmol, 76% yield) as a colourless oil.

IR (NaCl) 3398, 1614, 1573, 1497, 1464, 1402, 1354, 1265, 1145 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.88 (3H, s), 4.21 (2H, d, *J* = 6.4 Hz), 5.59 (1H, s br), 7.20-7.27 (3H, m), 7.30-7.40 (5H, m), 7.46-7.48 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 47.4, 61.2, 126.7, 127.1, 128.3, 128.48, 128.49, 129.5, 131.0, 139.4, 156.0; ESIHRMS: Found: *m/z* 241.1340. Calcd for C₁₅H₁₆N₂O: (M+H)⁺ 241.1341.

3. Synthesis of 1,2,4-oxadiazoles 3

A typical procedure for synthesis of **3a**:

$$\begin{array}{ccc} & & & & \\ & & & \\ Ph & & & \\ & & H & \\ & & H & \\ & & & \\ & & 1a & \\ \end{array} \begin{array}{ccc} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & &$$

To a solution of (*Z*)-*N*-benzyl-*N'*-hydroxybenzimidamide (113.8 mg, 0.503 mmol) in DMF (5 mL) was added K₃PO₄ (320.3 mg, 1.509 mmol). The reaction mixture was then stirred for 5 h at 60 °C under an O₂ atmosphere. The resulting mixture was diluted with water and extracted three times with EtOAc. The combined organic extracts were washed with brine, dried over MgSO₄ and concentrated. Purification of the crude product by flash column chromatography (silica gel; hexane: ethyl acetate = 75 : 25) afforded **3a** (87.5 mg, 0.394 mmol, 78% yield) as a white solid.

3,5-diphenyl-1,2,4-oxadiazole (3a):¹³

Reaction time: 5 h.

Yield: 78%. ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.63 (6H, m), 8.17-8.20 (2H, m), 8.21-8.24 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 124.3, 126.9, 127.5, 128.1, 128.8, 129.1, 131.2, 132.7, 168.9, 175.7.

5-phenyl-3-(p-tolyl)-1,2,4-oxadiazole (3b):¹⁴

Reaction time: 5 h.

Yield: 81%. ¹H NMR (400 MHz, CDCl₃) δ 2.40 (3H, s), 7.29 (2H, d, J = 8.0 Hz), 7.49-7.57 (3H, m), 8.04-8.07 (2H, m), 8.18-8.20 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 124.3, 124.7, 127.4, 128.1, 129.0, 129.5, 132.6, 141.4, 168.9, 175.4.

3-(4-methoxyphenyl)-5-phenyl-1,2,4-oxadiazole (3c):¹⁵

Reaction time: 10 h.

Yield: 83%. ¹H NMR (400 MHz, CDCl₃) δ 3.85 (3H, s), 7.00 (2H, d, J = 8.8 Hz), 7.50-7.57 (3H, m), 8.10 (2H, d, J = 8.8 Hz), 8.19 (2H, d, J = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 55.3, 114.2, 119.4, 124.3, 128.0, 128.96, 129.04, 132.5, 161.8, 168.6, 175.3.

3-(4-bromophenyl)-5-phenyl-1,2,4-oxadiazole (3d):¹⁶

Reaction time: 5 h.

Yield: 76%. ¹H NMR (400 MHz, CDCl₃) δ 7.54-7.67 (5H, m), 8.06 (2H, dd, J = 1.6, 6.8 Hz), 8.21 (2H, dd, J = 1.6, 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 124.0, 125.7, 125.8, 128.1, 128.9, 129., 132.0, 132.8, 168.1, 175.8.

3-(2-bromophenyl)-5-phenyl-1,2,4-oxadiazole (3e):

Reaction time: 10 h.

Yield: 48%; Pale yellow solid, mp: 76-78 °C; IR (NaCl) 2985, 2829, 1610, 1558, 1489, 1464, 1421, 1361, 1141 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (1H, ddd, J = 1.6, 7.6, 8.0 Hz), 7.46 (1H, ddd, J = 1.2, 7.6, 8.0 Hz), 7.54-7.58 (2H, m), 7.61-7.64 (1H, m), 7.76 (1H, dd, J = 0.8, 8.0 Hz), 7.92 (1H, dd, J = 0.8, 7.6 Hz), 8.22-8.24 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 122.2, 124.0, 127.4, 128.2, 128.3, 129.1, 131.8, 131.9, 132.8, 134.1, 168.5, 175.3; ESIHRMS: Found: m/z 300.9969. Calcd for C₁₄H₁₀⁷⁹BrN₂O: (M+H)⁺ 300.9976.

5-phenyl-3-(3-(trifluoromethyl)phenyl)-1,2,4-oxadiazole (3f):

Reaction time: 2 h.

Yield: 70%; White solid, mp: 90-92 °C; IR (NaCl) 3053, 2985, 1610, 1562, 1421, 1377, 1321, 1170 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.45 (1H, s), 8.34 (1H, d, J = 8.0 Hz), 8.19-8.21 (2H, m), 7.76 (1H, d, J = 8.0 Hz), 7.59-7.64 (2H, m), 7.52-7.56 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 123.8 (q, J = 270.8 Hz), 124.0, 124.5 (q, J = 3.8 Hz), 127.7 (q, J = 3.6 Hz), 127.9, 128.2, 129.1, 129.4, 130.6, 131.4 (q, J = 32.7 Hz), 132.9, 167.9, 176.1; ESIHRMS: Found: m/z 291.0746. Calcd for C₁₅H₁₀N₂OF₃: (M+H)⁺ 291.0745.

3-(naphthalen-2-yl)-5-phenyl-1,2,4-oxadiazole (3g):

Reaction time: 3 h.

Yield: 94%; White solid, mp: 121-123 °C; IR (NaCl) 3053, 2985, 1635, 1562, 1421, 1377, 1157 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.59 (5H, m), 7.85 (1H, dd, J = 4.0, 5.2 Hz), 7.91 (1H, d, J = 8.4 Hz), 7.94 (1H, dd, J = 4.0, 5.2 Hz), 8.19-8.22 (3H, m), 8.69 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ 123.9, 124.21, 124.23, 126.6, 127.4, 127.8, 128.0, 128.1, 128.6, 128.8, 129.0, 132.6, 133.0, 134.6, 168.9, 175.6; ESIHRMS: Found: *m/z* 273.1028. Calcd for C₁₈H₁₃N₂O: (M+H)⁺ 273.1028.

3-(1-methyl-1H-indol-3-yl)-5-phenyl-1,2,4-oxadiazole (3h):

Reaction time: 9 h.

Yield: 62%; Pale yellow solid, mp: 133-135 °C; IR (NaCl) 3053, 2985, 1610, 1587, 1562, 1494, 1479, 1421, 1303, 1118 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.78 (3H, s), 7.29-7.33 (3H, m), 7.48-7.57 (3H, m), 7.83 (1H, s), 8.18-8.21 (2H, m), 8.30-8.34 (1H, m); ¹³C NMR (100 MHz, CDCl₃) δ 33.1, 102.9, 109.6, 121.2, 121.9, 122.8, 124.5, 125.4, 128.0, 128.9, 131.4, 132.3, 137.3, 165.7, 174.2; ESIHRMS: Found: *m/z* 276.1135. Calcd for C₁₇H₁₄N₃O: (M+H)⁺ 276.1137.

5-phenyl-3-(pyridin-4-yl)-1,2,4-oxadiazole (3i):

Reaction time: 2 h.

Yield: 72%; White solid, mp: 149-151 °C; IR (NaCl) 3053, 2985, 1635, 1421, 1370, 1155 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (2H, dd, J = 7.2, 7.6 Hz), 7.61-7.65 (1H, m), 8.03 (2H, dd, J = 1.6, 4.4 Hz), 8.20-8.22 (2H, m), 8.80 (2H, dd, J = 1.6, 4.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 121.3, 123.8, 128.2, 129.1, 133.1, 134.3, 150.6, 167.4, 176.4; ESIHRMS: Found: *m*/*z* 224.0822. Calcd for C₁₃H₁₀N₃O: (M+H)⁺ 224.0824.

(E)-5-phenyl-3-styryl-1,2,4-oxadiazole (3j):

Ph N-O

Reaction temperature: 80 °C; reaction time: 4 h.

Yield: 65%; Pale yellow solid, mp: 101-103°C; IR (NaCl) 3053, 2985, 1645, 1610, 1564, 1504, 1447, 1421, 1378, 1157 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.11 (1H, d, J = 16.0 Hz), 7.33-7.42 (3H, m), 7.51-7.60 (5H, m), 7.81 (1H, d, J = 16.0 Hz), 8.18 (2H, dd, J = 1.6, 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 112.9, 124.2, 127.4, 128.1, 128.8, 129.0, 129.4, 132.7, 135.3, 139.1, 168.4, 174.9; ESIHRMS: Found: m/z 249.1023. Calcd for C₁₆H₁₃N₂O: (M+H)⁺ 249.1028.

3-phenethyl-5-phenyl-1,2,4-oxadiazole (3k):

Reaction temperature: 80 °C; reaction time: 7 h.

Yield: 76%; White solid, mp: 36-38°C; IR (NaCl) 3053, 2985, 1636, 1610, 1562, 1481, 1450, 1421, 1373, 1159 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.10-3.16 (4H, m), 7.19-7.32 (5H, m), 7.51 (2H, dd, J = 7.2, 7.6 Hz), 7.56-7.59 (1H, m), 8.11-8.14 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 28.0, 33.1, 124.2, 126.3, 128.0, 128.3, 128.5, 129.0, 132.6, 140.3, 170.5, 175.4; ESIHRMS: Found: *m/z* 251.1184. Calcd for C₁₆H₁₅N₂O: (M+H)⁺ 251.1184.

3-cyclohexyl-5-phenyl-1,2,4-oxadiazole (31):¹⁶

Reaction time: 32 h.

Yield: 53%. ¹H NMR (400 MHz, CDCl₃) δ 1.27-1.48 (3H, m), 1.60-1.78 (3H, m), 1.84-1.88 (2H, m), 2.07-2.11 (2H, m), 2.83-2.91 (1H, m), 7.50 (2H, dd, *J* = 7.2, 7.6 Hz), 7.57 (1H, t, *J* = 7.2 Hz), 8.12 (2H, d, *J* = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 25.7, 25.8, 30.7, 36.0, 124.5, 128.0, 128.9, 132.4, 174.7, 175.1.

3-phenyl-5-(o-tolyl)-1,2,4-oxadiazole (3m):

Reaction time: 10 h.

Yield: 65%; White solid, mp: 101-103°C; IR (NaCl) 3053, 2985, 1637, 1608, 1444, 1421, 1362, 1117 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.79 (3H, s), 7.35-7.39 (2H, m), 7.45-7.53 (4H, m), 8.16-8.20 (3H, m); ¹³C NMR (100 MHz, CDCl₃) δ 21.9, 123.4,

126.2, 127.1, 127.5, 128.8, 130.1, 131.1, 131.8, 132.1, 139.1, 168.5, 176.3; ESIHRMS: Found: m/z 237.1023. Calcd for C₁₅H₁₃N₂O: (M+H)⁺ 237.1028.

5-(4-methoxyphenyl)-3-phenyl-1,2,4-oxadiazole (3n):¹⁷

Reaction time: 9 h.

Yield: 59%. ¹H NMR (400 MHz, CDCl₃) δ 3.86 (3H, s), 7.01 (2H, dd, J = 2.0, 7.2 Hz), 7.49-7.50 (3H, m), 8.13-8.17 (4H, m); ¹³C NMR (100 MHz, CDCl₃) δ 55.4, 114.4, 116.8, 127.1, 127.4, 128.8, 130.0, 131.0, 163.1, 168.7, 175.5.

5-(3-bromophenyl)-3-phenyl-1,2,4-oxadiazole (30):

Reaction time: 3 h.

Yield: 86%; White solid, mp: 110-112°C; IR (NaCl) 3053, 2985, 1638, 1556, 1444, 1421, 1361, 1072 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (1H, t, *J* = 8.0 Hz), 7.47-7.52 (3H, m), 7.69-7.71 (1H, m), 8.10-8.16 (3H, m), 8.34 (1H, dd, *J* = 1.6, 1.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 123.1, 126.0, 126.5, 126.6, 127.4, 128.8, 130.6, 130.9, 131.3, 135.6, 168.9, 174.2; ESIHRMS: Found: *m/z* 300.9979. Calcd for C₁₄H₁₀⁷⁹BrN₂O: (M+H)⁺ 300.9976.

5-(1-methyl-1H-indol-5-yl)-3-phenyl-1,2,4-oxadiazole (3p):

Reaction time: 24 h.

Yield: 54%; White solid, mp: 169-171°C; IR (NaCl) 3053, 2985, 1616, 1593, 1553, 1483, 1421, 1361, 1155 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.81 (3H, s), 6.62 (1H, d, J = 3.2 Hz), 7.12 (1H, d, J = 3.2 Hz), 7.41 (1H, d, J = 8.8 Hz), 7.50-7.52 (3H, m), 8.06 (1H, dd, J = 1.2, 8.8 Hz), 8.17-8.21 (2H, m), 8.52 (1H, d, J = 1.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 33.0, 102.6, 109.7, 115.5, 121.4, 122.2, 127.4, 127.5, 128.4, 128.7, 130.6, 130.9, 138.8, 168.7, 177.1; ESIHRMS: Found: *m/z* 276.1142. Calcd for C₁₇H₁₄N₃O: (M+H)⁺ 276.1137.

3-phenyl-5-(pyridin-2-yl)-1,2,4-oxadiazole (3q):

Reaction time: 24 h.

Yield: 54%; White solid, mp: 112-114°C; IR (NaCl) 3053, 2984, 1595, 1564, 1444, 1427, 1363, 1138 cm⁻¹;¹H NMR (400 MHz, CDCl₃) δ 7.48-7.54 (4H, m), 7.90-7.95 (1H, m), 8.21-8.24 (2H, m), 8.29 (1H, d, *J* = 8.0 Hz), 8.86 (1H, d, *J* = 4.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 124.1, 126.5, 126.6, 127.5, 128.7, 131.3, 137.2, 143.6, 150.6, 169.1, 174.3; ESIHRMS: Found: *m/z* 224.0826. Calcd for C₁₃H₉N₃O: (M+H)⁺ 224.0823.

3,5,5-triphenyl-4,5-dihydro-1,2,4-oxadiazole (2r):

Reaction time: 19 h.

Yield: 33%; White solid, mp: 179-181°C; IR (NaCl) 3053, 2985, 2684, 1635, 1448, 1421, 1157 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.99 (1H, s), 7.34-7.45 (9H, m), 7.54-7.56 (4H, m), 7.77 (2H, d, J = 6.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 100.5, 125.6, 126.4, 126.5, 128.3, 128.5, 128.7, 130.8, 142.4, 154.6; ESIHRMS: Found: m/z 301.1347. Calcd for C₂₀H₁₇N₂O: (M+H)⁺ 301.1341.

(Z)-N'-methoxybenzimidamide (1u'):¹⁸

Reaction time: 100 °C 24 h and 120 °C 4 h.

Yield: 40%. ¹H NMR (400 MHz, CDCl₃) δ 3.92 (3H, s), 4.79 (1H, s br), 7.37-7.39 (3H, m), 7.62 (2H, dd, J = 1.6, 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 61.4, 125.8, 128.6, 129.9, 132.5, 151.8.

4. Synthesis of quinazolinones 5

A typical procedure for synthesis of **5a**:

To a solution of (*Z*)-*N*-benzyl-*N'*-hydroxybenzimidamide (113.3 mg, 0.501 mmol) in DMSO (5 mL) was added Cs_2CO_3 (163.1 mg, 0.501 mmol). The reaction mixture was then stirred for 2.5 h at 100 °C under a dry air atmosphere. The resulting mixture was quenched with water and extracted four times with EtOAc. The combined organic extracts were washed with brine, dried over MgSO₄ and concentrated. Pure quinazolinone **5a** as a white solid was recrystallized from the crude material using hexane/ethyl acetate (57.1 mg, 0.257 mmol, 51% yield). The remaining residue was further purified by flash column chromatography (silica gel; hexane : ethyl acetate : triethyl amine = 75 : 25 : 1) afforded quinazolinone **5a** (15.0 mg, 0.067 mmol, 14% yield) as well as N-benzoly amidine **6a** (19.6 mg, 0.087 mmol, 17% yield) as a white solid.

2-phenylquinazolin-4(3*H*)-one (5a):¹⁹

Reaction time: 2.5 h.

Yield: 65%; ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.53 (1H, m), 7.57-7.60 (3H, m), 7.79-7.85 (2H, m), 8.15-8.17 (2H, m), 8.33 (1H, d, *J* = 7.6 Hz), 10.60 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ 120.8, 126.4, 126.8, 127.3, 128.0, 129.1, 131.7, 132.8, 134.9, 149.5, 151.7, 163.7.

N-(imino(phenyl)methyl)benzamide (6a):

Reaction time: 2.5 h.

Yield: 17%; White solid, mp: 99-101°C; IR (NaCl) 3053, 2985, 1597, 1421, 1319, 1150 cm⁻¹;¹H NMR (400 MHz, CDCl₃) δ 6.67 (1H, s br), 7.44-7.53 (5H, m), 7.59 (1H, t, *J* = 7.6 Hz), 8.04 (2H, d, *J* = 7.6 Hz), 8.38 (2H, d, *J* = 7.6 Hz), 10.75 (1H, s br); ¹³C NMR (100 MHz, CDCl₃) δ 127.4, 128.1, 128.8, 129.7, 132.0, 132.4, 135.1, 137.7, 166.7, 180.5; ESIHRMS: Found: *m*/*z* 225.1023. Calcd for C₁₄H₁₂N₂O: (M+H)⁺ 225.1027.

2-(4-methoxyphenyl)quinazolin-4(3H)-one (5c):²⁰

Reaction time: 2 h.

Yield: 49%; ¹H NMR (400 MHz, DMSO-d₆) δ 3.85 (3H, s), 7.09 (2H, d, J = 8.8 Hz), 7.48 (1H, dd, J = 7.2, 8.0 Hz), 7.70 (1H, d, J = 8.0 Hz), 7.79-7.83 (1H, m), 8.13 (1H, d, J = 8.0 Hz), 8.19 (2H, d, J = 8.8 Hz), 12.24 (1h, s br); ¹³C NMR (100 MHz, DMSO-d₆) δ 55.4, 113.9, 120.6, 124.8, 125.8, 126.1, 127.1, 129.4, 134.5, 148.8, 151.9, 161.8, 162.3.

2-(3-(trifluoromethyl)phenyl)quinazolin-4(3H)-one (5f):

Reaction time: 2 h.

Yield: 51%; White solid, mp: 179-181°C; IR (NaCl) 3053, 2985, 1637, 1421, 1338, 1107 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 7.53-7.57 (1H, m), 7.80 (2H, dd, *J* = 8.0, 8.4 Hz), 7.84-7.88 (1H, m), 7.96 (1H, d, *J* = 8.0 Hz), 8.17 (1H, dd, *J* = 1.2, 8.0 Hz), 8.49 (1H, d, *J* = 7.6 Hz), 8.54 (1H, s), 12.75 (1H, s br); ¹³C NMR (100 MHz, DMSO-d₆) δ 121.1, 123.9 (q, *J* = 270.0 Hz), 124.4 (q, *J* = 3.9 Hz), 125.8, 126.9, 127.5, 127.7 (q, *J* = 3.3 Hz), 129.4 (q, *J* = 32.0 Hz), 129.8, 131.7, 133.7, 134.6, 148.4, 151.0, 162.2; ESIHRMS: Found: *m/z* 291.0750. Calcd for C₁₅H₁₀N₂OF₃: (M+H)⁺ 291.0745.

2-(naphthalen-2-yl)quinazolin-4(3H)-one (5g):

Reaction time: 2 h.

Yield: 53%; Pale yellow solid, mp: 285-287 °C; IR (NaCl) 3053, 2985, 1647, 1421, 1153 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 7.55 (1H, dd, J = 7.2, 7.6 Hz), 7.61-7.67 (2H, m), 7.80 (1H, d, J = 8.0 Hz), 7.85-7.88 (1H, m), 8.01-8.09 (3H, m), 8.19 (1H, d, J = 7.6 Hz), 8.31 (1H, dd, J = 1.2, 8.4 Hz), 8.83 (1H, s), 12.67 (1H, s br); ¹³C NMR ²¹

(100 MHz, DMSO-d₆) δ 121.0, 124.4, 125.8, 126.6, 126.8, 127.5, 127.6, 127.8, 128.0, 128.1, 128.9, 129.9, 132.2, 134.1, 134.5, 148.7, 152.1, 162.1; ESIHRMS: Found: *m/z* 273.1022. Calcd for C₁₈H₁₃N₂O: (M+H)⁺ 273.1028.

2-(1-methyl-1H-indol-3-yl)quinazolin-4(3H)-one (5h):

Reaction time: 2 h.

Yield: 44%; Pale yellow solid, mp: decompose, temperature: 290-295 °C; IR (NaCl) 3053, 2985, 1680, 1651, 1595, 1377, 1157 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆) δ 3.89 (3H, s), 7.25-7.33 (2H, m), 7.39-7.43 (1H, m), 7.57 (1H, d, *J* = 8.0 Hz), 7.72 (1H, d, *J* = 7.6 Hz), 7.76-7.81 (1H, m), 8.10 (1H, dd, *J* = 0.8, 8.0 Hz), 8.52 (1H, s), 8.71 (1H, d, *J* = 7.6 Hz), 12.1 (1H, s br); ¹³C NMR (100 MHz, DMSO-d₆) δ 33.3, 107.6, 110.5, 120.4, 121.2, 122.5, 122.7, 125.2, 125.8, 125.9, 126.9, 132.9, 134.4, 137.4, 149.7, 149.9, 162.1; ESIHRMS: Found: *m/z* 276.1131. Calcd for C₁₇H₁₄N₃O: (M+H)⁺ 276.1137.

2-(pyridin-4-yl)quinazolin-4(3H)-one (5i):²¹

Reaction time: 3.5 h.

Yield: 49%; ¹H NMR (400 MHz, DMSO-d₆) δ 7.58 (1H, dd, J = 7.2, 7.6 Hz), 7.79 (1H, d, J = 8.0 Hz), 7.88 (1H, dd, J = 7.2, 8.0 Hz), 8.11 (2H, d, J = 4.5 Hz), 8.18 (1H, d, J = 8.0 Hz), 8.79 (2H, d, J = 4.5 Hz), 12.77 (1H, s br); ¹³C NMR (100 MHz, DMSO-d₆) δ 121.46, 121.55, 125.9, 127.4, 127.7, 134.7, 139.9, 148.2, 150.2, 150.5, 162.0.

7-methoxy-2-phenylquinazolin-4(3*H*)-one (5n):²²

Reaction time: 2.5 h.

Yield: 58%; ¹H NMR (400 MHz, DMSO-d₆) δ 3.89 (3H, s), 7.44 (1H, dd, J = 2.7, 7.5 Hz), 7.53-7.55 (4H, m), 7.70 (1H, d, J = 8.8 Hz), 8.16 (2H, d, J = 6.6 Hz), 12.51 (1H, s br); ¹³C NMR (100 MHz, DMSO-d₆) δ 55.6, 105.8, 121.8, 124.1, 127.5, 128.6, 129.2, 131.0, 132.8, 143.2, 150.1, 157.7, 162.1.

- (1)T., Gerfaud; H.-L., Wei; L., Neuville; J., Zhu, Org. Lett. 2011, 13, 6172.
- (2)B. C., Sanders; F., Friscourt; P. A., Ledin; N. E., Mbua; S., Arumugam; J., Guo; T.
- J., Boltje; V. V., Popik; G.-J., Boons, J. Am. Chem. Soc. 2011, 133, 949.
- (3)C. L., Allen; S., Davulcu; J. M., Williams, Org. Lett. 2010, 12, 5096.
- (4)K. S. A., Vallin; D. P., Wensbo; Z., Hamersak; M. A., Svensson; A. B. E., Minidis, *J. Org. Chem.* **2009**, *74*, 9328.
- (5)D. R., Kelly; S. C., Baker; D. S., King; D. S., Silva; G., Lord; J. P., Taylor, *Org. Biomol. Chem.*, **2008**, *6*, 787.
- (6) C. L., Allen; S., Davulcu; J. M. J., Williams, Org. Lett. 2010, 12, 5096.
- (7) R. S., Ramon; J., Bosson; S., Diez-Gonzalez; N., Marion; S. P., Nolan, J. Org. Chem. 2010, 75, 1197.
- (8) J. K., Augustine; R., Kumar; A., Bombrun; A. B., Mandal, *Tetrahedron Lett.* **2011**, *52*, 1074.
- (9) Y., Nakano; Y., Kato; K., Imai; E., Ochiai; J.-I., Namekawa; S., Ishizuka; K., Takenouchi; A., Tanatani; Y., Hashimoto; K., Nagasawa, *J. Med. Chem.* **2006**, *49*, 2398.
- (10) A. M., Jawalekar; E., Reubsaet; F. P. J. T., Rutjes; F. L., van Delft, *Chem. Commun.* **2011**, *47*, 3198.
- (11) B. S., Lane; M. A., Brown; D., Sames, J. Am. Chem. Soc. 2005, 127, 8050.
- (12) K., Suda; F., Hino; C., Yijima, J. Org. Chem. 1986, 51, 4232.

- (13) J. K., Augustine; V., Akabote; S. G., Hegde; P., Alagarsamy, J. Org. Chem. 2009, 74, 5640.
- (14) Y., Wang; R. L., Miller; D. R., Sauer; S. W., Djuric, Org. Lett. 2005, 7, 925.
- (15) D., Grant; R., Dahl; N. D. P., Cosford, J. Org. Chem. 2008, 73, 7219.
- (16) B., Kaboudin; L., Malekzadeh, Tetrahedron Lett. 2011, 52, 6424.
- (17) S., Rostamizadeh; H. R., Ghaieni; R., Aryan; A. M., Amani, *Tetrahedron*. **2010**, *66*, 494.
- (18) J. E., Johnson; S. C., Cornell, J. Org. Chem. 1980, 45, 4144.
- (19) Y.-F., Wang; F.-L., Zhang; S., Chiba, Org. Lett., 2013, 15, 2842.
- (20) W., Xu; Y., Jin; H., Liu; Y., Jiang; H., Fu, Org. Lett., 2011, 13, 1274.
- (21) X., Zhang; D., Ye; H., Sun; D., Guo; J., Wang; H., Huang; X., Zhang; H., Jiang;
- H., Liu, Green Chem., 2009, 11, 1881.
- (22)B., Ma; Y., Wang; J., Peng; Q., Zhu, J. Org. Chem. 2011, 76, 6362.

¹H NMR spectrum of **1d** (CDCl₃, 400 Hz):

¹H NMR spectrum of **1f** (CDCl₃, 400 Hz):

¹³C NMR spectrum of **1f** (CDCl₃, 100 Hz):

¹H NMR spectrum of **1g** (CDCl₃, 400 Hz):

0 32.474 478.85 39.083 39.292 39.500 39.708 39.918 50 40.126 947.94 976.20f 100 140.001 899.911 120.131 121.521 126.171 126.468 128.131 129.659 136.370 141.153 150 150.508 ¹³C NMR spectrum of **1h** (DMSO, 100 Hz): 200 HO^N Т Ne,

ppm (t1)

¹H NMR spectrum of **1j** (CDCl₃, 400 Hz):

¹H NMR spectrum of **11** (CDCl₃, 400 Hz):

¹H NMR spectrum of **1m** (CDCl₃, 400 Hz):

ppm (t1)

¹H NMR spectrum of **1p** (DMSO, 400 Hz):

ppm (t1)

¹H NMR spectrum of **3a**(CDCl₃, 400 Hz):

¹H NMR spectrum of **3e** (CDCl₃, 400 Hz):

¹H NMR spectrum of **3f** (CDCl₃, 400 Hz):

¹³C NMR spectrum of **3f** (CDCl₃, 100 Hz):

¹H NMR spectrum of **3h** (CDCl₃, 400 Hz):

¹H NMR spectrum of **3i** (CDCl₃, 400 Hz):

¹H NMR spectrum of **3j** (CDCl₃, 400 Hz):

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

¹H NMR spectrum of **31** (CDCl₃, 400 Hz):

¹H NMR spectrum of **3m** (CDCl₃, 400 Hz):

¹H NMR spectrum of **30** (CDCl₃, 400 Hz):

¹H NMR spectrum of 3q (CDCl₃, 400 Hz):

200

ppm (t1)

 ^{13}C NMR spectrum of 2r (CDCl₃, 100 Hz):

hd hd

Ρh,

ΣI

0-N

¹H NMR spectrum of **5a** (CDCl₃, 400 Hz):

¹³C NMR spectrum of **5f** (DMSO-d₆, 100 Hz):

¹H NMR spectrum of 5g (DMSO-d₆, 400 Hz):

¹H NMR spectrum of **5h** (DMSO-d₆, 400 Hz):

¹H NMR spectrum of **5i** (DMSO-d₆, 400 Hz):

ppm (t1)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is @ The Royal Society of Chemistry 2013

0 778.85 39.086 39.295 39.503 39.712 129.95 50 40.129 629.62 100 102.839 897.121 124.096 127.477 128.565 129.175 131.028 132.797 143.163 150 120.125 167.726 ¹³C NMR spectrum of **5n** (DMSO-d₆, 100 Hz): 870.231 -200 OMe ŻΤ ppm (t1)