Supporting Information

Trimethoxybenzene- and trimethylbenzene-based compounds bearing imidazole, indole and pyrrole groups as recognition units: Synthesis and evaluation of the binding properties towards carbohydrates

Jan-Ruven Rosien, Wilhelm Seichter and Monika Mazik*

Institut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Straße 29, 09596 Freiberg, Germany monika.mazik@chemie.tu-freiberg.de

1. Representative EQNMR plots (Figures S1-S11)

2. Representative mole ratio plots (Figures S12-S18)

3. ¹H NMR titrations of compound **14a**, **14b**, **16a** and **16b** with the tested carbohydrates

(Figures S19-S27)

- **4.** ¹H and ¹³C NMR spectra of compounds **12a/b-16a/b** (Figures S28-47)
- 5. Partial ¹H and ¹³C NMR spectra of compound 14a and 14b (chemical shifts of the amine-NH

signals of the two compounds; Figure 48)

1 Plots of the chemical shifts of the receptor resonances as a function of added carbohydrate (EQNMR program).

2 Representative mole ratio plots

¹H NMR titrations of compounds 14a, 14b, 16a and 16b with the tested carbohydrates.

Figure S19. Partial ¹H NMR spectra (400 MHz) of compound **14a** ([**14a**] = 1.00 mM) after addition of 0.00 – 4.10 equiv of β -glucoside **27a** in CDCl₃. Shown are chemical shifts of the CH-indole (a) and CH₂ signals of **14a** (b,c).

- **3.2** ¹H NMR titrations of compound **14b** with β -glucoside **27a**.
- a) b) c)

Figure S20. Partial ¹H NMR spectra (400 MHz) of compound **14b** ([**14b**] = 1.00 mM) after addition of 0.00 – 4.97 equiv of β -glucoside **27a** in CDCl₃. Shown are chemical shifts of the NH-indole (a), CH-indole (b,c) and CH₂ (d) signals of **14b**.

3.3 ¹H NMR titrations of compound **16a** with β -glucoside **27a**.

Figure S21. (a) Partial ¹H NMR spectra (400 MHz) of compound **16a** ([**16a**] = 1.00 mM) after addition of 0.00 – 5.01 equiv of β -glucoside **27a** in CDCl₃. Shown are chemical shifts of the NH-pyrrole (a), CH-pyrrole (b) and CH₂/OCH₃ (c) signals of **16a**.

3.4 ¹H NMR titrations of compound **16a** with β -galactoside **29a**.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Figure S22. Partial ¹H NMR spectra (400 MHz) of compound 16a ([16a] = 1.00 mM) after addition of 0.00 -4.49 equiv of β -galactoside **29a** in CDCl₃. Shown are chemical shifts of the NH-pyrrole (a), CH-pyrrole (b) and CH_2/OCH_3 (c) signals of 16a.

Figure S23. Partial ¹H NMR spectra (400 MHz) of compound 16b ([16b] = 1.01 mM) after addition of 0.00 -4.98 equiv of β -glucoside 27a in CDCl₃. Shown are chemical shifts of the NH-pyrrole (a), CH-pyrrole (b) and CH₂/OCH₃ (c) signals of 16b.

3.6	¹ H NMR titrations of compour	nd 16b with β -galactoside 29a .
a)	b)	c)

a)

Figure S24. Partial ¹H NMR spectra (400 MHz) of compound **16b** ([**16b**] = 1.01 mM) after addition of 0.00 – 4.49 equiv of β -galactoside **29a** in CDCl₃. Shown are chemical shifts of the NH-pyrrole (a), CH-pyrrole (b) and OCH₃ (c) signals of **16b**.

3.7 ¹H NMR titrations of compound **14a** with α -galactoside **30a**. a) b)

Figure S25. Partial ¹H NMR spectra (400 MHz) of compound **14a** ([**14a**] = 1.00 mM) after addition of 0.00 – 4.51 equiv of α -galactoside **30a** in CDCl₃. Shown are chemical shifts of the CH-indole (a,b), CH₂ and OCH₃ (c) signals of **14a**.

¹H NMR titrations of compound **15a** with β -glucoside **27a**. 3.8

Figure S26. Partial ¹H NMR spectra (400 MHz) of compound 15a ([15a] = 1.01 mM) after addition of 0.00 -4.08 equiv of β -glucoside 27a in CDCl₃. Shown are chemical shifts of the NH- (a), CH₂ (b) and OCH₃ (c) signals of 15a.

¹H NMR titrations of compound **16a** with α -galactoside **30a**. 3.9

Figure S27. Partial ¹H NMR spectra (400 MHz) of compound 16a ([16a] = 1.00 mM) after addition of 0.00 -5.01 equiv of α -galactoside **30a** in CDCl₃. Shown are chemical shifts of the NH- (a), CH-pyrrole (b), CH₂ and OCH_3 (c) signals of 16a.

- ¹H and ¹³C NMR spectra of imidazole-, indole- and pyrrole-based compounds **12a/b-16a/b**. 4
- ¹H and ¹³C NMR spectra of compound **12a**. 4.1

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

4.2 ¹H and ¹³C NMR spectra of compound **13a**.

4.3 ¹H and ¹³C NMR spectra of compound **14a**.

4.4 1 H and 13 C NMR spectra of compound **15a**.

Figure S34. ¹H NMR spectrum of 15a in CDCl₃ (0.03 M).

4.5 ¹H and ¹³C NMR spectra of compound **16a**.

¹H and ¹³C NMR spectra of compound **12b**. 4.6

4.7 ¹H and ¹³C NMR spectra of compound 13b.

¹H and ¹³C NMR spectra of compound **14b**. 4.8

4.9 ¹H and ¹³C NMR spectra of compound **15b**.

¹H and ¹³C NMR spectra of compound **16b**. 4.10

5 Partial ¹H and ¹³C NMR spectra of compound **14a** and **14b** (chemical shifts of the amine-NH signals of the two compounds)

Figure 48. Partial ¹H NMR spectra (400 MHz) of compound 14a (a) and 14b (b) in CDCl₃. Shown are chemical shifts of the NH (2.96 ppm and 1.70 ppm in the case of 14a and 14b, respectively), CH₂ and OCH₃ / CH₃ signals of 14a / 14b ([14a] = [14b]).