S1

Supporting Information

The Ammonium-Promoted Formylation of Indoles by DMSO and H₂O

Haiyang Fei,^a Jintao Yu,^a Yan Jiang,^a Huan Guo,^a and Jiang Cheng*^{a,b}

^{*a*} School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, P. R. China.

^b State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, P. R. China E-mail: jiangcheng@cczu.edu.cn

Table of Contents

1. Experimental Section	S2
2. Typical procedure	S2
3. Characterization Data for the Products	S2-S7
4. References	S7-S8
5. Deuterium, ¹⁸ O Labeling Experiments	S8-S9
6. Copies of the Products ¹ H NMR and ¹³ C NMR	S10-S55

1. Experimental Section

Chemicals were either purchased or purified by standard techniques without special instructions. ¹H NMR and ¹³C NMR spectra were measured on a 300 MHz spectrometer (¹H 300 MHz, ¹³C 75 MHz), using CDCl₃ or DMSO-d⁶ as the solvent at room temperature. Chemical shifts are given in δ relative to TMS, the coupling constants *J* are given in Hz.

2. Typical procedure

Under N₂, a sealed reaction tube was charged with *N*-methyl indole **1a** (26 mg, 0.2 mmol), ammonium acetate (62 mg, 0.8 mmol) and DMSO/H₂O (1.5 mL/80 μ L). The reaction tube was kept stirring at 150 °C. After the completion of the reaction, as monitored by TLC, the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography on a silica gel to give the product.

3. Characterization Data for the Products. 1-methyl-1*H*-indole-3-carbaldehyde (2a)^[1]

¹H NMR (CDCl₃, 300 MHz): δ 9.93 (s, 1H), 8.31-8.28 (m, 1H), 7.61 (s, 1H), 7.35-7.28 (m, 3H), 3.82 (s, 3H).

¹³C NMR (CDCl₃, 75 MHz): δ 184.4, 139.4, 137.7, 125.1, 123.9, 122.8, 121.9, 117.8, 109.8, 33.6.

1,5-dimethyl-1*H*-indole-3-carbaldehyde (2b)^[2]

¹H NMR (CDCl₃, 300 MHz): δ 9.89 (s, 1H), 8.10 (s, 1H), 7.56 (s, 1H), 7.21 (d, J = 6.0 Hz, 1H), 7.16 (d, J = 6.0 Hz, 1H), 3.78 (s, 3H), 2.48 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 184.4, 139.4, 136.1, 132.6, 125.4, 125.3, 121.6, 117.4, 109.4, 33.6, 21.3.

5-methoxy-1-methyl-1*H*-indole-3-carbaldehyde (2c)^[3]

CHO MeO.

¹H NMR (CDCl₃, 300 MHz): δ 9.89 (s, 1H), 7.76 (s, 1H), 7.56 (s, 1H), 7.20 (d, J = 9.0 Hz, 1H), 6.95 (d, J = 9.0 Hz, 1H), 3.88 (s, 3H), 3.79 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 184.3, 156.6, 139.4, 132.7, 125.8, 117.6, 114.3, 110.6, **S3**

103.2, 55.7, 33.8.

¹H NMR (CDCl₃, 300 MHz): δ 9.86 (s, 1H), 8.14 (d, *J* = 9.0 Hz, 1H), 7.40 (s, 1H), 7.17-7.12 (m, 1H), 6.98 (d, *J* = 9.0 Hz, 1H), 3.97 (s, 3H), 2.67 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 184.2, 140.9, 136.3, 126.5, 126.1, 122.9, 121.8, 119.7, 117.2, 37.7, 19.2.

1-methyl-2-phenyl-1*H*-indole-3-carbaldehyde (2e)^[2]

¹H NMR (CDCl₃, 300 MHz): δ 9.74 (s, 1H), 8.46-8.43 (m, 1H), 7.58-7.55 (m, 3H), 7.50-7.47 (m, 2H), 7.41-7.37 (m, 3H), 3.67 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 186.6, 151.4, 137.3, 130.8, 129.8, 128.6, 128.5, 125.0, 124.0, 123.2, 122.1, 115.6, 109.8, 31.0.

1-methyl-1*H*-pyrrolo[2,3-b]pyridine-3-carbaldehyde (2f)^[4]

¹H NMR (CDCl₃, 300 MHz): δ 9.93 (s, 1H), 8.51 (d, J = 9.0 Hz, 1H), 8.40 (d, J = 4.5 Hz, 1H), 7.82 (s, 1H), 7.25-7.21 (m, 1H), 3.94 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 184.4, 148.6, 145.0, 139.0, 130.4, 118.8, 117.5, 116.2, 32.0.

5-fluoro-1-methyl-1*H*-indole-3-carbaldehyde (2g)^[2]

¹H NMR (CDCl₃, 300 MHz): δ 9.85 (s, 1H), 7.90 (d, J = 9.0 Hz, 1H), 7.62 (s, 1H), 7.23-7.19 (m, 1H), 7.05-6.98 (m, 1H), 3.80 (s, 3H).

¹³C NMR (CDCl₃, 75 MHz): δ 184.1, 159.7 (d, J_{C-F} = 237.0 Hz), 140.2, 134.2, 125.6 (d, J_{C-F} = 11.2 Hz), 117.6 (d, J_{C-F} = 3.8 Hz), 112.1 (d, J_{C-F} = 26.2 Hz), 110.7 (d, J_{C-F} = 9.8 Hz), 107.2 (d, J_{C-F} = 24.8 Hz), 33.8.

S4

¹H NMR (CDCl₃, 300 MHz): δ 9.92 (s, 1H), 8.22 (dd, J_1 = 9.0 Hz, J_2 = 6.0 Hz,1H), 7.64 (s, 1H), 7.09-6.99 (m, 2H), 3. 80 (s, 3H).

¹³C NMR (CDCl₃, 75 MHz): δ 184.3, 160.6 (d, J_{C-F} = 240.0 Hz), 139.7, 138.0 (d, J_{C-F} = 12.0 Hz), 123.1 (d, J_{C-F} = 9.8 Hz), 121.4, 118.0, 111.4 (d, J_{C-F} = 24.0 Hz), 96.6 (d, J_{C-F} = 26.2 Hz), 33.7.

5-bromo-1-methyl-1*H*-indole-3-carbaldehyde (2i)^[5]

¹H NMR (CDCl₃, 300 MHz): δ 9.81 (s, 1H), 8.33 (s, 1H), 7.54 (s, 1H), 7.31 (d, J = 9.0 Hz, 1H), 7.10 (d, J = 9.0 Hz, 1H), 3.77 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 184.0, 139.8, 136.3, 126.7, 126.3, 124.2, 117.0, 116.3,

¹³C NMR (CDCl₃, 75 MHz): 8 184.0, 139.8, 136.3, 126.7, 126.3, 124.2, 117.0, 116.3, 111.3, 33.7.

6-bromo-1-methyl-1*H*-indole-3-carbaldehyde(2j)^[6]

¹H NMR (CDCl₃, 300 MHz): δ 9.89 (s, 1H), 8.10 (d, J = 6.0 Hz, 1H), 7.57 (s, 1H), 7.43 (s, 1H), 7.37 (d, J = 7.5 Hz, 1H), 3.76 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 184.2, 139.6, 138.4, 125.9, 123.8, 123.1, 117.8, 117.4, 112.9, 33.7.

6-chloro-1-methyl-1*H*-indole-3-carbaldehyde (2k)^[2]

¹H NMR (CDCl₃, 300 MHz): δ 9.88 (s, 1H), 8.16 (d, *J* = 9.0 Hz, 1H), 7.59 (s, 1H), 7.27 (s, 1H), 7.24 (d, *J* = 7.5 Hz, 1H), 3.77 (s, 3H).

¹³C NMR (CDCl₃, 75 MHz): δ 184.2, 139.7, 138.1, 129.8, 123.4, 123.3, 122.8, 117.8, 110.0, 33.6.

5-chloro-1-methyl-1*H*-indole-3-carbaldehyde (2l)^[7]

¹H NMR (CDCl₃, 300 MHz): δ 9.89 (s, 1H), 8.25 (s, 1H), 7.63 (s, 1H), 7.28-7.20 (m, 2H), 3.83 (s, 3H).

¹³C NMR (CDCl₃, 75 MHz): δ 184.1, 139.9, 136.1, 128.8, 126.0, 124.3, 121.5, 117.4, 110.9, 33.8.

5-nitro-1-methyl-1*H*-indole-3-carbaldehyde (2m)^[8]

¹H NMR (DMSO-d⁶, 300 MHz): δ 9.97 (s, 1H), 9.89 (s, 1H), 8.53 (s, 1H), 8.18 (d, *J* = 9.0 Hz, 1H), 7.80 (d, *J* = 9.0 Hz, 1H), 3.96 (s, 3H). ¹³C NMP (DMSO-d⁶, 75 MHz): δ 195 0, 144 5, 142 1, 140 5, 122 8, 118 7, 117 0,

¹³C NMR (DMSO-d⁶, 75 MHz): δ 185.0, 144.5, 143.1, 140.5, 123.8, 118.7, 117.9, 117.0, 111.9, 33.9.

5- Cyano -1-methyl-1H-indole-3-carbaldehyde (2n)^[9]

¹H NMR (CDCl₃, 300 MHz): δ 9.98 (s, 1H), 8.61 (s, 1H), 7.81 (s, 1H), 7.54 (d, *J* = 9.0 Hz, 1H), 7.42 (d, *J* = 9.0 Hz, 1H), 3.93 (s, 3H).

¹³C NMR (CDCl₃, 75 MHz): δ 184.2, 140.8, 139.2, 127.4, 127.0, 124.8, 119.7, 118.1, 110.9, 106.1, 34.0.

1- phenyl -1*H*-indole-3-carbaldehyde (20)^[10]

¹H NMR (CDCl₃, 300 MHz): δ 10.08 (s, 1H), 8.41-8.38 (m, 1H), 7.89 (s, 1H), 7.61-7.55 (m, 2H), 7.51-7.45 (m, 4H), 7.39-7.30 (m, 2H).

¹³C NMR (CDCl₃, 75 MHz): δ 184.9, 138.2, 137.9, 137.3, 129.9, 128.2, 125.4, 124.7, 124.5, 123.3, 122.1, 119.5, 111.0.

1-benzyl-1*H*-indole-3-carbaldehyde (2p)^[11]

¹H NMR (CDCl₃, 300 MHz): δ 10.00 (s, 1H), 8.35-8.32 (m, 1H), 7.71 (s, 1H), 7.37-7.29 (m, 6H), 7.18 (d, *J* = 6.0 Hz, 2H), 5.36 (s, 2H). ¹³C NMR (CDCl₃, 75 MHz): δ 184.6, 138.5, 137.4, 135.2, 129.1, 128.4, 127.2, 125.4, 124.1, 123.0, 122.1, 118.4, 110.3, 50.9.

1,3-dimethyl-1*H*-indole-2-carbaldehyde (2q)^[12]

¹H NMR (CDCl₃, 300 MHz): δ 10.16 (s, 1H), 7.70 (d, J = 9.0 Hz, 1H), 7.44 (t, J = 6.0 Hz, 1H), 7.34 (d, J = 9.0 Hz, 1H), 7.16 (t, J = 7.5 Hz, 1H), 4.05 (s, 3H), 2.64 (s, 3H). ¹³C NMR (CDCl₃, 75 MHz): δ 181.6, 139.7, 131.2, 127.3, 126.8, 126.5, 121.3, 120.0, 110.1, 31.5, 8.5.

1*H*-indole-3-carbaldehyde (2r)^[13]

¹H NMR (DMSO-d⁶, 300 MHz): δ 12.15 (b, 1H), 9.94 (s, 1H), 8.29 (s, 1H), 8.11 (d, J = 9.0 Hz, 1H), 7.52 (d, J = 9.0 Hz, 1H), 7.29-7.19 (m, 2H). ¹³C NMR (DMSO-d⁶, 75 MHz): δ 185.0, 138.5, 137.1, 124.2, 123.5, 122.2, 120.9, 118.2, 112.5.

5-fluoro-1*H*-indole-3-carbaldehyde (2s)^[10]

¹H NMR (DMSO-d⁶, 300MHz): δ 12.25 (b, 1H), 9.92 (s, 1H), 8.35 (s, 3.2 Hz, 1H), 7.76 (dd, $J_1 = 9.0$ Hz, $J_2 = 3.0$ Hz, 1H), 7.53 (dd, $J_1 = 9.0$ Hz, $J_2 = 3.0$ Hz, 1H), 7.11 (td, $J_1 = 9.0$ Hz, J = 3.0 Hz, 1H) ¹³C NMR (DMSO-d⁶, 75MHz): δ 185.1, 158.8 (d, $J_{C-F} = 234.0$ Hz), 139.7, 133.7, 124.7 (d, $J_{C-F} = 11.2$ Hz), 118.1, 113.8 (d, $J_{C-F} = 9.8$ Hz), 111.6 (d, $J_{C-F} = 25.5$ Hz), 105.8 (d, $J_{C-F} = 24.8$ Hz)

7-methyl-1*H*-indole-3-carbaldehyde (2t)^[10]

¹H NMR (DMSO-d⁶, 300 MHz): δ 12.2 (b, 1H), 9.94 (s, 1H), 8.28 (d, J = 3.0 Hz, 1H), 7.94 (d, J = 9.0 Hz, 1H), 7.12 (t, J = 7.5 Hz, 1H), 7.04 (d, J = 9.0 Hz, 1H), 2.50 (s, 3H) ¹³C NMR (DMSO-d⁶, 75 MHz): δ 185.1, 138.2, 136.6, 124.1, 124.0, 122.4, 121.8, 118.6, 118.4, 16.7

1-methyl-1*H*-indole-3-carbaldehyde-*d* (d-2a)

¹H NMR (CDCl₃, 300 MHz): δ 9.94 (s, 0.03H), 8.31-8.28 (m, 1H), 7.62 (s, 1H), 7.35-7.29 (m, 3H), 3.82 (s, 3H).

¹³C NMR (CDCl₃, 75 MHz): δ 184.1 (t, *J* = 25.9 Hz), 139.3, 137.8, 125.1, 123.9, 122.8, 121.9, 117.8, 109.8, 33.6.

Bis(1-methyl-1*H*-indol-3-yl)methane (3a)^[14]

¹H NMR (CDCl₃, 300 MHz): δ 7.70 (d, J = 9.0 Hz, 2H), 7.37-7.27 (m, 4H), 7.16 (t, J = 7.5 Hz, 2H), 6.84 (s, 2H), 4.29 (s, 2H), 3.74 (s, 6H). ¹³C NMR (CDCl₃, 75 MHz): δ 137.1, 127.8, 126.9, 121.3, 119.2, 118.5, 114.2, 109.0, 32.5, 20.9.

Bis(1-methyl-1*H*-indol-3-yl)methane-*d*₂ (d-3a)

¹H NMR (CDCl₃, 300 MHz): δ 7.68 (d, J = 9.0 Hz, 2H), 7.35-7.24 (m, 4H), 7.14 (t, J = 7.5 Hz, 2H), 6.83 (s, 0.09H), 4.25 (s, 2H), 3.73 (s, 6H).

¹³C NMR (CDCl₃, 75 MHz): δ 137.1, 127.9, 126.9, 121.3, 119.2, 118.5, 114.2, 109.0, 32.5, 20.3 (quint, J = 18.8 Hz).

2. References

[1] S. Lee and S. B. Park, Org. Lett., 2009, 11, 5214.

[2] J. Chen, B. Liu, D. Liu, S. Liu and J. Cheng, Adv. Synth. Catal., 2012, 354, 2438.

[3] M. Hogan, B. Gleeson and M. Tacke, Organometallics, 2010, 29, 1032.

[4] L. M. M. Mendez, A. Deally, D. F. O'Shea and M. Tacke, *Heteroat. Chem.*, 2011, **22**, 148.

[5] M. Duflos, M. Nourrisson, J. Brelet, J. Courant, G. LeBaut, N. Grimaud and J. Petit, *Eur. J. Med. Chem.*, 2001, **36**, 545.

[6] I. Moubax, N. B. Subielos, B. Banaigs, G. Combaut, P. Huitorel, J. P. Girard and D. Pesando, *Environ. Toxicol. Chem.*, 2001, **20**, 589.

[7] D. Carbonnelle, M. Lardic, A. Dassonville, E. Verron, J. Petit, M. Duflos and F. Lang, *Eur. J. Med. Chem.*, 2007, **42**, 686.

[8] W. Paul Howard (Bayer Schering Pharma AG), EP 2141163 A1, 2010.

[9] Y. Ge, Y. Wang (Southeast Univ.), CN 102167679 A, 2011.

[10] L. Li, J. Huang, H. Li, L. Wen, P. Wang and B, Wang. *Chem. Commun.*, 2012, **48**, 5187.

[11] T. Kurihara, T. Fujimoto, S. Harusawa and R. Yoneda, Synthesis, 1987, 396.

[13] M. Moghadam, S. Tangestaninejad, V. Mirkhani, I. Mohammadpoor-baltork, N. Sirjanian and S. Parand, *Bioorg. Med. Chem.*, 2009, **17**, 3394.

[14] M. Wang, C. Zhou, M. Wong and C. Che, *Chem.—Eur. J.*, 2010, 16, 5723.

3. Deuterium, ¹⁸O Labelling Experiments.

 $DMSO-d^6 + H_2O + NH_4HCO_3$

1.0 0.7

0.5 0.2 0.004µ... 50.0 Lп

341

350.0

S9

--3.82

0.71.12.33	∞
$\begin{array}{c} 13\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$	-109.

4 - 6	5 8 9	400	43
39. 36.	25.	21.17.	09.
77	717	77	

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry									
This journal is © The Royal Society of Chemistry 2013									
	6666166666 66661674								
S14 റ്	0.000								

~3. 88 ~3. 79

Electronic Supplementary Material (ESI) for Organic & Biomolecula	ar Chemistry
This is ureal is a The Day of Seciety of Chamistry 2012	
This journal is the Royal Society of Chemistry 2013	005

s journal is © The Roy	al So <u>ci</u> ety of Ch	emistry 2013		$\infty $	10			
	ŝ	ດ໌	85 85 M	05 65 05	÷.	8 0 7		
	:					40.0	2	
S15	84	26		110	33	<u>3</u> .7	i.	
510	1~	Ë,			1(22	22	
			\sim \sim \sim		1		ł	
	I	I	r 1 1		1	ıır	1	

-33.75

---3.97

-2.67

S17

37.02	1242811
6.0	-7.91
$14 \\ 13$	11221212

-37.66

CHO CHO N 2d-¹³C

-

f1 (ppm) -10

-30.97

1	- I - I		'		'	'	·	' '			'	' '	1	'	'	'	·		'	'	· 1	· · · ·		
	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
fl (ppm)																								

---3.94

Electronic Supplementary Material (ESI) for Organic & Bior This journal is © The Royal Society of Chemistry 2013	nolecular Chemistry	ຸດ ດູ		2
S21	~148. 6 ~145. 0 ~138. 9 ~130. 4	~118. 7 -117. 4 ~116. 1	-77.45 -77.00 -76.58	-31.99
				Ι
		СНО		
		2f- ¹³ C		
an a mil an hanna an life a fhalaine le e na hanna an ann an an ann an an an an an an	a data da da fu da di a sida ya dina ang kata di a sida di sa di ng maping pagina da gapang barang paging paging tara tarapat ng maping paging barang paging barang paging barang	6000000,000 (ka) ali ali da di kata ali da 1860,000 (ali da 1860) 1987 kaj kaj terrando di juga esperante aparezena anterio portente de portente de la 1987 kaj kaj terrando di portente de la contente d	n ann, da, da dha <mark>llan a</mark> thadhladan alar da an la talanna da an la bha an halannadh. An 1919 an 1917 a ¹⁹ Angaranna an sallann agus an guna an la na guna an a	in får vedden den på en kontreder at skylde ster størt og at sevel av det protostin tet ar boldeter av det bes I sevel sevel seg signifter por at severet seger to som seger to severet at severet bosen och sevel severet sev I severet sevel seger for por at severet seger to som seger to severet at severet bosen och severet severet sev
	150 140 130	120 110 100 90	80 70 60 50 40	30 20 10 0 -10

fl (ppm)

nis journal is © The F		emistry 2013	71 12 96	$\begin{array}{c} 16 \\ 03 \\ 00 \\ 21 \\ 21 \end{array}$	1 6	8 0 7	
\$25	4	22.00	9.8.7	c c c c c c c c c c	74.	400	
525	-18	-15			-96 -96	-77 -77 -76	
	İ	1 /	\searrow		\searrow		

--33.74

-10

F 2h- ¹³ C	

fl (ppm)

s © The Roya	I Society of Chemistry 2013	0 2	044480	
	0	$\sim \sim$	550500	28 00 12
627	4.	6.	6.06 - 1.00 - 1.00 - 1.00 - 1.00 - 0.00 -	· · · · ·
527	18	13 13	1111212112111111111111111111111111111	222
		ŤŤŤ		

s journal is le rrie rroyal S	Objety of Ohernistry 2013
	N .
\$29	34.
52)	18

	•
$\begin{array}{c} 60 \\ 42 \end{array}$	$\begin{array}{c} 93\\77\\75\\35\\35\\94\end{array}$
-139. -138.	-125. -123. -123. -117. -117.
Σ	

--3.77

$\begin{array}{c} 74 \\ 11 \end{array}$	76 45 34 77 77	96
139. 138.	129. 123. 123. 122.	109.
57	$\langle \langle \langle \rangle \rangle$	1 I

J	170	160	150	140	130	120	110	100	90	80	70	60	50	40	
								fl (ppm))						

-33.85

Electronic Supplementary Material (ESI) for Organi	c & Biomolecular Chemist	try	
	51 52 52	80 66 93 93	
S35	144. 143. 140.	123. 118. 117. 1117.	338.62339.22339
	577	$\langle \langle \langle \rangle \rangle / \langle \rangle$	

	1	'		· ·	'			· I	· ·	· ·		1		· · ·	· I	· · ·	· I		·	· I
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
											f1 (ppm))								

	$\begin{array}{c} 18\\94\\28\end{array}$	86 15 67 67 33 33 33 33 33 33 33 33	
S39 ⁵ 8	38. 37. 37.	29. 24. 24.	
Ϊ			

77. 42 77. 00 76. 58

		'		'	' '	- I I	1	· · · ·		'	'	'	· 1	'	1	'			1		·		- 1
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1	0
											f1 (ppm))											

10	$\square \square $	2
_•		0
S42 윽	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4.

74	$\begin{array}{c} 17 \\ 31 \\ 80 \\ 27 \\ 04 \end{array}$	12
139.	131. 127. 126. 126. 121. 121.	110.
ł		

	Zq- ¹³ C		
		n, ar en film al la gran de sen de la de la sen de la de la de la sen d Filman y tar la versa de la sen	ika , ika i 1. juni ya kata kata kata kata kata kata kata k

СНО

ووطفه سطوا ومعرطه مرطا

60	$ \begin{array}{c} 15 \\ 51 \\ 18 \\ 87 \\ 87 \\ 47 \\$
.101-	124. 123. 123. 122. 1120. 1

CHC N H 2r- ¹³ C		
11 1		
 	₩₽₽₽₩₩₩₩₩₩₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

	· 1	'	'	· 1	· · ·	· · ·				'	· 1	'	· 1	·	· 1	· 1	· 1	· · ·	· 1	· 1	· ·	-	
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10)
											fl (ppm)											

	676
$\stackrel{\sim}{\dashv}$ S46	9.

his journal is 🖾 The Ro	yal Society of C	-nemistry 2013_	\sim	(0) > 0 = 0 = 0 = 0 = 0
) O	5 3	Q,	
S47	185.	160.	139.	$\begin{bmatrix} 133.\\ 124.\\ 118.\\ 1118.\\ 1113.\\ 1113.\\ 105.\\$
	t i			

	'	'	, , ,	1	'		'	, , ,	1		· ·	'	·	'	'	'		·	'	'	· · · ·	
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											fl (ppm))										

, 1	4	30057 72080	4	0
•	6	000HH 0001	4	S
$\nabla C I O$	•		•	•
	6	8877 7777	$\hat{\mathbf{c}}$	\sim

S49

00	0 6 8 8 9 9 4
8.0	$4 \times 2 \times 2 \times 2$
$\frac{1}{2}$	
57	

$\begin{array}{c} 33\\ 06\\ 50\\ 04\\ 94\\ 67\end{array}$	72
40. 39. 38. 38.	-16.

	'	'	'	'	·				'	'	·	'	· 1	1	1	1	1	·				
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											fl (ppm	ı)										

	$\frac{4}{212}$	
S51	$\overbrace{183.}^{184.}$	

28 75	$ \begin{array}{c} 111 \\ 911 \\ 90 \\ 81 \\ 81 \\ 81 \end{array} $
39. 37.	25. 23. 21. 09.
77	

0

d-2a-¹³C

D

		. un de alterna de la calencia de la fatalece de la calencia de la calencia de la calencia de la calencia de la	sentenenstention of a state of a s

00	$\begin{array}{c} 83\\ 51\\ 05\\ 22\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05$	
37.	27. 26. 19. 14.	
Ĥ		
I		

-20.87

-32.52

-10

Electronic Supplementary Material (E This journal is © The Royal Society o

lan fillen bis stat a belan de stalle het sie bestellt sie bestellt stalle het bis stalle bestellt. Angelag per son og bigge programme in stalle programme af bestellt sie bestellt.

ESI) for Organic & Biomolecular Chem of Chemistry 2013 80 20 1 1 1 1	$\begin{array}{c} \sim 127.86 \\ \sim 126.93 \\ \sim 121.34 \\ \sim 121.34 \\ \sim 119.25 \\ \sim 109.05 \\ \sim 109.05 \end{array}$	$\frac{\sqrt{77.42}}{\sqrt{76.58}}$				
	D D D D d-3a- ¹³ C	ı	20. 78	-20.53 20.27	20.02 19.78	
				20. 4 20. 2	20.0 19.8	\
				f1 (ppm)	a, dele doorda attedar a bate e	

1	1	'	'	1	1	'	'	'	'	'	'	'		'	'	1	1	1				
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
fl (ppm)																						