A Copper-Catalysed Amidation of Aldehydes *via N*-Hydroxysuccinimide Ester Formation

Monica Pilo, Andrea Porcheddu and Lidia De Luca*

Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy

Table of Contents

¹ H and ¹³ C NMR spectra of all compounds	S2-S43
Chiral HPLC analysis of N-benzoyl L-valine methyl ester	S44-S45

Ó

ppm

0 S20

-6.182

6.5

JV	human	V		

8.5

9.5

0.0

9.0

O2N

5.5

0

-149.485

_____128.046 _____123.824

								I.		
and the training	n a mala sa s	a da statuta da statu	u si ku sana Monda	din in construction in a		un de stra e stata de la companya	والمتقاف والمتراجع والمترا	antes esta estado de la decentra	Luks II al I aldson.	
an an an Arthur an Anna Anna An Anna An Anna An Anna Anna Anna Anna Anna Anna Anna Anna Anna An Anna An Anna An Anna Anna	tali "Inana ayan ka ja Jin pan Antalah ka sa sa s Alayan ya sa	in daalaan dhalan ahay ka	read of the second desire proceed at the ballow And the formation of the second s Second second s	ער איז	a lling a lle lach bailte da bhailte a lac a sa lài Tha sa llachta da bhailte da bhailte a lac an sa lài Tha sa llachta da bhailte da bhailte da bhailte da bhailte	ia la la dia dia amin'ny fanita mandritra dia dia dia dia dia dia dia dia dia di	and in the second of the second second of the second second second	la statistik filmi si kan da kan An an	<mark>d a post filmente de sejan la sues filmente de sues filmente de sues de sues de sues de sues de sues de sues d Constant de sues de sues</mark>	and the first of the second
				1						
ppm 210	200	190	180	170	160	150	140	130	120	110

100	1	90	1

80

60

30

20

10

ppm

0 S30

Chiral HPLC analysis of N-benzoyl D/L-valine methyl ester

Method Info : Chiralpak IA, n-Hexane:IPA 90:10 (v/v), 0.5 ml/min, 15 bar

Sample Info : Chiralpak IA (250 x 4.6 mm, 5 micron) (Chiral Technolog ies Europe, France); Agilent Technologies (Waldbronn, G ermany) 1100 Series HPLC system [high-pressure binary g radient system equipped with a diode-array detector ope rating at multiple wavelengths (220, 254, 280, 360 nm), a 20 microL sample loop and a thermostatted column com partment], n-hexane/IPA 90:10 (v/v), flow rate 0.5 ml/m in, 15 bar

Additional Info : Peak(s) manually integrated

k RetTime	е Туре	Width	ר ר	Area	Height	Area	
[min]	[min]	[mAL	J*s]	[mAl	J] %		
-							
16.129 B	B 0.3	894 12	296.0)1025	49.84032	2 50.220)4
19.473 B	B 0.4	585 12	284.6	63550	42.04177	7 49.779	96
	ık RetTime [min] - 16.129 Bl 19.473 Bl	k RetTime Type [min] [min] 16.129 BB 0.3 19.473 BB 0.4	k RetTime Type Width [min] [min] [mAU 	k RetTime Type Width [min] [min] [mAU*s] 16.129 BB 0.3894 1296.0 19.473 BB 0.4585 1284.6	k RetTime Type Width Area [min] [min] [mAU*s] [mAU 	k RetTime Type Width Area Height [min] [min] [mAU*s] [mAU] % 	k RetTime Type Width Area Height Area [min] [min] [mAU*s] [mAU] %

Chiral HPLC analysis of N-benzoyl L-valine methyl ester

Method Info : Chiralpak IA, n-Hexane:IPA 90:10 (v/v), 0.5 ml/min, 15 bar

Sample Info : Chiralpak IA (250 x 4.6 mm, 5 micron) (Chiral Technolog ies Europe, France); Agilent Technologies (Waldbronn, G ermany) 1100 Series HPLC system [high-pressure binary g radient system equipped with a diode-array detector ope rating at multiple wavelengths (220, 254, 280, 360 nm), a 20 microL sample loop and a thermostatted column com partment], n-hexane/IPA 90:10 (v/v), flow rate 0.5 ml/m in, 15 bar

Additional Info : Peak(s) manually integrated

Peal	<pre> RetTime </pre>	е Туре	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU] %	

1 19.414 BB 0.4638 2.57420e4 834.77258 100.0000