Reversal of facial selectivity in a thia-Claisen rearrangement by incorporation of a vinylic bromine substituent

Adam R. Ellwood,^a Anne J. Price Mortimer,^a Jonathan M. Goodman^b and Michael J. Porter^{*a}

Supporting Information

Contents

SI1: Experimental Details		SI3: NMR Spectra
Preparation of allylic bromide substrates	S2	$21a - {}^{1}H$
Stereochemical assignment of thiolactam products	S 3	$22a - {}^{1}H \& {}^{13}C$
Experimental details	S 4	$23a - {}^{1}H \& {}^{13}C$
References	S 8	21b $- {}^{1}$ H & 13 C
		$22b - {}^{1}H \& {}^{13}C$
SI2: Computational Details		$23b - {}^{1}H \& {}^{13}C$
Details of computational work	S9	$24b - {}^{1}H$
References	S9	$25a - {}^{1}H \& {}^{13}C$
Summary of transition state energies	S10	$26a - {}^{1}H \& {}^{13}C$
Cartesian coordinates and energies for		$S3 - {}^{1}H \& {}^{13}C$
all computed structures		$S4 - {}^{1}H \& {}^{13}C$
Substrate 27a		$S5 - {}^{1}H \& {}^{13}C$
Starting material	S11	$19a - {}^{1}H \& {}^{13}C$
TS Ia	S12	20a precursor – ¹ H & ¹³ C
TS Ia*	S13	$20a - {}^{1}H \& {}^{13}C$
TS IIa	S14	
TS IIa*	S15	SI4: NMR Spectra (continued)
TS Ib	S16	$S7 - {}^{1}H \& {}^{13}C$
TS Ib*	S17	$S8 - {}^{1}H \& {}^{13}C$
TS IIb	S18	S9 $- {}^{1}$ H & 13 C
TS IIb*	S19	$18b - {}^{1}H$
TS Ic	S20	$20b - {}^{1}H \& {}^{13}C$
TS Ic*	S21	S10 $- {}^{1}$ H & 13 C
TS IIc	S22	S11 $- {}^{1}$ H & 13 C
TS IIc*	S23	$S12 - {}^{1}H \& {}^{13}C$
Substrate 27b		$S13 - {}^{1}H \& {}^{13}C$
Starting material	S24	19b precursor $- {}^{1}H \& {}^{13}C$
TS Ia	S25	$19b - {}^{1}H \& {}^{13}C$
TS Ia*	S26	S16 $- {}^{1}H \& {}^{13}C$
TS IIa	S27	$S17 - {}^{1}H \& {}^{13}C$
TS IIa*	S28	S18 $- {}^{1}$ H & 13 C
TS Ib	S29	
TS Ib*	S30	
TS IIb	S31	
TS IIb*	S32	
TS Ic	S33	
TS Ic*	S34	
TS IIc	S35	
TS IIc*	S36	

S37
S38
S40
S42
S44
S46
S48
S49
S51
S53
S55
S57
S59
S61
S63

S65
S67
S69
S71
S72
S74
S76
S78
S80
S82
S84
S86
S88
S90

Preparation of Allylic Bromides

Allylic bromides **18a–20b** were all synthesised from 1,2:5,6-diisopropylidene-D-mannitol **S1** (Scheme S1).¹ Cleavage of the central vicinal diol and subsequent Wadsworth-Emmons olefination with triethyl phosphonoacetate were carried out in one pot² to give the (*E*)-unsaturated ester **S2** as a single geometrical isomer. DIBAL reduction to an allylic alcohol was followed by treatment with *N*-bromosuccinimide and triphenylphosphine, affording allylic bromide **18a**.³

Exchange of the acetonide protecting group for silyl ethers was carried out at the ester stage: unsaturated ester S2 was treated with aqueous acetic acid to give diol S3. Reprotection with TBS-Cl afforded a bis-silyl ether S4, which was reduced with DIBAL as previously to give allylic alcohol S5. Bromination then led to allylic bromide 19a.

The Z-enoate **S6** could be prepared by following the oxidative cleavage of **S1** with a Wittig reaction in methanol.⁴ Reduction and bromination proceeded as previously to give bromide 20a.

Use of triethyl bromophosphonoacetate⁵ in the olefination step gave the α -bromo- α , β -unsaturated ester **S7** as an inseparable 1.6:1 *Z:E* mixture (Scheme S2). Following DIBAL reduction, the geometrical isomers *Z*-**S8** and *E*-**S9** were separated and individually converted to the corresponding allylic bromides **18b** and **20b**.

Preparation of dibromide **19b** required some minor modifications to the synthetic sequence used previously; upon hydrolysis of the acetonide in **S7**, the *E*-diol spontaneously lactonised to give butenolide **S10**, which was readily separated from the *Z*-diol **S11**. Following silylation of this diol to give **S12**, attempts to use DIBAL reduction were thwarted by the unexpected loss of one of the silyl protecting groups. No such problems were encountered when LiAlH₄ was used as the reducing agent, and alcohol **S13** was obtained in 91% yield. Conversion of this alcohol to the corresponding bromide using NBS/PPh₃ was not a clean reaction; however a two-step sequence of sulfonylation with tosyl chloride followed by displacement of the allylic sulfonate using lithium bromide was successful in affording **19b**.

Scheme S1 *Reagents and conditions:* (i) NaIO₄, NaHCO₃, MeOH, H₂O, 0 °C to rt; (ii) EtO₂CCH₂PO(OEt)₂, K₂CO₃, H₂O, 0 °C to rt; 96% (two steps); (iii) DIBAL, CH₂Cl₂, -78 °C, 77%; (iv) NBS, PPh₃, CH₂Cl₂, 0 °C to rt, 93%; (v) AcOH, H₂O, 98%; (vi) TBSCl, imidazole, CH₂Cl₂, 77%; (vii) DIBAL, CH₂Cl₂, hexane, -78 °C, 93%; (viii) NBS, PPh₃, CH₂Cl₂, 0 °C to rt, 71%; (ix) EtO₂CCH=PPh₃, MeOH, H₂O, -60 °C to 0 °C, 81% (two steps); (x) DIBAL, CH₂Cl₂, -78 °C, 89%; (xi) NBS, PPh₃, CH₂Cl₂, 0 °C to rt, 72%.

Scheme S2 Reagents and conditions: (i) NaIO₄, NaHCO₃, H₂O, 0 °C to rt; (ii) EtO₂CCHBrPO(OEt)₂, K₂CO₃, H₂O, 0 °C to rt; (iii) DIBAL, CH₂Cl₂, -78 °C, 41% S8 + 25% S9 (three steps); (iv) NBS, PPh₃, CH₂Cl₂, 0 °C to rt, 67% (18b), 54% (20b); (v) AcOH, H₂O, 35% S10 + 54% S11; (vi) TBSCl, imidazole, CH₂Cl₂, 87%; (vii) LiAlH₄, THF, Et₂O, 0 °C 91%; (viii) TsCl, Et₃N, DMAP, CH₂Cl₂, 60%; (ix) LiBr, MeCN, 60%.

Stereochemical Assignment of Thiolactam Products

The stereochemical assignment of the thiolactam products was achieved through a combination of X-ray crystallography and chemical correlation. Initial deprotection of the acetonide-containing products **21a** and **22a** led to diols **S16** and **S17** respectively (Scheme S3). Diol **S17** proved to be crystalline, and its stereochemistry (and hence that of **22a**) was established by single-crystal X-ray diffraction.¹¹

The stereochemistry of diol **S16** was correlated with that of **S17** through oxidative cleavage; thus cleavage of **S16** with silicasupported sodium periodate⁶ and reduction of the aldehyde product gave alcohol **S18** while similar treatment of **S17** afforded the enantiomeric alcohol **S19**. As the stereostructure of **S19** could be deduced from the crystal structure of **S17**, the structure of **S18** and hence those of **S16** and **21a** must be as depicted in Scheme S3.

Desilylation of bis-silyl ethers **25a** and **26a** (AcOH, H_2O , 55 °C) led to diols **S16** and **S17** in 67% and 95% yield respectively, thus establishing the stereochemical correspondence between the acetonide and silyl ether series.

Scheme S3 *Reagents and conditions:* (i) AcOH, H₂O, 98% S16 from 21a, 92 % S17 from 22a; (ii) AcOH, THF, 50 °C, 93% S16 from 25a, 67% S17 from 26a; (iii) NaIO₄, SiO₂, CH₂Cl₂, H₂O; (iv) NaBH₄, EtOH, THF, 51% S18, 31% S19 (two steps).

Having established the stereochemistry of the major products in the bromine-free series, we turned our attention to the compounds containing a vinyl bromide moiety. To this end, lactam **22b**, the major product from thia-Claisen rearrangement of bromide **18b**, was subjected to palladium-catalysed debromination with triethylammonium formate (Scheme S4).⁷ Under these conditions significant epimerisation occurred and both **22a** and **23a** were obtained. While this did not allow unambiguous assignment of the stereostructure of **22b**, it implied that **22a** and **23a** differed at the configuration α - to the thiocarbonyl group. As the structure of **22a** had already been confirmed, this allowed assignment of the stereochemistry of **23a**.

Debromination of **22b** without concomitant epimerisation could be effected by carrying out the reduction with tributyltin hydride in the presence of $Pd(PPh_3)_4$.⁸ Under these conditions, only **22a** was obtained, and the stereochemistry of **22b** was thereby confirmed. Likewise, debromination of **21b** with tin hydride afforded solely **21a**, and debromination of **23b** afforded solely **23a**, establishing the stereochemistry of these two brominated compounds.

The unambiguous elucidation of the stereochemistry of compounds **21b**, **22b** and **23b** means that the one remaining stereoisomer, compound **24b**, must have the stereochemistry depicted in Scheme 7.

Hence, through X-ray crystallography and a series of chemical correlations, the stereochemical assignments of all nine isolated thia-Claisen products were firmly established.

Scheme S4 *Reagents and conditions:* (i) Et₃N, HCOOH, Pd(OAc)₂, PPh₃, DMF, 65 °C, 35% 22a + 21% 23a; (ii) Bu₃SnH, Pd(PPh₃)₄, THF, reflux, 50% 22a from 22b; 60% 21a from 21b, 49% 23a from 23b.

Experimental Section

General Experimental Procedures

All non-aqueous reactions were carried out under argon with dry solvents. Dry THF, MeCN and CH₂Cl₂ were obtained by passage through activated alumina columns under nitrogen; pyridine, Et₃N and DMF were distilled from CaH₂ prior to use. Where petrol is specified this refers to the fraction that boils in the range 40–60 °C. Reagents were used as obtained from commercial sources. Flash column chromatography was carried out on BDH silica gel (Kieselgel 600). TLC was carried out on aluminium plates coated with 0.2mm silica gel 60 F₂₅₄, which were visualised either by UV light (254 nm), aq KMnO₄ or vanillin in ethanol. IR spectra were recorded as KBr discs, chloroform casts or neat solids or liquids using either a SHIMADZU FT-IR 8700 spectrometer or a PerkinElmer Spectrum 100 spectrometer fitted with an ATR accessory. Broad peaks are denoted using the abbreviation br. ¹H and ¹³C NMR spectra were recorded as CDCl₃ solutions on Bruker AMX-300, Bruker AVANCE-500 or Bruker AVANCE-600 spectrometers. Chemical shifts are reported in parts per million and are referenced to the residual solvent signal (¹H 7.26 ppm and ¹³C 77.0 ppm). Coupling constants are given in Hz. Peaks are described using the following abbreviations: br, broad; app, apparent; s, singlet; d, doublet, t, triplet, q, quartet, m, multiplet. Mass spectra were recorded on a VG70-SE instrument or a Thermo MAT 900 instrument. Major peaks are listed with intensities quoted as percentages of the base peak. Melting points were measured on a POLAAR 2000 Automatic Polarimeter or a PerkinElmer for a PerkinElmer for a material solution D ine (589 nm). [α]_D is given in units of 0.1 deg cm² g⁻¹; concentrations are quoted in g/100 mL.

Diacetonide S1,¹ esters $S2^{2b}$ and S6,^{4b} bromide 18a,³ triethyl bromophosphonoacetate⁵ and 1-benzylpyrrolidine-2-thione 13^9 were prepared by literature procedures. Other starting materials and reagents were used as obtained from commercial sources.

Synthesis of Allylic Bromide Substrates

Ethyl (S,E)-4,5-dihydroxypent-2-enoate (S3)

A solution of ester **S2**^{2b} (1.00 g, 5.0 mmol) in 3:2 AcOH/H₂O (50 mL) was stirred at room temperature for 24 h. Petrol (50 mL) was added, and the aqueous layer separated and concentrated *in vacuo*. The residue was dried by evaporation successively of EtOH (3 × 50 mL) and toluene (3 × 50 mL) to give diol **S3** (0.78 g, 98%) as a cloudy oil: $R_f = 0.16$ (petrol/EtOAc 1:1); $[\alpha]_D^{17} - 8.0$ (*c* 1.03, CHCl₃) [lit.¹⁰ $[\alpha]_D^{25} -5.0$ (*c* 0.5, CHCl₃)]; v_{max} /cm⁻¹ (film) 3398br (OH), 2937 (CH), 1715 (C=O), 1659 (C=C); ¹H NMR (CDCl₃, 300 MHz) δ 1.29 (3H, t, *J* 7.2 Hz, CH₃), 2.34–2.89 (2H, br s, OH), 3.55 (1H, dd, *J* 11.2, 6.9 Hz) and 3.77 (1H, dd, *J* 11.2, 3.2 Hz, CH₂OH), 4.22 (2H, q, *J* 7.2 Hz, CH₃CH₂), 4.43 (1H, br s, CHOH), 6.14 (1H, dd, *J* 15.7, 1.7 Hz, EtO₂CCH=CH), 6.90 (1H, dd, *J* 15.7, 4.4 Hz, EtO₂CCH=CH); ¹³C NMR (CDCl₃, 75 MHz) δ 14.2 (CH₃), 60.7 (CH₃CH₂), 65.5 (CH₂OH), 71.7 (CHOH), 122.0 (EtO₂CCH=CH), 146.2 (EtO₂CCH=CH), 166.6 (*C*=O); *m*/*z* (CI⁺) 161 (MH⁺, 51%), 143 (MH⁺-H₂O, 55), 115 (52), 97 (100); HRMS found 161.0803, C₇H₁₃O₄ (MH⁺) requires 161.0808.

Ethyl~(S, E)-4, 5-di(tert-butyldimethylsilanyloxy) pent-2-enoate~(S4)

To a solution of diol **S3** (5.00 g, 31.2 mmol) and imidazole (8.50 g, 125 mmol) in CH₂Cl₂ (80 mL) at 0 °C was added *tert*butylchlorodimethylsilane (10.4 g, 68.7 mmol) and the mixture stirred at room temperature for 4 h. The solution was diluted with H₂O (250 mL), the organic material extracted with CH₂Cl₂ (3 × 150 mL), washed with brine (200 mL), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash chromatography (SiO₂, petrol/EtOAc 98:2) afforded ester **S4** (9.35 g, 77%) as a colourless oil: $R_f = 0.45$ (petrol/EtOAc 19:1); $[\alpha]_D^{19}-25.2$ (*c* 0.68, CHCl₃); v_{max} /cm⁻¹ (film) 2930 (CH), 1725 (C=O), 1661 (C=C); ¹H NMR (CDCl₃, 300 MHz) δ 0.04 (6H, s), 0.06 (3H, s) and 0.07 (3H, s, 2 × Si(CH₃)₂), 0.87 (9H, s) and 0.89 (9H, s, 2 × C(CH₃)₃), 1.27 (3H, t, *J* 7.1 Hz, CH₃CH₂), 3.48 (1H, dd, *J* 9.9, 6.5 Hz) and 3.58 (1H, dd, *J* 9.9, 6.3 Hz, TBSOCH₂), 4.19 (2H, q, *J* 7.1 Hz, CH₃CH₂), 4.33 (1H, m, TBSOCH), 6.04 (1H, dd, *J* 15.6, 1.8 Hz, EtO₂CCH=CH), 7.01 (1H, dd, *J* 15.6, 4.2 Hz, EtO₂CCH=CH); ¹³C NMR (CDCl₃, 75 MHz) δ -5.5, -5.3, -4.9 and -4.8 (2 × Si(CH₃)₂), 14.2 (CH₃CH₂), 18.2 and 18.3 (2 × C(CH₃)₃), 25.8 and 25.9 (2 × C(CH₃)₃), 60.3 (CH₃CH₂), 67.2 (TBSOCH₂), 72.7 (TBSOCH), 120.8 (EtO₂CCH=CH), 148.5 (EtO₂CCH=CH), 166.6 (O=C); *m*/z (ESI⁺) 411 (MNa⁺, 100%), 389 (MH⁺, 50), 257 (64); HRMS found 389.2556, C₁₉H₄₁O₄Si₂ (MH⁺) requires 389.2538.

(S,E)-4,5-Di(tert-butyldimethylsilanyloxy)pent-2-en-1-ol (S5)

To a solution of ester **S4** (600 mg, 1.5 mmol) in CH₂Cl₂ (5 mL) at -78 °C was added DIBAL (1.0 M in hexane, 3.9 mL, 3.9 mmol) dropwise, and the resulting mixture stirred for 4 h at -78 °C. After warming the reaction mixture to room temperature, MeOH (5 mL), Et₂O (5 mL) and sat. aq. potassium sodium tartrate (10 mL) were added successively, and the mixture stirred for 1 h. The solution was diluted with H₂O (5 mL) and the organic material extracted with EtOAc (3 × 15 mL). The combined organic extracts were washed with brine (20 mL), dried (MgSO₄) and the solvent removed *in vacuo*. Purification by flash chromatography (SiO₂, petrol/EtOAc 19:1) provided alcohol **S5** (500 mg, 93%) as a colourless oil: R_f = 0.23 (petrol/EtOAc 9:1); $[\alpha]_D^{19}$ –16.8 (*c* 0.63, CHCl₃); v_{max}/cm^{-1} (film) 3332br (OH), 2929 (CH); ¹H NMR (CDCl₃, 300 MHz) δ 0.04 (6H, s), 0.05 (3H, s) and 0.07 (3H, s, 2 × Si(CH₃)₂), 0.88 (9H, s) and 0.89 (9H, s, 2 × C(CH₃)₃), 1.41 (1H, br s, OH), 3.44 (1H, dd, *J* 10.0, 5.9 Hz) and 3.53 (1H, dd, *J* 10.0, 6.5 Hz, TBSOCH₂), 4.14–4.21 (3H, m, TBSOCH and CH₂OH), 5.72 (1H, dd, *J* 15.5, 3.8 Hz, HOCH₂CH=CH) 5.87 (1H, dt, *J* 15.5, 5.2 Hz, HOCH₂CH=CH); ¹³C NMR (CDCl₃, 75 MHz) δ –5.4, –5.2 and –4.6 (2 × Si(CH₃)₂), 18.3 and 18.4 (2 × C(CH₃)₃), 25.9 and 26.0 (2 × C(CH₃)₃), 63.2 (CH₂OH), 68.0 (TBSOCH₂), 73.4 (TBSOCH), 129.6 (HOCH₂CH=CH), 132.3 (HOCH₂CH=CH); *m*/*z* (ESI⁺) 369 (MNa⁺, 100%), 215 (17); HRMS found 369.2268, C₁₇H₃₈O₃Si₂Na (MNa⁺) requires 369.2252.

(S,E)-1-Bromo-4,5-di(*tert*-butyldimethylsilanyloxy)pent-2-ene (19a)

To a stirred solution of alcohol **S5** (2.85 g, 8.2 mmol) in CH_2Cl_2 (80 mL) at 0 °C, triphenylphosphine (2.37 g, 9.0 mmol) was added, followed by *N*-bromsuccinimide (1.54 g, 8.6 mmol) portionwise over several minutes. The solution was stirred at room temperature for 3 h, then quenched with H_2O (100 mL). The organic material was extracted with CH_2Cl_2 (3 × 100 mL) and the combined organic extracts

washed with brine (170 mL), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash chromatography (SiO₂, petrol/Et₂O 96:4) afforded bromide **19a** (2.37 g, 71%) as a colourless oil: $R_f = 0.71$ (petrol/EtOAc 19:1); $[\alpha]_D^{19} - 18.7$ (*c* 0.73, CHCl₃); ν_{max}/cm^{-1} (film) 2929 (CH); ¹H NMR (CDCl₃, 300 MHz) δ 0.06 (3H, s), 0.07 (6H, s) and 0.08 (3H, s, 2 × Si(CH₃)₂), 0.89 (9H, s) and 0.90 (9H, s, 2 × C(CH₃)₃), 3.42 (1H, dd, *J* 9.9, 6.2 Hz) and 3.54 (1H, dd, *J* 9.9, 6.2 Hz, TBSOCH₂), 3.96 (2H, d, *J* 7.2 Hz, BrCH₂), 4.19 (1H, m, TBSOCH), 5.75 (1H, dd, *J* 15.3, 5.0 Hz, BrCH₂CH=CH), 5.91 (1H, m, BrCH₂CH=CH); ¹³C NMR (CDCl₃, 75 MHz) δ -5.3, -5.3, -4.7 and -4.6 (2 × Si(CH₃)₂), 18.3 and 18.4 (2 × C(CH₃)₃), 25.9 and 26.0 (2 × C(CH₃)₃), 32.5 (BrCH₂), 67.7 (TBSOCH₂), 73.0 (TBSOCH), 126.7 (BrCH₂CH=CH), 136.0 (BrCH₂CH=CH); *m*/z (EI⁺) 431/433 (MNa⁺, 12/13%), 351/353 (40/40), 330 (38), 329 (84), 307 (45), 197 (56), 189 (61), 177 (81), 176 (100); HRMS found 431.1418, C₁₇H₄₇⁷⁹BrO₂Si₂Na (MNa⁺) requires 431.1413.

(S,Z)-4-(3-Bromoprop-1-enyl)-2,2-dimethyl-1,3-dioxolane (20a)

To a solution of ester **S6**^{4b} (2.46 g, 12.3 mmol) in CH₂Cl₂ (40 mL) at -78 °C was added DIBAL (1.2 M in toluene, 25.5 mL, 30.7 mmol) dropwise, and the solution stirred for 2 h at -78 °C. After warming the reaction mixture to room temperature, MeOH (80 mL), Et₂O (100 mL) and sat. aq. potassium sodium tartrate (100 mL) were added successively, and the mixture stirred for 1 h. The solution was diluted with H₂O (60 mL) and the organic material extracted with EtOAc (3 × 80 mL). The combined extracts were washed with brine (100 mL), dried (MgSO₄) and the solvent removed *in vacuo* to give a cloudy liquid. Purification by flash chromatography (SiO₂, petrol/EtOAc 8:2–7:3) afforded (*S*,*Z*)-3-(2,2-dimethyl-1,3-dioxolan-4-yl)prop-2-en-1-ol (1.73 g, 89%) as a colourless liquid. R_f = 0.32 (petrol/EtOAc 8:2–7:3) afforded (*S*,*Z*)-3-(2,2-dimethyl-1,3-dioxolan-4-yl)prop-2-en-1-ol (1.73 g, 89%) as a colourless liquid. R_f = 0.32 (petrol/EtOAc 1:1); $[\alpha]_{D}^{20}$ +12.8 (*c* 1.08, CHCl₃) [lit.^{2a} [α]_D –16.5 (*c* 0.22, CHCl₃) for enantiomer]; v_{max}/cm⁻¹ (CDCl₃ cast) 3395 (OH), 2987, 2936, 2873 (CH), 1647 (C=C); ¹H NMR (CDCl₃, 500 MHz) δ 1.39 (3H, s) and 1.42 (3H, s, C(*CH*₃)₂), 1.85 (1H, br s, O*H*), 3.58 (1H, t, *J* 7.9 Hz) and 4.10 (1H, dd, *J* 8.2, 6.2 Hz, OCHC*H*₂O), 4.20 (1H, ddd, *J* 13.1, 6.1, 1.1 Hz) and 4.31 (1H, ddd, *J* 13.1, 7.1, 1.2 Hz, C*H*₂OH), 4.87 (1H, tdd, *J* 7.8, 6.2, 1.2 Hz, OCH), 5.58 (1H, ddt, *J* 11.1, 8.2, 1.3 Hz, HOCH₂CH=CH), 5.85 (1H, dddd, *J* 11.1, 7.1, 6.1, 1.3 Hz HOCH₂C*H*=CH); ¹³C NMR (CDCl₃, 125 MHz) δ 25.9 and 26.7 (C(*C*H₃)₂), 58.7 (CH₂OH), 69.5 (OCH₂), 71.2 (OCH), 109.5 (CMe₂), 129.6 (HOCH₂CH=CH), 133.1 (HOCH₂CH=CH). *m*/z (CI⁺) 159 (MH⁺, 85%), 143 (52), 137 (64), 111 (65), 101 (47), 84 (50), 83 (100); HRMS found 159.1018, C₈H₁₅O₃ (MH⁺) requires 159.1021.

To a stirred solution of this alcohol (1.61 g, 10.2 mmol) in CH₂Cl₂ (70 mL) at 0 °C was added triphenylphosphine (2.94 g, 11.2 mmol), followed by *N*-bromosuccinimide (1.90 g, 10.6 mmol) portionwise over a few minutes. The solution was stirred at room temperature for 3 h. H₂O (80 mL) was added and the organic material extracted with CH₂Cl₂ (3 × 80 mL). The combined extracts were washed with brine (150 mL), dried (MgSO₄) and the solvent removed *in vacuo*. Purification by flash chromatography (SiO₂, petrol/Et₂O 85:15) afforded bromide **20a** (1.63 g, 72%) as a colourless oil. R_f = 0.32 (petrol/EtOAc 4:1); $[\alpha]_D^{20}$ –146.9 (*c* 0.98, CHCl₃); v_{max}/cm⁻¹ (CDCl₃ cast) 2986, 2936, 2873 (CH), 1056; ¹H NMR (CDCl₃, 500 MHz) δ 1.42 (3H, s) and 1.44 (3H, s, C(CH₃)₂), 3.61 (1H, t, *J* 8.0 Hz, OC*H*H), 3.99 (1H, dd, *J* 10.4, 7.9 Hz) and 4.09 (1H, ddd, *J* 10.4, 9.3, 0.8 Hz, CH₂Br), 4.16 (1H, dd, *J* 8.3, 6.2 Hz, OCH*H*), 4.90 (1H, m, OC*H*), 5.60 (1H, dd, *J* 10.6, 8.4 Hz, BrCH₂CH=CH), 5.94 (1H, dddd, *J* 10.6, 9.3, 7.9, 1.1 Hz, BrCH₂CH=CH); ¹³C NMR (CDCl₃, 125 MHz) δ 25.9 (CH₃CCH₃), 25.9 (CH₂Br), 26.7 (CH₃CCH₃), 69.1 (OCH₂), 71.2 (OCH), 109.7 (CMe₂), 129.3 (BrCH₂CH=CH), 132.2 (BrCH₂CH=CH); *m*/z (CI⁺) 221/223 (MH⁺, 6/5%), 142 (83), 112 (32), 84 (100); HRMS found 221.0181, C₈H₁₄⁷⁹BrO₂ (MH⁺) requires 221.0177.

Ethyl (S)-2-bromo-3-(2,2-dimethyl-1,3-dioxolan-4-yl)prop-2-enoate (S7)

To a solution of 1,2:5,6-di-*O*-isopropylidene-D-mannitol (**S1**)¹³ (2.49 g, 9.50 mmol) in aq. NaHCO₃ (5% w/v, 25 mL) at 0 °C was added a solution of NaIO₄ (2.48 g, 11.4 mmol) in H₂O (25 mL). After stirring for 1 h at room temperature, the solution was cooled to 0 °C. Triethyl bromophosphonoacetate⁵ (12.0 g, 39.4 mmol) and aq. K₂CO₃ (6M, 70 mL) were added successively and the reaction was stirred overnight at room temperature. After addition of H₂O (50 mL) to dissolve residual solids, the organic material was extracted with CH₂Cl₂ (3 × 150 mL), dried (MgSO₄) and the solvent removed *in vacuo*. Purification by flash chromatography (SiO₂, petrol/EtOAc 98:2) afforded ester **S7** as an inseparable 3:2 mixture of Z and E esters (4.57g, 86%), as a colourless oil. R_f = 0.27 (petrol/EtOAc 19:1); v_{max}/cm^{-1} (CDCl₃ cast) 2985, 2935, 1783, 1729 (C=O), 1631(C=C); ¹H NMR (CDCl₃, 300 MHz) δ 1.31–1.41 (3H, m, CH₃CH₂), 1.35 (0.4 × 3H, s) and 1.39 (0.4 × 3H, s, C(CH₃)₂ of E-isomer), 1.42 (0.6 × 3H, s) and 1.47 (0.6 × 3H, s, C(CH₃)₂ of Z-isomer), 3.70–3.76 (1H, m) and 4.24–4.36 (3H, m, OCH₂CH and OCH₂CH₃), 4.97 (0.6 × 1H, q, J 6.7 Hz, OCH of Z-isomer), 5.24 (0.4 × 1H, q, J 7.3 Hz, OCH of *E*-isomer), 6.82 (0.4 × 1H, d, J 6.9 Hz, C(Br)=CH of E-isomer), 7.38 (0.6 × 1H, d, J 6.7 Hz, C(Br)=CH of Z-isomer); *m*/z (CI⁺) 279/281 (MH⁺, 8/5%), 263/265 (100/100); HRMS found 279.0229, C₁₀H₁₆⁷⁹BrO₄ (MH⁺) requires 279.0226.

(S,Z)-2-Bromo-3-(2,2-dimethyl-1,3-dioxolan-4-yl) prop-2-en-1-ol~(S8)~and~(S,E)-2-Bromo-3-(2,2-dimethyl-1,3-dioxolan-4-yl) prop-2-en-1-ol~(S9)

To a solution of the *E*- and *Z*-esters (**S7**) from the preceding procedure (3.15 g, 11.3 mmol) in CH₂Cl₂ (30 mL) at -78 °C was added DIBAL (1.2 M in toluene, 22.7 mL, 27.2 mmol) dropwise, and the solution stirred for 6 h at -78 °C. After allowing the reaction mixture to warm to room temperature, MeOH (50 mL), Et₂O (60 mL) and sat. aq. potassium sodium tartrate (60 mL) were added successively, and the mixture stirred for 1 h. The solution was diluted with H₂O (50 mL), then the organic material was extracted with EtOAc (3 × 50 mL), washed with brine (100 mL), dried (MgSO₄) and the solvent removed *in vacuo*. Purification by flash chromatography (SiO₂, petrol/EtOAc 95:5–90:10) afforded Z-alcohol **S8** (1.35 g, 41% from **S1**) and *E*-alcohol **S9** (0.81 g, 25% from **S1**) as colourless oils:

Z-Alcohol **S8**: $R_f = 0.43$ (petrol/EtOAc 7:3); $[\alpha]_D^{20} + 10.2$ (*c* 0.12, CHCl₃); v_{max}/cm^{-1} (CHCl₃ cast) 3439br (OH), 2987, 2929, 2869 (CH), 1667 (C=C); ¹H NMR (CDCl₃, 300 MHz) δ 1.40 (3H, s) and 1.44 (3H, s, C(*CH*₃)₂), 3.65 (1H, dd, *J* 8.3, 7.1 Hz) and 4.12 (1H, dd, *J* 8.3, 6.3 Hz, OCH₂), 4.25 (2H, s, CH₂OH), 4.92 (1H, td, *J* 7.1, 6.3 Hz, OCH), 6.20 (1H, d, *J* 7.1 Hz, C(Br)=CH); ¹³C NMR (CDCl₃, 125 MHz) δ 25.7 and 26.6 (C(*C*H₃)₂), 67.8 (OCH₂), 68.6 (CH₂OH), 75.2 (OCH), 109.7 (C(CH₃)₂) 128.1 (C(Br)=CH), 129.0 (C(Br)=CH); *m*/*z* (CI⁺) 254/256 (MNH₄⁺, 12/11%), 237/239 (MH⁺, 56/52) 223 (23), 221 (30), 198 (100), 196 (98); HRMS found 237.0119, C₈H₁₄⁷⁹BrO₃ (MH⁺) requires 237.0121.

E-Alcohol **S9**: $R_f = 0.33$ (petrol/EtOAc 7:3); $[\alpha]_D^{22} + 12.1$ (*c* 1.34, CHCl₃); v_{max}/cm^{-1} (CH₂Cl₂ cast) 3421 br (OH), 2976, 2903 (CH), 1665 (C=C); ¹H NMR (CDCl₃, 500 MHz) δ 1.36 (3H, s) and 1.40 (3H, s, C(CH₃)₂), 3.62 (1H, dd, *J* 8.4, 7.1 Hz) and 4.10 (1H, dd, *J* 8.4, 6.3 Hz) (C=C); ¹H NMR (CDCl₃, 500 MHz) δ 1.36 (3H, s) and 1.40 (3H, s, C(CH₃)₂), 3.62 (1H, dd, *J* 8.4, 7.1 Hz) and 4.10 (1H, dd, *J* 8.4, 6.3 Hz) (C=C); ¹H NMR (CDCl₃, 500 MHz) δ 1.36 (3H, s) and 1.40 (3H, s, C(CH₃)₂), 3.62 (1H, dd, *J* 8.4, 7.1 Hz) and 4.10 (1H, dd, *J* 8.4, 6.3 Hz) (C=C); ¹H NMR (CDCl₃, 500 MHz) δ 1.36 (3H, s) and 1.40 (3H, s, C(CH₃)₂), 3.62 (1H, dd, *J* 8.4, 7.1 Hz) (2H, dd, *J* 8.4, 6.3 Hz) (2H, dd, *J* 8.4, 6.

Hz, OCH₂), 4.40 (2H, s, CH₂OH), 4.83 (1H, ddd, *J* 8.2, 7.1, 6.3 Hz, OCH), 6.05 (1H, d, *J* 8.2 Hz, C(Br)=CH); ¹³C NMR (CDCl₃, 125 MHz) δ 25.8 and 26.7 (C(CH₃)₂), 63.8 (CH₂OH), 69.1 (OCH₂), 72.5 (OCH), 109.9 (C(Me)₂), 129.6 (CBr) 132.3 (C(Br)=CH); *m*/z (CI⁺) 237/239 (MH⁺, 23/21%), 221/223 (41/38) 181 (100), 179 (97); HRMS found 237.0117, C₈H₁₄⁷⁹BrO₃ (MH⁺) requires 237.0121.

(S,Z)-4-(2,3-Dibromoprop-1-enyl)-2,2-dimethyl-1,3-dioxolane (18b)

To a solution of alcohol **S8** (0.95 g, 4.0 mmol) in CH₂Cl₂ (35 mL) at 0 °C was added triphenylphosphine (1.16 g, 4.4 mmol), followed by *N*-bromosuccinimide (0.75 g, 4.2 mmol) portionwise over several minutes. The solution was stirred at room temperature for 3 h. The reaction was quenched with H₂O (50 mL) and the organic material extracted with CH₂Cl₂ (3 × 50 mL), washed with brine (100 mL), dried (MgSO₄) and the solvent removed *in vacuo*. Purification by flash chromatography (SiO₂, petrol/EtOAc 92:8) afforded bromide **18b** (0.80 g, 67%) as a yellow oil: $R_f = 0.47$ (petrol/EtOAc 9:1); $[\alpha]_D^{22} + 22.5$ (*c* 1.2, CHCl₃) v_{max} /cm⁻¹ (CHCl₃ cast) 2986, 2932 (CH), 1647 (C=C); ¹H NMR (CDCl₃, 500 MHz) δ 1.40 (3H, s) and 1.45 (3H, s, C(CH₃)₂), 3.67 (1H, dd, *J* 8.4, 6.8 Hz, OCHH), 4.21 (1H, d, *J* 11.7 Hz) and 4.24 (1H, d, *J* 11.7 Hz, CH₂Br), 4.25 (1H, dd, *J* 8.4, 6.4 Hz, OCHH), 4.86 (1H, q, *J* 6.9 Hz, OCH), 6.29 (1H, d, *J* 7.1 Hz, C(Br)=CH); ¹³C NMR (CDCl₃, 125 MHz) δ 25.6 and 26.6 (C(CH₃)₂), 64.6 (CH₂Br), 68.4 (OCH₂), 75.7 (OCH), 110.0 (C(Me)₂), 124.2 (CBr), 132.7 (C(Br)=CH); *m/z* (Cl⁺) 299/301/303 (MH⁺, 28/52/22%), 241/243/245 ([MH–Me₂CO]⁺, 27/53/23), 219/221 ([MH–HBr]⁺, 27/27), 189/191 (50/50), 161/163 (100/99); HRMS found 298.9289, C₈H₁₃⁷⁹Br₂O₂ (MH⁺) requires 298.9282.

(S,E)-4-(2,3-Dibromoprop-1-enyl)-2,2-dimethyl-1,3-dioxolane (20b)

To a stirred solution of alcohol **S9** (0.43 g, 1.8 mmol) in CH₂Cl₂ (20 mL) at 0 °C was added triphenylphosphine (0.52 g, 2.0 mmol), followed by *N*-bromosuccinimide (0.34 g, 1.9 mmol) portionwise over a few minutes. The solution was stirred at room temperature for 24 h. The reaction was quenched with H₂O (30 mL), and the organic material extracted with CH₂Cl₂ (3 × 30 mL), washed with brine (50 mL), dried (MgSO₄) and the solvent removed *in vacuo*. Purification by flash chromatography (SiO₂, petrol/Et₂O 97:3) afforded bromide **20b** (0.29 g, 54%) as a colourless oil: $R_f = 0.33$ (petrol/EtOAc 7:3); $[\alpha]_D^{20} - 4.0$ (*c* 0.43, CHCl₃); v_{max} /cm⁻¹ (CHCl₃ cast) 2986, 2933, 2873 (CH), 1638 (C=C); ¹H NMR (CDCl₃, 500 MHz) δ 1.41 (3H, s) and 1.44 (3H, s, C(CH₃)₂), 3.69 (1H, dd, *J* 8.5, 7.0 Hz) and 4.18 (1H, dd, *J* 8.5, 6.2 Hz, OCH₂), 4.23 (1H, d, J 11.3 Hz) and 4.46 (1H, d, *J* 11.3 Hz, CH₂Br), 4.75 (1H, ddd, *J* 8.3, 7.0, 6.2 Hz, OCH) 6.08 (1H, d, *J* 8.3 Hz, C(Br)=CH); ¹³C NMR (CDCl₃, 125 MHz) δ 25.7 and 26.6 (C(CH₃)₂), 32.2 (CH₂Br), 68.5 (OCH₂), 72.7 (OCH), 110.1 (*C*(Me)₂), 124.2 (C(Br)=CH) 134.8 (C(Br)=CH); *m/z* (CI⁺) 299/301/303 (MH⁺, 17/27/15%), 283/285/287 (26/48/25), 241/243/245 ([MH–Me₂CO]⁺, 50/95/45), 227/229/231 (63/100/47); HRMS found 298.9279, C₈H₁₃⁷⁹Br₂O₂ (MH⁺) requires 298.9282.

(S)-3-Bromo-5-hydroxymethyl-5(H)furan-2-one (S10) and ethyl (S,Z)-2-bromo-4,5-dihydroxypent-2-enoate (S11)

Ester **S7** (mixture of isomers, 3.20 g, 11.5 mmol) and aq. AcOH (60% v/v, 60 mL) were stirred at room temperature for 2 d. Petrol (60 mL) was added, then the aqueous layer was separated and concentrated *in vacuo*. The residue was dried by azeotroping successively with EtOH (3 × 60 mL) and toluene (3 × 60 mL), and purification by flash chromatography (SiO₂, petrol/Et₂O 40:60) afforded butenolide **S10** (0.76 g, 35%) as a yellow oil and diol **S11** (1.49 g, 6.2 mmol, 54%) as a colourless oil.

Butenolide **S10**: $R_f = 0.20$ (petrol/Et₂O 2:8); $[\alpha]_D^{20} -51.5$ (*c* 0.20, CHCl₃); v_{max}/cm^{-1} (CHCl₃ cast) 3400br (OH), 2930 (CH), 1756 (C=O), 1607 (C=C); ¹H NMR (CDCl₃, 500 MHz) δ 3.83 (1H, dd, *J* 12.3, 4.8 Hz) and 3.99 (1H, dd, *J* 12.3, 3.9 Hz, *CH*₂), 5.08 (1H, ddd, *J* 4.8, 3.9, 1.8 Hz, CH₂CH), 7.54 (1H, d, *J* 1.8 Hz, CBr=CH); ¹³C NMR (CDCl₃, 125 MHz) δ 62.2 (*C*H₂), 83.0 (CH₂CH), 114.4 (*C*Br), 149.7 (CBr=CH) 168.2 (*C*=O); *m*/*z* (CI⁺) 193/195 (MH⁺, 46/46%), 175/177 ([MH-H₂O]⁺, 100/99); HRMS found 192.9495, C₅H₆⁷⁹BrO₃ (MH⁺) requires 192.9500.

Diol **S11**: $R_f = 0.23$ (petrol/Et₂O 2:8); $[\alpha]_D^{20} + 27.0$ (*c* 0.91, CHCl₃); v_{max}/cm^{-1} (CHCl₃ cast) 3397br (OH), 2984 (CH), 1713 (C=O), 1627 (C=C); ¹H NMR (CDCl₃, 500 MHz) δ 1.35 (3H, t, *J* 7.2 Hz, CH₃), 3.65 (1H, dd, *J* 11.2, 7.2 Hz) and 3.83 (1H, dd, *J* 11.2, 3.2 Hz, CH₂OH), 4.30 (2H, q, *J* 7.2 Hz, CH₃CH₂), 4.71 (1H, td, *J* 7.2, 3.2 Hz, CHOH), 7.30 (1H, d, *J* 7.4 Hz, CBr=CH); ¹³C NMR (CDCl₃, 125 MHz) δ 14.1 (CH₃), 62.9 (CH₃CH₂), 64.0 (CH₂OH), 72.5 (CHOH), 117.3 (CBr), 143.2 (CBr=CH), 161.8 (C=O); *m*/*z* (CI⁺) 239/241 (MH⁺, 8/7%), 221/223 ([MH–H₂O]⁺, 100/97), 193/195 ([MH–EtOH]⁺, 48/45), 175/177 ([MH–H₂O–EtOH]⁺, 94/93); HRMS found 238.9915, $C_7H_{12}^{79}BrO_4$ (MH⁺) requires 238.9919.

Ethyl (S,Z)-2-bromo-4,5-di(tert-butyldimethylsilanyloxy)pent-2-enoate (S12)

To a solution of diol **S11** (1.23 g, 5.1 mmol) and imidazole (1.75 g, 25.7 mmol) in CH₂Cl₂ (30 mL) at 0 °C was added *tert*butylchlorodimethylsilane (2.33 g, 15.4 mmol) and the solution stirred for 3 h at room temperature. The reaction was quenched with H₂O (50 mL) and the organic material extracted with CH₂Cl₂ (3 × 50 mL), then the combined organic extracts were washed with brine (50 mL), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash chromatography (SiO₂, petrol/EtOAc 95:5) afforded ester **S12** (2.09 g, 87%) as a colourless oil: $R_f = 0.38$ (petrol/EtOAc 19:1); $[\alpha]_D^{20} + 1.9$ (*c* 0.57, CHCl₃); v_{max}/cm^{-1} (CHCl₃ cast) 2955, 2929, 2886, 2858 (CH), 1723 (C=O), 1630 (C=C); ¹H NMR (CDCl₃, 400 MHz) δ 0.06 (3H, s), 0.07 (3H, s), 0.07 (3H, s) and 0.10 (3H, s, 2 × Si(CH₃)₂), 0.89 (18H, s, 2 × C(CH₃)₃), 1.34 (3H, t, *J* 7.1 Hz, CH₃CH₂), 3.60 (1H, dd, *J* 10.3, 4.9 Hz) and 3.66 (1H, dd, *J* 10.3, 6.3 Hz, TBSOCH₂), 4.28 (1H, dq, *J* 10.7, 7.1 Hz) and 4.31 (1H, dq, *J* 10.7, 7.1 Hz, CH₃CH₂), 4.65 (1H, ddd, *J* 8.0, 6.3, 4.9 Hz, TBSOCH), 7.15 (1H, d, *J* 8.0 Hz, CBr=CH); ¹³C NMR (CDCl₃, 125 MHz) δ -5.4, -5.3 and -4.7 (2 × Si(CH₃)₂), 14.1 (CH₃CH₂), 18.2 and 18.4 (2 × C(CH₃)₃), 25.8, 25.9 (2 × C(CH₃)₃), 62.6 (CH₃CH₂), 66.1 (TBSOCH₂), 74.0 (TBSOCH), 115.8 (CBr 145.8 (CBr=CH), 162.1 (*C*=O). *m/z* (CI⁺) 467/469 (MH⁺, 2/3%), 335/337 (100/99); HRMS found 467.1637, C₁₉H₄₀⁷⁹BrO₄Si₂ (MH⁺) requires 467.1649.

(S,Z)-2-Bromo-4,5-di(*tert*-butyldimethylsilanyloxy)pent-2-en-1-ol (S13)

To a solution of LiAlH₄ (1M solution in THF, 1.2 mL, 1.2 mmol) in Et₂O (15 mL) at 0 °C was added a solution of ester **S12** (500 mg, 1.1 mmol) in Et₂O (15 mL) over a few minutes. The solution was stirred at 0 °C for 15 minutes, then H₂O (20 mL) was added and the mixture stirred for a further 30 minutes. The organic material was extracted with Et₂O (3 × 200 mL), washed with H₂O (100 mL), dried (MgSO₄) and solvent removed *in vacuo* to afford alcohol **S13** (403 mg, 91%) as a pale yellow oil: $R_f = 0.58$ (petrol/EtOAc 4:1); $[\alpha]_D^{20} + 0.5$ (*c* 0.78, CHCl₃); ν_{max}/cm^{-1} (CHCl₃ cast) 3369br (OH), 2954, 2929, 2886, 2857 (CH), 1664 (C=C); ¹H NMR (CDCl₃, 400 MHz) δ

0.06 (3H, s), 0.07 (3H, s), 0.08 (3H, s) and 0.10 (3H, s, $2 \times Si(CH_3)_2$), 0.89 (9H, s) and 0.90 (9H, s, $2 \times C(CH_3)_3$), 1.89 (1H, t, *J* 6.9 Hz, OH), 3.55 (1H, dd, *J* 10.4, 5.1 Hz) and 3.59 (1H, dd, *J* 10.4, 6.4 Hz, TBSOCH₂), 4.23–4.28 (2H, m, CH₂OH), 4.57 (1H, ddd, *J* 7.8, 6.4, 5.1 Hz, TBSOCH), 5.99 (1H, dt, *J* 7.8, 1.1 Hz, C(Br)=CH); ¹³C NMR (CDCl₃, 125 MHz) δ –5.3, –5.2, –4.6 and –4.6 (2 × Si(CH₃)₂), 18.2 and 18.4 (2 × C(CH₃)₃), 25.9 and 26.0 (2 × C(CH₃)₃), 66.7 (TBSOCH₂), 68.1 (CH₂OH), 73.5 (TBSOCH), 126.7 (CBr), 130.8 (C(Br)=CH); *m*/*z* (FAB⁺) 447/449 (MNa⁺, 41/40%), 369 (72), 367 (70), 295 (65), 293 (69), 189 (100); HRMS found 447.1370, C_{17H₃₇79BrO₃Si₂Na (MNa⁺) requires 447.1362.}

(S,Z)-1,2-Dibromo-4,5-di(*tert*-butyldimethylsilanyloxy)pent-2-ene (19b)

To a solution of alcohol **S13** (120 mg, 0.3 mmol), triethylamine (120 μ L, 0.8 mmol) and DMAP (5.2 mg, 40 μ mol) in CH₂Cl₂ (3 mL) at 0 °C was added TsCl (64 mg, 0.3 mmol), and the solution stirred for 5 h at rt. The solution was diluted with CH₂Cl₂ (10 mL), washed successively with HCl (1M, 5 mL), sat. aq. NaHCO₃ (5 mL) and brine (2 × 5 mL), dried (MgSO₄) and the solvent removed *in vacuo*. Purification by flash chromatography (SiO₂; petrol/EtOAc 99:1) afforded (*S*,*Z*)-2-bromo-4,5-di(*tert*-butyldimethylsilanyloxy)-1-(4-toluenesulfonyloxy)-pent-2-ene (82 mg, 60%) as a colourless oil: R_f = 0.73 (petrol/EtOAc 9:1); $[\alpha]_D^{20}$ –12.5 (*c* 0.42, CHCl₃); v_{max}/cm^{-1} (CDCl₃ cast) 2954, 2929, 2857 (CH), 1599 (C=C); ¹H NMR (CDCl₃, 400 MHz) δ 0.03 (3H, s), 0.04 (6H, s) and 0.06 (3H, s, 4 × Si(CH₃)₂), 0.86 (9H, s) and 0.88 (9H, s, 2 × C(CH₃)₃), 2.46 (3H, s, ArCH₃), 3.47 (1H, dd, *J* 10.3, 4.9 Hz) and 3.53 (1H, dd, *J* 10.3, 6.4 Hz, TBSOCH₂), 4.48 (1H, ddd, *J* 7.7, 6.4, 4.9 Hz, OCH) , 4.61 (1H, d, *J* 12.4 Hz) and 4.65 (1H, d, *J*, 12.4 Hz, CH₂OTs), 6.03 (1H, d, *J* 7.7 Hz, C(Br)=CH), 7.36 (2H, d, *J* 8.3 Hz) and 7.82 (2H, d, *J* 8.3 Hz, ArH); ¹³C NMR (CDCl₃, 125 MHz) δ –5.4, –5.3, –4.7 and –4.7 (2 × Si(CH₃)₂), 18.1 and 18.3 (2 × C(CH₃)₃), 21.7 (ArCH₃), 25.8 and 25.9 (2 × C(CH₃)₃), 60.4 (TBSOCH₂), 73.2 (CH₂OTs) 73.5 (TBSOCH), 117.8 (CBr), 128.0 and 129.9 (aromatic CH), 132.8 (aromatic C), 135.9 (C(Br)=CH), 145.1 (aromatic C); *m/z* (CI⁺) 579/581 (MH⁺, 8/8%), 449 (100), 447 (66), 409 (76), 407 (58), 345 (45), 277 (75); HRMS found 579.1647, C₂₄H₄₄⁷⁹BrO₅SSi₂ (MH⁺) requires 579.1631.

To a solution of this tosylate (510 mg, 0.9 mmol) in MeCN (30 mL) at 0 °C was added LiBr (0.38 g, 4.4 mmol) and the solution stirred at room temperature for 24 h. After removal of the MeCN *in vacuo*, brine (30 mL) was added and the organic material extracted with EtOAc (2 × 50 mL). The combined organic extracts were dried (MgSO₄) and the solvent removed *in vacuo* to yield bromide **19b** (250 mg, 60%) as a colourless oil: $R_f = 0.50$ (petrol/EtOAc 19:1); $[\alpha]_D^{20} + 38.4$ (*c* 0.85, CHCl₃); v_{max}/cm^{-1} (CDCl₃ cast) 2954, 2929, 2857 (CH); ¹H NMR (CDCl₃, 500 MHz) δ 0.06 (3H, s), 0.07 (3H, s), 0.08 (3H, s) and 0.10 (3H, s, 2 × Si(CH₃)₂), 0.89 (9H, s) and 0.90 (9H, s, 2 × C(CH₃)₃), 3.54 (1H, dd, *J* 10.3, 5.2 Hz) and 3.60 (1H, dd, *J* 10.3, 6.2 Hz, OCH₂), 4.20 (1H, dd, *J* 11.3, 0.6 Hz) and 4.24 (1H, dd, *J* 11.3, 0.5 Hz, CH₂Br), 4.50 (1H, ddd, *J* 7.9, 6.2, 5.2 Hz, OCH), 6.06 (1H, d, *J* 7.9 Hz, C(Br)=CH); ¹³C NMR (CDCl₃, 125 MHz) δ -5.4, -5.3, -4.7 and -4.5 (2 × Si(CH₃)₂), 18.1 and 18.4 (2 × C(CH₃)₃), 25.8 and 25.9 (2 × C(CH₃)₃), 38.1 (CH₂Br), 66.4 (OCH₂), 73.9 (OCH), 122.2 (CBr), 135.3 (C(Br)=CH); *m/z* (EI) 429/431/433 ([M–'Bu]⁺, 6/11/6%), 207 (22), 205 (17), 189 (30), 148 (15), 147 (100); HRMS found 428.9903, C₁₇H₂₇⁷⁹Br₂O₂Si₂ ([M–'Bu]⁺) requires 428.9916.

Assignment of Stereochemistry of Thia-Claisen products

(3S,3'R,4'S)-1-Benzyl-3-(4,5-dihydroxypent-1-en-3-yl)pyrrolidine-2-thione (S16)

Acetonide **21a** (270 mg, 0.8 mmol) and aq. AcOH (60%, 15 mL) were stirred at room temperature for 24 h. Petrol (15 mL) was added, then the aqueous layer was separated and concentrated *in vacuo*. The residue was dried azeotropically by concentrating successively from EtOH (3×15 mL) and toluene (3×15 mL) to give diol **S16** (232 mg, 98%) as a pale yellow oil: R_f = 0.20 (petrol/EtOAc 1:1); [α]_D¹⁷ – 159.3 (*c* 1.0, CHCl₃); v_{max}/cm⁻¹ (CHCl₃ cast) 3362br (OH), 3069, 3030, 2922, 2878 (CH), 1637 (C=C), 1510, 1452, 1310 (C=S); ¹H NMR (CDCl₃, 500 MHz) δ 2.04 (1H, ddt, *J* 13.0, 8.9, 6.9 Hz, NCH₂CHH), 2.11 (1H, br s, OH), 2.24 (1H, dtd, *J* 13.0, 9.0, 5.1 Hz, NCH₂CHH), 2.60 (1H, dt, *J* 9.8, 2.8 Hz, CH₂=CHCH), 3.31 (1H, m, C=SCH), 3.45 (1H, ddd, *J* 11.1, 8.7, 6.7 Hz) and 3.56 (1H, ddd, *J* 11.1, 9.0, 5.2 Hz, NCH₂CH₂), 3.62 (2H, m, CH₂OH), 3.95 (1H, d, *J* 2.8 Hz, OH), 4.14 (1H, tt, *J* 5.7, 2.8 Hz, CHOH), 4.94 (1H, d, *J* 14.3, Hz) and 5.08 (1H, d, *J* 14.3, Hz, NCH₂Ph), 5.15–5.22 (2H, m, CH₂=CH), 5.99 (1H, dt, *J* 16.9, 10.1 Hz, CH₂=CH), 7.31–7.38 (5H, m, ArH); ¹³C NMR (CDCl₃, 125 MHz) δ 24.7 (NCH₂CH₂), 50.0 (CH₂=CHCH)), 52.1 (NCH₂Ph), 52.7 (NCH₂CH₂), 58.4 (C=SCH), 65.1 (CH₂OH), 72.8 (CHOH), 119.7 (CH₂=CH), 128.1, 128.3, 128.8 (aromatic CH), 134.2 (CH₂=CH), 134.7 (aromatic C), 202.1 (C=S); *m*/z (CI⁺) 292 (MH⁺, 25%), 274 (10), 230 (32), 191 (78), 91 (100); HRMS found 292.1364, C₁₆H₂₂NO₂S (MH⁺) requires 292.1371.

(3R,3'S,4'S)-1-Benzyl-3-(4,5-dihydroxypent-1-en-3-yl)pyrrolidine-2-thione (S17)

Acetonide **22a** (100 mg, 0.3 mmol) by the above procedure afforded diol **S17** (80 mg, 92%) as a white solid: m.p. 111-112 °C; $R_f = 0.15$ (petrol/EtOAc 1:1); $[\alpha]_D^{17}$ +10.3 (*c* 0.51, CHCl₃); v_{max}/cm^{-1} (CHCl₃ cast) 3368br (OH), 2920, 2873 (CH), 1630 (C=C), 1518 (C=S); ¹H NMR (CDCl₃, 500 MHz) δ 1.89 (1H, ddt, *J* 13.0, 8.6, 4.6 Hz) and 2.27 (1H, dtd, *J* 13.0, 9.5, 7.2 Hz, NCH₂CH₂), 2.56 (1H, td, *J* 9.7, 3.5 Hz, CH₂=CHC*H*), 3.42–3.57 (3H, m, NCH₂CH₂ and C*H*HOH), 3.62 (1H, dt, *J* 9.5, 4.5 Hz, C=SC*H*), 3.72 (1H, br d, *J* 11.7 Hz, CH*H*OH), 4.16 (1H, br s, CHOH), 4.92 (1H, d, *J* 14.3 Hz) and 5.07 (1H, d, *J* 14.3 Hz, NCH₂Ph), 5.10 (1H, dd, *J* 10.1, 1.7 Hz) and 5.20 (1H, dd, *J* 17.1, 1.7 Hz, CH₂=CH), 5.54 (1H, dt, *J* 17.1, 10.1 Hz, CH₂=CH), 7.32–7.38 (5H, m, ArH); ¹³C NMR (CDCl₃, 125 MHz) δ 24.0 (NCH₂CH₂), 51.4 (CH₂=CHCH), 51.8 (NCH₂Ph), 53.2 (NCH₂CH₂), 54.1 (C=SCH), 64.7 (CH₂OH), 71.3 (CHOH), 119.9 (CH₂=CH), 128.2, 128.3, 128.8 (aromatic CH), 134.8 (aromatic C), 135.1 (CH₂=CH), 201.9 (C=S); *m*/*z* (CI⁺) 292 (MH⁺, 100%), 279 (31); HRMS found 292.1367, C₁₆H₂₂NO₂S (MH⁺) requires 292.1371.

Deprotection of silyl ethers 25a and 26a: General Procedure

A solution of lactam **25a** (100 mg, 0.2 mmol) in a 1:1 mixture of AcOH (10 mL) and THF (10 mL) was stirred at 50 °C for 24 h. Petrol (30 mL) was added, then the aqueous layer separated and concentrated *in vacuo*. The residue was dried by azeotroping successively with EtOH (3×40 mL) and toluene (3×40 mL) to give **S16** (52 mg, 93%) as a yellow oil.

Similar treatment of lactam 26a (6 mg, 12 μ mol) afforded S17 (2.3 mg, 67%) as a white solid.

(3S,1'R)-1-Benzyl-3-(1-hydroxymethylallyl)pyrrolidine-2-thione (S18)

To a solution of NaIO₄ (2.57 g, 12.0 mmol) in H₂O (5 mL) at *ca*. 70 °C was added flash silica gel (10.0 g), and the contents shaken vigorously until a free flowing powder had formed.⁶

To a suspension of this silica-supported NaIO₄ powder (0.32 g, *ca*. 0.31 mmol) in CH₂Cl₂ (2 mL) was added a solution of diol **S16** (102 mg, 0.3 mmol) in CH₂Cl₂ (2 mL). The mixture was stirred for 1 h at room temperature. After removal of the solid by filtration, and removal of CH₂Cl₂ *in vacuo*, the intermediate aldehyde was dissolved in EtOH/THF (2:1 *v/v*, 6 mL), and NaBH₄ (130 mg, 3.5 mmol) was added. The solution was stirred for 15 minutes at room temperature, then HCl (1 M) added until the mixture was neutral. The organic material was extracted with EtOAc (3 × 40 mL), dried (MgSO₄) and concentrated *in vacuo*. Purification by flash chromatography (SiO₂, petrol:EtOAc 70:30) afforded alcohol **S18** (46 mg, 51%) as a pale yellow oil: R_f 0.23 (EtOAc:petrol 30:70); $[\alpha]_D^{20}$ –73.2 (*c* 0.40, CHCl₃); v_{max}/cm⁻¹ (CHCl₃ cast) 3399br (OH), 2923, 2875 (CH), 1635 (C=C), 1508, 1453, 1310 (C=S); ¹H NMR (CDCl₃, 500 MHz) δ 1.91 (1H, ddt, *J* 12.7, 8.7, 6.2 Hz) and 2.21 (1H, dtd, *J* 12.7, 9.1, 5.9 Hz, NCH₂CH₂), 2.66 (1H, br s, OH), 3.06 (1H, m, H₂C=CHCH), 3.37 (1H, ddd, *J* 9.2, 6.1, 3.6 Hz, CHC=S), 3.47 (1H, ddd, *J* 11.1, 9.0, 5.8 Hz) and 3.55 (1H, ddd, *J* 11.1, 8.7, 5.9 Hz, NCH₂CH₂), 3.75 (1H, dd, *J* 11.4, 6.5 Hz) and 5.21 (1H, dr, *J* 11.4, 9.0 Hz, CH₂OH), 4.94 (1H, d, *J* 14.3 Hz) and 5.08 (1H, d, *J* 14.3 Hz, PhCH₂), 5.13 (1H, d, *J* 10.3 Hz) and 5.21 (1H, d, *J* 17.1 Hz, CH=CH₂), 5.67 (1H, ddd, *J* 17.1, 10.3, 8.8 Hz, CH=CH₂), 7.31–7.37 (5H, m, ArH); ¹³C NMR (CDCl₃, 125 MHz) δ 23.1 (NCH₂CH₂), 49.3 (H₂C=CHCH), 51.8 (PhCH₂), 52.8 (NCH₂CH₂), 55.1 (CHC=S), 63.0 (CH₂OH), 118.4 (CH=CH₂), 128.1, 128.3 and 128.8 (aromatic CH), 134.9 (aromatic C), 135.6 (CH=CH₂), 202.7 (C=S); *m/z* (CI⁺, CH₄) 290 ([M+C₂H₅]⁺, 22%), 262 (MH⁺, 100), 244 ([MH–H₂O]⁺, 32), 191 (25); HRMS found 262.1260, C₁₅H₂₀NOS (MH⁺) requires 262.1266.

(3R,1'S)-1-Benzyl-3-(1-hydroxymethylallyl)pyrrolidine-2-thione (S19)

The title compound (13 mg, 31%) was prepared from diol **S17** (47 mg, 0.2 mmol) as for compound **S18** and purified by preparative thin layer chromatography (SiO₂, petrol:EtOAc 50:50). It displayed identical spectroscopic characteristics to **S18**. $[\alpha]_D^{20}$ +71.4 (*c* 0.28, CHCl₃).

Debromination of 22b with triethylammonium formate

To a solution of bromide **22b** (60 mg, 0.1 mmol), PPh₃ (3.1 mg, 0.01 mmol), NEt₃ (0.60 mL, 4.4 mmol) and Pd(OAc)₂ (1.3 mg, 0.004 mmol) in DMF (1 mL) was added HCOOH (0.11 mL, 2.3 mmol). The solution was heated to 65 °C with stirring for 6 h. After cooling to room temperature, the reaction mixture was diluted with brine (10 mL) and the organic material extracted with Et₂O (2 × 10 mL). The combined organic extracts were dried (MgSO₄) and the solvent removed *in vacuo*. Purification by flash chromatography (SiO₂, petrol/EtOAc 95:5) afforded thiolactams **22a** (17 mg, 35%) and **23a** (10 mg, 21%) as colourless oils.

Debromination of 21b, 22b and 23b with tributyltin hydride

To a solution of Pd(PPh₃)₄ (0.5 mg, 0.4 µmol) in THF (0.2 mL) was added a solution of bromide **21b** (9.0 mg, 20 µmol), and Bu₃SnH (9 µL, 30 µmol) in THF (0.3 mL). The solution was heated to reflux overnight. The mixture was cooled to room temperature, diluted with brine (5 mL) and the organic material extracted with CH₂Cl₂ (3 × 10 mL). The combined organic extracts were washed with brine (10 mL), dried (MgSO₄) and the solvent removed *in vacuo*. Purification by preparative TLC (SiO₂, petrol/EtOAc 90:10, triple elution) afforded thiolactam **21a** (4.0 mg, 60%) as a pale yellow oil.

Similar treatment of bromide **22b** (50 mg, 0.1 mmol) afforded thiolactam **22a** (20 mg, 50%); bromide **23b** (10 mg, 24 µmol) afforded thiolactam **23a** (3.9 mg, 49%).

References

- 1 C. R. Schmid and J. D. Bryant, Org. Syn. 1993, 72, 6.
- 2 (a) S. Takano, A. Kurotaki, M. Takahashi and K. Ogasawara, *Synthesis* 1986, 403; (b) J. A. Marshall, J. D. Trometer and D. G. Cleary, *Tetrahedron* 1989, 43, 391.
- 3 D. R. Borcherding, S. Narayanan, M. Hasobe, J. G. McKee, B. T. Keller and R. T. Borchardt, J. Med. Chem. 1988, **31**, 1729.
- 4 (a) H. Matsunaga, T. Sakamaki, H. Nagaoka, and Y. Yamada, *Tetrahedron Lett.* 1983, 24, 3009; (b) B. Häfele and V. Jäger, *Liebigs Ann. Chem.* 1987, 85.
- 5 C. E. McKenna and L. A. Khawli, J. Org. Chem. 1986, 51, 5467.
- 6 Y. L. Zhong and T. K. M. Shing, J. Org. Chem. 1997, 62, 2622.
- 7 R. Rossi, F. Bellina and E. Raugei, *Synlett* 2000, 1749.
- 8 W. J. Scott and J. K. Stille, J. Am. Chem. Soc. 1986, 108, 3033.
- 9 S. Lacroix, V. Rixhon and J. Marchand-Brynaert, Synthesis 2006, 2327.
- 10 M. D. Swift and A. Sutherland, *Tetrahedron* 2008, 64, 9521.
- 11 A. J. P. Mortimer, P. S. Pang, A. E. Aliev, D. A. Tocher and M. J. Porter, Org. Biomol. Chem. 2008, 6, 2941.